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PEDLGTGLLEALLRGDLAGAEALFRRGLRFWGPEGVLEHL
LLPVLREVGEAWHRGEIGVAEEHLASTFLRARLQELLDLA

Fig. S1. Amino acid sequence of CarHc. The N-terminal four-helix bundle, the loop region and
the C-terminal Bi2-binding domain are highlighted in yellow, red, and green, respectively.



CarHcN (10.1 kDa)

GPGSEFPEDLGTGLLEALLRGDLAGAEALFRRGLRFWGPEGV
LEHLLLPVLREVGEAWHRGEIGVAEEHLASTFLRARLQELLDLA

CarH:C (13.6 kDa)

GPGSEFPPGPPVLVTTPPGERHEIGAMLAAYHLRRKGVPALYL
GPDTPLPDLRALARRLGAGAVVLSAVLSEPLRALPDGALKDLA
PRVFLGGQGAGPEEARRLGAEYMEDLKGLAEALWLPRGPEK

EAI

Fig. S2. Amino acid sequences of CarHcN and CarHcC. The N-terminal His6-tag was removed
by 3C protease before use in this study.
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Fig. S3. MALDI-TOF mass spectra of (A) CarHcN, (B) CarHcC and (C) CarHc.
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Fig. S4. SEC analyses of CarHc and split CarHc with addition of AdoB12. “m” and “t” denote
“monomer” and “tetramer”, respectively.
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Fig. S5. Size exclusion chromatography (SEC) (A) and dynamic light scattering (DLS)
analyses (B) of CarHcN, CarHcC, and CarHcN + CarHcC + AdoBiz (light). “m” and “t”
denote “monomer” and “tetramer”, respectively.
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Fig. S6. SDS-PAGE analysis of the split-CarHc reconstitution induced by AdoB12 and MeBi..
Protein samples were denatured using the 4% SDS loading dye (2X) at room temperature before
the electrophoresis.
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Fig. S7. SDS-PAGE analysis of the split-CarHc reconstitution induced by AdoB12, MeB12 and
CNB12. Protein samples were denatured with 2% SDS at room temperature or 100°C for 10 min
before the electrophoresis.
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Fig. S8. Representative curves showing the binding kinetics of AdoB» + split CarHc (A) and
AdoBi: + CarHc (B) from two independent measurements. The concentrations of AdoBi2, split
CarHc and CarHc were all 50 pM. Evolution of the ratio of the absorbance at 570 nm to that at

490 nm was recorded as a function of time.
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Fig. S9. Binding kinetics. (A) Binding kinetics of AdoB12 (50 uM) to split CarHc or intact CarHc
(50 uM). Evolution of the ratio of the absorbance at 570 nm to that at 490 nm was recorded as a
function of time. Data are presented as mean + SD (n = 5), with error bars in gray. (B) The
corresponding Abss7o/ Absaoo of free AdoBi2 solution with the passage of time.
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Fig. S10. Schematic illustration of the proposed binding mechanism of split CarHc with
AdoBiz. The key residue His177 is highlighted in red.
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Fig. S11. SDS-PAGE analysis of the assembly of CarHcN and CarHcC with AdoB12 under
various conditions. The proteins, CarHcN and CarHcC, at an equimolar ratio were incubated with
2 equiv. AdoB; briefly in the dark for 20 min, followed by brief light exposure for 10 min, and
then stopped by 4% SDS loading dye (2X) at room temperature. Shortened reaction time provided
a snapshot for gauging the influence of different conditions on the assembly percentage. (A).
According to the SDS-PAGE analysis below (B), the reactions, despite various buffer conditions
and protein concentrations, all exhibited a similar yield (~40%) of the bis-His ligated product,
which was quantified using the Image Lab software (Bio-Rad Laboratories). This result shows that
this split CarHc-based GECC is robust under varied buffer conditions (TBS, PBS and DMEM)
and protein concentrations (10 to 100 uM).
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Fig. S12. Reconstitution efficiency with different cofactors. The results were deduced from the
SEC data using MATLAB linear regression (the MATLAB code is provided as an appendix). Any
observed SEC trace (v), which is a function of retention time (x), can be viewed as the linear
combination of three types of protein molecules including CarHcN, CarHcC and reconstituted
CarHc (i.e., CarHcN/CarHcC complex) and thus in principle can be deconvoluted into the
corresponding three peaks, y/, y2 and y3. In the equation y = Ayl + By2 + Cy3, A, B and C
represent the relative percentages of these three molecules; C can therefore serve to measure
reconstitution efficiency. To simplify this analysis, we used the AdoB12-induced reconstitution as
a reference and assumed that its reconstitution efficiency was 100% (i.e., C = 1). Stated in these
terms, the efficiency of MeBi2-induced reconstitution is between ~92% (dark) and ~98% (light),
respectively, while this number of CNB1» stood between ~73% and ~82%, suggesting a relatively
lower reconstitution efficiency with CNB;».
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Fig. S13. Amino acid sequences of SpyTag-ELP-CarHcC-ELP-SpyTag (ACCA),
SpyCatcher-ELP-CarHcN-ELP-SpyCatcher (BCNB), SpyTag-ELP-CarHcN-ELP-SpyTag
(ACNA) and SpyCatcher-ELP-CarHcC-ELP-SpyCatcher (BCCB). Sequences of SpyTag,
SpyCatcher, CarHcN and CarHcC are highlighted in red, purple, yellow, and green, respectively.
Sequences of RGD cell binding motifs and MMP sites are underlined and boxed, respectively.
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Fig. S14. SDS-PAGE analysis of ACNA (29.8 kDa), BCCB (59.5 kDa), ACCA (33.4 kDa) and
BCNB (56.0 kDa).
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Fig. S15. MALDI-TOF mass spectra of (A) ACNA, (B) ACCA, (C) BCNB and (D) BCCB.
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Fig. S17. Rheological characterization showing that the product of ACCA+ BCNB at an
equimolar ratio in the absence of Biz is a liquid. (A) Evolution of the storage modulus G’ and
loss modulus G” of ACCA + BCNB free of Bz at 23 °C as a function of time with a fixed
frequency of 1 rad/s and strain of 5% at 23 °C. (B) Frequency-sweep test at 23 °C with the strain
fixed at 5%. (C) Strain-sweep test at 23 °C with the frequency fixed at 1 rad/s.
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Fig. S18. Rheological characterization showing that the product of ACCA+BCNB+CNB12
remains as a liquid before and after light exposure. (A and B) Evolution of the storage modulus
G’ and loss modulus G” of ACCA+BCNB+CNB;; at 23 °C in the dark (A) and under light
illumination (B) as a function of time. The time-sweep tests were performed at a fixed frequency
of 1 rad/s and strain of 5% at 23 °C. (C) Frequency-sweep tests at a fixed strain of 10% at 23 °C.
(D) Strain-sweep tests at a fixed frequency of 10 rad/s at 23 °C.
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Fig. S19. Two additional replicates of time-sweep tests of products of (A) ACCA + BCNB +
AdoBi: and (B) ACCA + BCNB + MeB: in the dark. Experiments were performed at a fixed

frequency of 1 rad/s and strain of 5% at 23 °C.
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Fig. S20. UV-vis spectra of Ado-D, Ado-L (A), Me-D and Me-L (B) hydrogels.
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Fig. S21. Photo-weakening of Ado gel (A) and photo-strengthening of Me gel (B) monitored
by time-sweep tests at a fixed frequency of 1 rad/s and strain of 5% at 23 °C.
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Fig. S22. Two additional replicates of frequency-sweep tests of the products of (A) ACCA +
BCNB + AdoBiz and (B) ACCA + BCNB + MeB1; before and after photolysis. Experiments
were performed at a fixed strain of 10% at 23 °C.
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Fig. S23. Strain-sweep tests of the products of ACCA + BCNB + AdoBi2 (A) and ACCA +
BCNB + MeBi2 (B) before and after photolysis. Experiments were performed at a fixed
frequency of 10 rad/s at 23 °C.
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Fig. S24. Continuous step-strain test of Me-D. Low (5%) and high strains (500%) were used
alternately. Experiments were performed at a fixed frequency of 10 rad/s at 23 °C.
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Fig. S25. Large amplitude strain-sweep tests of the products of ACCA + BCNB + MeBi:
before (A) and after (B) photolysis. The results show that photo-strengthening of the gels
increases their strain linearity limit. Experiments were performed at a fixed frequency of 10 rad/s

at 23 °C.
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Fig. S26. Frequency-sweep tests of the products of ACNA + BCCB + AdoB12 (A) and ACNA
+ BCCB + MeBi1: (B) before and after photolysis. Experiments were performed at a fixed strain
of 10% at 23 °C.
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Fig. S27. Erosion profiles of Ado and Me gels. Data are presented as mean + SD (n = 5).
Hydrogels were prepared by mixing 16.6 uL of ACCA (10 wt % in PBS), 27.8 pL of BCNB (10
wt % in PBS) and 5.4 pL of AdoBi12 or MeBi2 (10 mM in PBS). The products were cured in the
dark for 24 h. Half of the resulting materials were further exposed to 30 kilolux light for another
24 h. Then all samples were immersed by 1 mL of PBS (pH 7.4). Aliquots of 75 uLL were taken at
defined time points and fresh PBS (75 puL) was added back to keep the volume constant. All the
experiments were performed at 23 °C. The absorbances of these aliquots at 280 and 522 nm were
measured using a NANODROP 2000C spectrophotometer (Thermo Scientific). Protein
concentrations were calculated based on the previous published equations (24):

A,g0(AdoB,,,100uM)
Asy;(AdoB;, 100uM)

Azgo(protein) = Aygy — Aszz *

A,go(protein)

C(protein) = Ext. coeff
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Fig. S28. Time-sweep test of ACCA + BCNB + AdoB1: in the dark. Experiments was performed
at a fixed frequency of 1 rad/s and strain of 5% at 23 °C.
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Fig. S29. Influence of gel precursors on cell viability. (A and B) Representative images of 3T3
fibroblasts (A) and human mesenchymal stem cells (hMSCs) (B) cultured in growth medium (1
mL) spiked with gel precursors including ACCA (1.7 mg or 50 nmol), BCNB (2.8 mg or 50 nmol),
and AdoBi2 or MeBi2 (56 nmol). The dry weights of these gel precursors in 1 mL of growth
medium were the same as in the cell encapsulation experiments. Three independent experiments
were performed. Cell cultures free of gel precursors were used as control groups. (C and D) Cell

viability was calculated as the ratio of live cell population to entire cell population and presented
as mean + SD (n = 3).
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Fig. S30. Encapsulation of mouse 3T3 fibroblasts. (A) One-day culturing with an Ado gel in
the dark. (B) Three-day culturing with an Ado gel in the dark. (C) One-day culturing with a
photo-weakened Ado gel. (D) One-day culturing with a photo-strengthened Me gel. Cell viability
was assessed by the standard live (green) /dead (red) staining assay. Three independent cell
encapsulation experiments were performed, each time done in triplicate (with three identical gels
prepared for each corresponding encapsulation condition). Cell viability under each condition

was calculated as the ratio of live cell population to entire cell population based on the three
parallel experiments and presented as mean + SD (n = 3).
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Fig. S31. Images of 3D encapsulation of 3T3 fibroblasts and hMSCs obtained from two
additional independent experiments. Cell viability was assessed by the standard live (green)
/dead (red) staining assay.



Table S1. Bacterial strains, plasmids, and primers used in this study.

Strain Relevant Characteristics Source

E.coli DH5a Stratagene

E.coli BL21 star(DE3) Invitrogen
Plasmid Relevant Characteristics Source
pET32m3C T7 promoter-operator, His tag, Trx solubilization Prof. Mingjie Zhang

pET32m3C-carH-N

pET32m3C-carH.C

tag, HRV 3C site, Ampr

Plasmid for expression of CarH:N

Plasmid for expression of CarH-C

(46)
This study

This study

pQE-AAA Plasmid for expression of SpyTag-ELP-SpyTag- Previously published
ELP-SpyTag construct (25)

PQE-ACNA Plasmid for expression of SpyTag-ELP-CarH-N- This study
ELP-SpyTag

PQE-ACCA Plasmid for expression of SpyTag-ELP-CarH.C- This study
ELP-SpyTag

pQE-BB Plasmid for expression of SpyCatcher-ELP-RGD-  Previously published
ELP-SpyCatcher construct (25)

pQE-BCNB Plasmid for expression of SpyCatcher-CarH:N- This study
RGD-ELP-SpyCatcher

pQE-BCCB Plasmid for expression of SpyCatcher-CarH.C- This study
RGD-ELP-SpyCatcher

Primer Relevant Characteristics Source

carH-N_EcoRI_F CCGGAATTCCCAGAAGATCTGGGCACCGG Genewiz

carH N_Hindlll_R 228AAGCTTTTACGGCGGACCCGGCGGGA Genewiz

carH.C_EcoRI_F CCGGAATTCCCGCCGGGTCCGCCGGTCCT Genewiz

carH.C_Hindlll_R ggCAAGCTTTTAGATTGCTTCTTTTrCCGG Genewiz

carH-N Sacl F GGTGAGCTCGGCCGTGGTGATGGTGGTGG Genewiz

o= GGGTAGCGGTGGTGGGGGTAGTCCAGAAG

ATCTGGGCACCGG

carH.N_Spel_R CGGACTAGTCGGCGGACCCGGCGGGAAAC Genewiz

carH-C Sacl F GGTGAGCTCGGCCGTGGTGATGGTGGTGG Genewiz

or=T = GGGTAGCGGTGGTGGGGGTAGTCCGCCGG

GTCCGCCGGTCCT

carH.C_Spel_R CGGACTAGTGATTGCTTCTTTTTCCGGAC Genewiz



Appendix:

#HHMATLAB code (size-exclusion chromatography data fitting)
load FeiDataZ2Z.mat

oo

C: CarHcC(t) g
N: CarHeN(t) vy
NC: k

MeDark: b
MeLight: r

o° oo o°

oo

filter = x>15 & x<=22;
x=x (filter);
C=C(filter);
N=N(filter);

NC=NC (filter);
MeDark=MeDark (filter);
MeLight=MeLight (filter);
CNDark=CNDark (filter) ;
CNLight=CNLight (filter);

figure;

subplot (5,1,1)

plot (x,C,'g', 'linewidth', 4)
hold on

plot (x,N,'y',"'linewidth', 4)

plot (x,NC, 'k', 'linewidth', 4)

set (gca, 'tickdir', 'out', 'linewidth', 2, 'fontsize', 16)
legend({'CarH CN', 'CarH CC', 'CarH CN+CarH CC'})

subplot (5,1, 2)
plot (x,MeDark, 'b', 'linewidth', 4)
hold on

bl=[N C NC]\MeDark;

plot (x,bl (1) *N+bl (2)*C+bl (3) *NC, '"b--", '1linewidth', 4)
set (gca, 'tickdir', 'out', 'linewidth', 2, 'fontsize', 16)
legend ({ 'MeDark', 'MeDark-Fit'})

subplot (5,1, 3)
plot (x,MeLight, 'r', 'linewidth', 4)
hold on

b2=[N C NC]\MeLight;
plot (x,b2 (1) *N+b2 (2) *C+b2 (3) *NC, 'r--", 'linewidth', 4)

set (gca, 'tickdir', 'out', 'linewidth', 2, 'fontsize', 16)
legend ({'MeLight', '"MeLight-Fit'})

subplot (5,1, 4)
plot (x,CNDark, 'b', 'linewidth', 4)
hold on

b3=[N C NC]\CNDark;



plot (x,b3 (1) *N+b3(2) *C+b3 (3) *NC, '"b--", '1linewidth', 4)
set (gca, 'tickdir', 'out', 'linewidth', 2, 'fontsize', 16)
legend ({'CNDark', 'CNDark-Fit'})

subplot (5,1,5)
plot (x,CNLight, 'r', 'linewidth', 4)
hold on

b4=[N C NC]\CNLight;
plot (x,b4 (1) *N+b4 (2) *C+b4 (3) *NC, 'r--", '"linewidth', 4)

set (gca, 'tickdir', 'out', 'linewidth', 2, 'fontsize', 16)
legend ({'CNLight', 'CNLight-Fit"'})
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