Science Advances

Supplementary Materials for

Deubiquitinase CYLD acts as a negative regulator of dopamine neuron survival in Parkinson's disease

Sheila K. Pirooznia, Hu Wang, Nikhil Panicker, Manoj Kumar, Stewart Neifert, Mohamad Aasif Dar, Evan Lau, Bong Gu Kang, Javier Redding-Ochoa, Juan C. Troncoso, Valina L. Dawson*, Ted M. Dawson*

*Corresponding author. Email: vdawson@jhmi.edu (V.L.D.); tdawson@jhmi.edu (T.M.D.)

Published 1 April 2022, *Sci. Adv.* **8**, eabh1824 (2022) DOI: 10.1126/sciadv.abh1824

The PDF file includes:

Figs. S1 to S6 Tables S1 to S3 Legends for movies S1 to S3

Other Supplementary Material for this manuscipt includes the following:

Movies S1 to S3

Fig S1: Genome-wide RNAi screen in *Drosophila* **for DUBs that modify hPARIS induced climbing deficits.** Summary of DUBs that modified climbing defects induced by dopaminergic accumulation of hPARIS. TH-Gal4/+ flies served as control. TH-Gal4 mediated EGFP shRNA

induction served as non-target control for shRNA response. N=60 flies per group at 20-days of age. See also Table S2.

В

Fig S2: Secondary screens under conditions of parkin or PINK1 KD to identify modifiers of climbing deficits. A) Summary of DUB candidates from primary screen scored for suppression of climbing defects induced by dopaminergic KD of parkin. B) Summary of DUB candidates

А

from primary screen scored in PINK1 KD flies for their modifying effect on climbing deficits. TH-Gal4/+ flies served as control. TH-Gal4 mediated EGFP shRNA induction served as non-target control for shRNA response. N=60 flies per group at 20-days of age. See also Table S3.

Fig S3: CYLD knockdown suppresses dopaminergic neurodegeneration in *Drosophila* under conditions of parkin or PINK1 insufficiency. A) Quantification of DA neuron number in PPL1, PPL2, PPM1/2, and PPM3 dopaminergic clusters in the indicated genotypes under conditions of parkin KD. B) Summary of dopamine neuron quantification in the same dopaminergic clusters as (A) under conditions of PINK1 KD in the indicated genotypes. TH-Gal4/+ flies served as control. TH-Gal4 mediated EGFP shRNA induction served as non-target control for shRNA response. N=10 flies per group at 20-days of age. Quantitative data = mean \pm SEM. One-way ANOVA *p < 0.05, **p < 0.01, *** p < 0.001, ****p < 0.0001.

Fig S4: CYLD knockdown suppresses dPARIS induced dopaminergic neurotoxicity in *Drosophila*. A) Representative confocal images of individual dopamine neurons in PPL1, PPL2, PPM1/2, and PPM3 DA neuron clusters in the indicated genotypes at 30-days of age. Scale = 500μ M. B) Quantification of dopamine neuron numbers in the individual PPL1, PPL2, PPM1/2, and PPM3 clusters for the indicated genotypes on day 30. Observed rescue effects verified using

two independent shRNA fly lines (KD-1 and KD-2) targeting dCYLD. C) Quantification of total dopamine neuron numbers in the indicated genotypes, age group same as B. N=10 flies per indicated genotype. D) Climbing performance in the indicated genotypes on day 30. N=45-60 flies per group. TH-Gal4/+ flies served as control. TH-Gal4 mediated GFP shRNA induction served as non-target control for shRNA response. Quantitative data = mean \pm SEM. One-way ANOVA *p < 0.05, **p < 0.01, *** p < 0.001, ****p < 0.0001.

Fig S5: Mapping of protein interaction domains in PARIS and CYLD. A) Coimmunoprecipitation of N-terminally V5-tagged CYLD by N-terminally FLAG-tagged PARIS in SH-SY5Y cells using anti-FLAG antibodies. Similar results observed in three independent experiments. B) Reciprocal co-immunoprecipitation using anti-V5 antibodies verify interaction between PARIS and CYLD in SH-SY5Y cells transfected with indicated transgenes. N=3 independent experiments. C) Schematic of N-terminally FLAG tagged truncated fragments of PARIS used for mapping CYLD binding region in PARIS. D) Co-immunoprecipitation

experiments using the indicated truncated fragments of PARIS show that PARIS interacts with CYLD at its N-terminus (Fragment F1). N=3. E) Schematic of N-terminally V5 tagged truncated fragments of CYLD used for mapping PARIS binding region in CYLD. E) Co-immunoprecipitation experiments using the indicated truncated fragments of CYLD show that CYLD binds PARIS at its C-terminus in the region spanning its third CAP domain (Fragment F1). N=3.

Fig S6: CYLD knockdown ameliorates behavioral deficits under conditions of parkin insufficiency. A) Amphetamine induced ipsilateral turns in indicated groups. B) Pole test measuring time to turn in indicated groups. C) Grip strength test measuring force in all limbs in indicated injection groups. Quantitative data = mean \pm SEM with Tukey post-hoc test. One-way ANOVA *p < 0.05, **p < 0.01, *** p < 0.001, ****p < 0.0001.

No.	Flybase ID	Human homolog (Gene Symbol)	DUB family	Fly line used	Source
1	FBgn0030370	Uch-L5R	Ubiquitin C-terminal Hydrolase	330593	VDRC
2	FBgn0262166	UCHL2	-	v107757	VDRC
3	FBgn0010288	UCHL3	-	26468	VDRC
4	FBgn0011327	UCHL5	-	35433	BDSC
5	FBgn0028476	USP1	Ubiquitin specific Protease	28356	BDSC
6	FBgn0031187	USP2	-	104382	VDRC
7	FBgn0035402	USP5		31886	BDSC
8	FBgn0030366	USP7	-	34708	BDSC
9	FBgn0038862	USP8	-	38982	BDSC
10	FBgn0005632	USP9X	-	35728	BDSC
11	FBgn0052479	USP10		36897	BDSC
12	FBgn0039025	USP12/46	-	35110 (MiMIC)	BDSC
13	FBgn0032216	USP14	-	53262	BDSC
14	FBgn0033916	USP20/33		42609	VDRC
15	FBgn0013717	USP22		28725	BDSC
16	FBgn0029819	USP30	-	110616	VDRC
17	FBgn0050421	USP31	-	33726	VDRC
18	FBgn0036913	USP32		18981	VDRC
19	FBgn0039214	USP34		27517	VDRC
20	FBgn0033738	USP35	-	28960	VDRC
21	FBgn0260936	USP36		33406	BDSC
22	FBgn0030969	USP39		110535	VDRC
23	FBgn0029763	USP45		110286	VDRC
24	FBgn0016756	USP47		44645	BDSC
25	FBgn0000542	USP54		106671	VDRC
26	FBgn0032210	CYLD		101414; 40840	VDRC;
27	FBgn0033352	PAN2	-	53249	BDSC
28	FBgn0029853	JOSD2	Machado Joseph Disease Domain Protease	108379	VDRC
29	FBgn0003023	No ortholog	Otubain Proteases	NA	NA
30	FBgn0031622	No ortholog		NA	NA
31	FBgn0035593	YOD1		21893	VDRC
32	FBgn0032214	OTUB1	1	35615	BDSC
33	FBgn0036180	OTUD5	1	109912	VDRC
34	FBgn0026738	OTUD6B	1	105469	VDRC
35	FBgn0037734	ZRANB1	1	24030	VDRC
36	FBgn0039773	STAMBP	JAMM Domain Proteases	108622	VDRC

Table S1. List of DUB RNAi lines used in genome-wide RNAi screen

37	FBgn0027053	COPS5	42781	BDSC
38	FBgn0028837	COPS6	36073	BDSC
39	FBgn0002787	PSMD7	35411	BDSC
40	FBgn0028694	PSMD14	33662	BDSC
41	FBgn0032348	MPND	45530	VDRC
42	FBgn0037270	EIF3F1	33980	BDSC
43	FBgn0033069	EIF3F2	108169	VDRC
44	FBgn0022023	EIF3H	55603	BDSC
45	FBgn0033688	PRPF	34622	BDSC

Targeted No. **TH crosses** TH; hPARIS crosses DUB Significance Summary Adjusted p-Significance Adjusted Summary value p-value 1 Uch-L5R 0.998 No 0.6557 No ns ns UCHL2 0.9998 0.9993 2 No No ns ns ** UCHL3 0.0044 3 No 0.8656 Yes ns UCHL5 0.9986 4 No 0.9174 No ns ns 5 USP1 No 0.9994 No 0.0641 ns ns USP2 0.0943 6 No 0.9982 No ns ns **** 7 USP5 No 0.2191 Yes < 0.0001 ns ** 8 USP7 No 0.9996 Yes 0.0016 ns 9 USP8 0.9997 0.1607 No No ns ns 10 USP9X 0.9796 No 0.9992 No ns ns **** USP10 < 0.0001 11 No 0.6557 Yes ns 12 USP12/46 No 0.9552 No 0.9591 ns ns USP14 0.9984 **** < 0.0001 13 No Yes ns 14 USP20/33 ** 0.0077 Yes 0.0025 No ns USP22 0.9998 0.8481 15 No No ns ns 16 USP30 No 0.9991 No 0.1895 ns ns USP31 0.9996 0.9991 17 No No ns ns 18 USP32 0.9998 0.999 No No ns ns USP34 0.7387 19 No < 0.0001 No ns ns 20 USP35 No 0.0997 No 0.1895 ns ns ** 21 USP36 No 0.0055 Yes 0.0037 ns 22 USP39 >0.9999 Yes ** 0.0049 No ns **** USP45 0.9991 < 0.0001 23 No Yes ns >0.9999 24 USP47 No 0.9994 No ns ns 25 USP54 No 0.2191 Yes *** 0.0009 ns CYLD 0.9986 *** 0.0005 26 Yes No ns 27 PAN2 No 0.9993 No 0.9997 ns ns 28 JOSD2 No 0.9993 No 0.499 ns ns >0.9999 29 YOD1 0.999 No No ns ns 30 OTUB1 No >0.9999 0.9986 **** < 0.0001 ns **** OTUD5 0.9996 Yes < 0.0001 31 No ns *** 32 OTUD6B No 0.0028 Yes 0.0009 ns ** 0.0025 33 ZRANB1 No 0.7312 Yes ns **** < 0.0001 34 STAMBP 0.5068 No ns Yes

 Table S2. Statistical comparison of climbing performance of DUB knockdowns in primary screen

35	COPS5	No	ns	0.9996	Yes	***	0.0007
36	COPS6	No	ns	0.9986	No	ns	0.343
37	PSMD7	No	ns	< 0.0001	No	ns	0.2986
38	PSMD14	No	ns	< 0.0001	No	ns	0.343
39	MPND	No	ns	0.0932	No	ns	0.1607
40	EIF3F1	No	ns	0.9982	Yes	****	< 0.0001
41	EIF3F2	No	ns	0.6557	Yes	***	0.0002
42	EIF3H	No	ns	0.999	No	ns	0.1895
43	PRPF	No	ns	0.6557	No	ns	0.3914

One-way ANOVA analysis with Tukey's post-hoc multiple correction comparing climbing performance of the DUB knockdowns in the primary screen employing dopaminergic overexpression of PARIS. **p < 0.01, *** p < 0.001, ***p < 0.001, ns – not significant

No.	Targeted DUB	TH>Parkin KD crosses			TH>PINK1 KD crosses		
		Significance	Summary	Adjusted p-value	Significance	Summary	Adjusted p-value
1	USP5	No	ns	0.6711	No	ns	0.0609
2	USP10	Yes	****	< 0.0001	Yes	****	< 0.0001
3	USP14	Yes	****	< 0.0001	No	ns	0.4597
4	USP36	Yes	****	< 0.0001	No	ns	0.3994
5	USP45	Yes	****	< 0.0001	No	ns	0.0763
6	USP54	Yes	****	< 0.0001	No	ns	0.0947
7	CYLD	Yes	***	0.0004	Yes	****	< 0.0001
8	OTUB1	Yes	****	< 0.0001	Yes	****	< 0.0001
9	OTUD5	Yes	****	< 0.0001	Yes	*	0.038
10	OTUD6B	No	ns	0.1065	No	ns	0.9998
11	STAMBP	Yes	****	< 0.0001	Yes	****	< 0.0001
12	COPS5	Yes	****	< 0.0001	Yes	**	0.0097
13	EIF3F1	Yes	***	0.0003	Yes	*	0.0177

Table S3. Statistical comparison of climbing performance of DUB knockdowns in secondary screen.

One-way ANOVA with Tukey's post-hoc multiple correction comparing climbing performance of DUB knockdowns in the secondary screen employing dopaminergic knockdown of parkin or PINK1. *p<0.05, **p < 0.01, *** p < 0.001, ****p < 0.0001, ns – not significant

Supplemental Videos

Video 1: Rescue of climbing deficits in human PARIS (hPARIS) flies by two independent dCYLD knockdown lines

Video 2: Rescue of climbing deficits in Drosophila PARIS (dPARIS) flies by two independent dCYLD knockdown lines

Video 3: Representative videos of pole test analysis in CYLD Flx/Flx, parkin Flx/Flx, and parkin Flx/Flx; CYLD Flx/Flx mice stereotactically injected with AAV-GFP or AAV-GFP Cre as indicated.