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Fig. S1. Delamination of laminated papers painted with the delaminating ink and the non-
delaminating ink after immersion. Photos show the state of laminated papers after they were 
immersed in water for the same duration. The bare paper was fully delaminated from the sheath 
tape. The paper painted with the delaminating ink adhered to the sheath tape pre-immersion but 
delaminated when wetted. The paper painted with the non-delaminating ink was strongly 
tethered to the sheath tape even after immersion. For the paper on which three parallel lines were 
drawn with the non-delaminating ink, only the regions with no paint were delaminated while the 
lines remained adhered to the sheath tape. Photo Credit: Dohwan Lee, Georgia Institute of 
Technology. 

  



 
 

 

 

Fig. S2. Investigation of the delay mechanism in delaminating timers. The top photos taken 
at different time frames show the state of three parallel lanes defined by non-delaminating ink on 
a laminated paper. Cross-sectional schematics below photos illustrate the corresponding 
scenarios for each image. In images, lane 1 is a control channel with no timer, while timers were 
drawn in lanes 2 and 3. Lanes 1 & 2 were first constrained by a mechanical force produced by 
two attracting magnets. The capillary flow in lane 1 was observed to be unaffected by the 
mechanical compression. In contrast, the capillary flow in lane 2 stopped permanently. The 
capillary flow in lane 3 was initially stopped by the timer and resumed after an intended amount 
of delay. The capillary flow in lane 2 resumed when the physical constraint was removed. Taken 
together, these results showed the physical separation (i.e., delamination) between the paper and 
the sheath tape as the mechanism for delaying the capillary flow.   



 
 

 

 

Fig. S3. Characterization of the variation in the time delay produced by delaminating 
timers. Measured time delays produced by timers as a function of their width. The dots show the 
mean, the error bars represent the standard deviation (N=10) and CV represents the coefficient of 
variation.  



 
 

 

 

Fig. S4. Effect of liquid viscosity on the timer delay. The plots show the mean measured timer 
delay as a function of the timer width in response to DI water with its viscosity manipulated by 
adding sucrose (left) and glycerol (right) at varying concentrations. The expected viscosity 
values for each tested sample were taken from the literature (35, 36) and provided on the plots. 
The error bars represent standard deviation (N=10).  



 
 

 

 

Fig. S5. Effect of temperature on the timer delay. The plot shows the mean measured timer 
delay as a function of the timer width in response to DI water flow at three different 
temperatures: 4 ℃, room temperature (25 ℃), and 60 ℃. The external temperature was 
controlled by a thermoelectric plate. The error bars represent standard deviation (N=10). 



 
 

 

 

Fig. S6. Integration of the hCG LFA strip with the flow controller. The schematics show the 
exploded (left) and assembled (right) views of the designed device. The flow controller and 
commercial LFA strip were aligned and integrated on the same sheath tape at the bottom. 
Another sheath tape covered the flow controller from the top. To prevent any potential 
interference with the operation and colorimetric detection, the LFA strip was left exposed from 
the top with neither the top sheath tape nor the paper substrate extending over the LFA strip 
except at the junction point that delivers the reagents A/B and DI water from the flow controller 
to the LFA strip.  



 
 

 

 

Fig. S7. Operation of the LFA strip with the flow controller. The top schematic shows the 
basic structure of the conventional LFA indicating the types and placements of bio-recognition 
elements on the strip. The schematics i-vi show the full sequence of events that produce an 
amplified colorimetric signal in our device. Among these schematics, i-iii are common with a 
conventional LFA strip. Schematics iv-vi illustrate the automated signal amplification process 
through sequential delivery of the chemical reagents by the integrated flow controller. 



 
 

 

 

Fig. S8. Comparison between hCG assay on our device and processing the sample 
premixed with amplification reagents on a conventional LFA. Schematics at the top illustrate 
the experimental procedures employed to process the urine samples. The urine samples were 
processed directly on our device, while the samples were premixed with amplification reagents 
for the conventional LFA. The images below show the colorimetric results recorded from the 
two experiments for different concentrations of hCG in urine samples. The test line being visible 
on our device for a lower hCG concentration demonstrates that it is not the presence of 
amplification reagents but their sequential delivery is responsible for higher sensitivity. 



 
 

 

 

Fig. S9. Comparison between hCG assay on our device and an identical device without 
delaminating timers. Schematics at the top illustrate the experimental procedures employed to 
process the urine samples. The only difference between the two devices is that the device on the 
right does not have the delaminating timers. The images below show the colorimetric results 
recorded from the two experiments for different concentrations of hCG in urine samples. The test 
line being visible on our device for a lower hCG concentration demonstrates that the specific 
time delays produced by delaminating timers are required to increase the assay sensitivity. 



 
 

 

 

Fig. S10. DNA extraction on our device. The schematic illustrates the steps in the designed 
protocol. The biological sample is introduced to the device simultaneously with three other 
reagents from dedicated inlets. After 20 minutes, the extraction spots are taken out from the 
device and are subjected to PCR for amplification of the extracted DNA. The purified DNA can 
also be obtained in suspension by immersing the extraction spots in TE or elution buffer and 
heating at 80 ℃ for 30 minutes. 

  



 
 

 

Movie S1. Timer response on laminated versus naked paper. The capillary flow was initially 
stopped by the timer on the laminated paper and then resumed after an intended delay. In 
contrast, the capillary flow was permanently blocked by an identically-designed timer on a naked 
paper. 
 
Movie S2. Sequential release of different capillary flow streams with a group of 
delaminating timers. Four inlets, each with a different number of delaminating timers, merge 
into a single channel. Differential delays in branches lead to the sequential release of the 
distinctly colored dye solutions into the main channel. The flow in a similar channel layout 
without delaminating timers is also shown for comparison purposes.   
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