Science Advances NAAAS

Supplementary Materials for

B12-induced reassembly of split photoreceptor protein enables photoresponsive hydrogels with tunable mechanics

Zhongguang Yang, Hong Kiu Francis Fok, Jiren Luo, Yang Yang, Ri Wang, Xinyu Huang, Fei Sun*

*Corresponding author. Email: kefsun@ust.hk

Published 1 April 2022, *Sci. Adv.* **8**, eabm5482 (2022) DOI: 10.1126/sciadv.abm5482

This PDF file includes:

Figs. S1 to S31 Table S1 Appendix

Fig. S1. Amino acid sequence of CarH_C. The N-terminal four-helix bundle, the loop region and the C-terminal B_{12} -binding domain are highlighted in yellow, red, and green, respectively.

Car H_C N (10.1 kDa)

GPGSEFPEDLGTGLLEALLRGDLAGAEALFRRGLRFWGPEGV **LEHLLLPVLREVGEAWHRGEIGVAEEHLASTFLRARLQELLDLA GFPPGPP**

Car $H_{c}C$ (13.6 kDa)

GPGSEFPPGPPVLVTTPPGERHEIGAMLAAYHLRRKGVPALYL GPDTPLPDLRALARRLGAGAVVLSAVLSEPLRALPDGALKDLA PRVFLGGQGAGPEEARRLGAEYMEDLKGLAEALWLPRGPEK EAI

Fig. S2. Amino acid sequences of CarHCN and CarHCC. The N-terminal His6-tag was removed by 3C protease before use in this study.

Fig. S3. MALDI-TOF mass spectra of (A) CarHCN, (B) CarHCC and (C) CarHC.

Fig. S4. SEC analyses of CarH_C and split CarH_C with addition of AdoB₁₂. "m" and "t" denote "monomer" and "tetramer", respectively.

Fig. S5. Size exclusion chromatography (SEC) (A) and dynamic light scattering (DLS) analyses (B) of CarH_CN, CarH_CC, and CarH_CN + CarH_CC + AdoB₁₂ (light). "m" and "t" denote "monomer" and "tetramer", respectively.

Fig. S6. SDS-PAGE analysis of the split-CarHC reconstitution induced by AdoB12 and MeB12. Protein samples were denatured using the 4% SDS loading dye (2X) at room temperature before the electrophoresis.

Fig. S7. SDS-PAGE analysis of the split-CarHC reconstitution induced by AdoB12, MeB12 and CNB12. Protein samples were denatured with 2% SDS at room temperature or 100°C for 10 min before the electrophoresis.

Fig. S8. Representative curves showing the binding kinetics of AdoB12 + split CarHC (A) and AdoB_{12} + CarH_{C} (B) from two independent measurements. The concentrations of AdoB_{12} , split CarH_C and CarH_C were all 50 μ M. Evolution of the ratio of the absorbance at 570 nm to that at 490 nm was recorded as a function of time.

Fig. S9. Binding kinetics. (A) Binding kinetics of AdoB₁₂ (50 μM) to split CarH_C or intact CarH_C (50 μ M). Evolution of the ratio of the absorbance at 570 nm to that at 490 nm was recorded as a function of time. Data are presented as mean \pm SD ($n = 5$), with error bars in gray. (B) The corresponding Abs_{570}/Abs_{490} of free $AdoB_{12}$ solution with the passage of time.

Fig. S10. Schematic illustration of the proposed binding mechanism of split CarH_C with **AdoB12.** The key residue His177 is highlighted in red.

Fig. S11. SDS-PAGE analysis of the assembly of CarHCN and CarHCC with AdoB12 under various conditions. The proteins, CarH_CN and CarH_CC, at an equimolar ratio were incubated with 2 *equiv.* AdoB12 briefly in the dark for 20 min, followed by brief light exposure for 10 min, and then stopped by 4% SDS loading dye (2X) at room temperature. Shortened reaction time provided a snapshot for gauging the influence of different conditions on the assembly percentage. (A)*.* According to the SDS-PAGE analysis below (B), the reactions, despite various buffer conditions and protein concentrations, all exhibited a similar yield $(\sim40\%)$ of the bis-His ligated product, which was quantified using the Image Lab software (Bio-Rad Laboratories). This result shows that this split CarH_C-based GECC is robust under varied buffer conditions (TBS, PBS and DMEM) and protein concentrations (10 to 100 μ M).

A

Fig. S12. Reconstitution efficiency with different cofactors. The results were deduced from the SEC data using MATLAB linear regression (the MATLAB code is provided as an appendix). Any observed SEC trace (*y*), which is a function of retention time (*x*), can be viewed as the linear combination of three types of protein molecules including CarHCN, CarHCC and reconstituted CarH_C (i.e., CarH_CN/CarH_CC complex) and thus in principle can be deconvoluted into the corresponding three peaks, $y1$, $y2$ and $y3$. In the equation $y = Ay1 + By2 + Cy3$, A, B and C represent the relative percentages of these three molecules; *C* can therefore serve to measure reconstitution efficiency. To simplify this analysis, we used the $AdOB_{12}$ -induced reconstitution as a reference and assumed that its reconstitution efficiency was 100% (i.e., $C = 1$). Stated in these terms, the efficiency of MeB₁₂-induced reconstitution is between \sim 92% (dark) and \sim 98% (light), respectively, while this number of CNB_{12} stood between \sim 73% and \sim 82%, suggesting a relatively lower reconstitution efficiency with CNB12.

ACCA (33.4 kDa) SpyTag-ELP-CarH_cC-ELP-SpyTag

> MKGSSHHHHHHVDAHIVMVDAYKPTKLDGHGVGVPGVGVPGVGVPGEGVPGVGV **GELGRGDGGGGSGGGGSPPGPPVI** EAITSVPGVGVPGVGVPGEGVPGVGVPGV **GGLLDAHIVMVDAYKPTKLEWKK**

BCNB (56.0 kDa)

SpyCatcher-ELP-CarH_CN-ELP-SpyCatcher

MKGSSHHHHHHVDIPTTENLYFQGAMVDTLSGLSSEQGQSGDMTIEEDSATHIKFSK RDEDGKELAGATMELRDSSGKTISTWISDGQVKDFYLYPGKYTFVETAAPDGYEVAT AITFTVNEQGQVTVNGKATKGDAHIDGPQGIWGQLEGHGVGVPGVGVPGVGVPGE GVGVPGVGELGRGDGGGGGGGGGSPEDLGTGLLEALLRGDLAGAEALFRRGLRF WGPEGVLEHLLLPVLREVGEAWHRGEIGVAEEHLASTFLRARLQELLDLAGFPPGPP TSVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVP GVGVPGVGVPGEGVPGVGVPGVGVPGGLVDIPTTENLYFQCAMVDTLSGLSSEQG QSGDMTIEEDSATHIKFSKRDEDGKELAGATMELRDSSGKTISTWISDGQVKDFYLYP GKYTFVETAAPDGYEVATAITFTVNEQGQVTVNGKATKGDAHIDGPQGIWGQLEWKK

ACNA (29.8 kDa)

SpyTag-ELP-CarH_cC-ELP-SpyTag

MKGSSHHHHHHVDAHIVMVDAYKPTKLDGHGVGVPGVGVPGVGVPGEGVPGVGV GELGRGDGGGGGGGGGSPEDLGTGLLEALLRGDLAGAEALFRRGLRFWGPEGVLE HLLLPVLREVGEAWHRGEIGVAEEHLASTFLRARLQELLDLAGFPPGPPTSVPGVGV PGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGV GVPGEGVPGVGVPGVGVPGGLLDAHIVMVDAYKPTKLEWKK

BCCB (59.5 kDa)

SpyCatcher-ELP-CarH_CN-ELP-SpyCatcher

Fig. S13. Amino acid sequences of SpyTag-ELP-CarHCC-ELP-SpyTag (ACCA), SpyCatcher-ELP-CarHCN-ELP-SpyCatcher (BCNB), SpyTag-ELP-CarHCN-ELP-SpyTag (ACNA) and SpyCatcher-ELP-CarHCC-ELP-SpyCatcher (BCCB). Sequences of SpyTag, SpyCatcher, CarHCN and CarHCC are highlighted in red, purple, yellow, and green, respectively. Sequences of RGD cell binding motifs and MMP sites are underlined and boxed, respectively.

1. ACNA cell lysate 2. ACNA supernatant
3. ACNA his-tag purified 4. BCCB cell lysate 5. BCCB supernatant 6. BCCB his-tag purified 7. Ladder 8. ACCA cell lysate 9. ACCA supernatant
10. ACCA his-tag purified
11. BCNB cell lysate 12. BCNB supernatant
13. BCNB his-tag purified

Fig. S14. SDS-PAGE analysis of ACNA (29.8 kDa), BCCB (59.5 kDa), ACCA (33.4 kDa) and BCNB (56.0 kDa).

Fig. S15. MALDI-TOF mass spectra of (A) ACNA, (B) ACCA, (C) BCNB and (D) BCCB.

Fig. S16. Schematic showing the formation of a physical network comprising ACCA + BCNB + CNB12.

Fig. S17. Rheological characterization showing that the product of ACCA+ BCNB at an equimolar ratio in the absence of B₁₂ is a liquid. (A) Evolution of the storage modulus G' and loss modulus G" of ACCA + BCNB free of B_{12} at 23 °C as a function of time with a fixed frequency of 1 rad/s and strain of 5% at 23 °C. (B) Frequency-sweep test at 23 °C with the strain fixed at 5%. (C) Strain-sweep test at 23 °C with the frequency fixed at 1 rad/s.

Fig. S18. Rheological characterization showing that the product of ACCA+BCNB+CNB12 remains as a liquid before and after light exposure. (A and B) Evolution of the storage modulus G' and loss modulus G" of $ACCA+BCNB+CNB₁₂$ at 23 °C in the dark (A) and under light illumination (B) as a function of time. The time-sweep tests were performed at a fixed frequency of 1 rad/s and strain of 5% at 23 °C. (C) Frequency-sweep tests at a fixed strain of 10% at 23 °C. (D) Strain-sweep tests at a fixed frequency of 10 rad/s at 23 °C.

Fig. S19. Two additional replicates of time-sweep tests of products of (A) ACCA + BCNB + AdoB₁₂ and (B) $ACCA + BCNB + MeB₁₂$ in the dark. Experiments were performed at a fixed frequency of 1 rad/s and strain of 5% at 23 °C.

Fig. S20. UV-vis spectra of Ado-D, Ado-L (A), Me-D and Me-L (B) hydrogels.

Fig. S21. Photo-weakening of Ado gel (A) and photo-strengthening of Me gel (B) monitored by time-sweep tests at a fixed frequency of 1 rad/s and strain of 5% at 23 °C.

Fig. S22. Two additional replicates of frequency-sweep tests of the products of (A) ACCA + BCNB + AdoB12 and (B) ACCA + BCNB + MeB12 before and after photolysis. Experiments were performed at a fixed strain of 10% at 23 °C.

Fig. S23. Strain-sweep tests of the products of ACCA + BCNB + AdoB12 (A) and ACCA + BCNB + MeB12 (B) before and after photolysis. Experiments were performed at a fixed frequency of 10 rad/s at 23 °C.

Fig. S24. Continuous step-strain test of Me-D. Low (5%) and high strains (500%) were used alternately. Experiments were performed at a fixed frequency of 10 rad/s at 23 °C.

Fig. S25. Large amplitude strain-sweep tests of the products of ACCA + BCNB + MeB12 before (A) and after (B) photolysis. The results show that photo-strengthening of the gels increases their strain linearity limit. Experiments were performed at a fixed frequency of 10 rad/s at 23 °C.

Fig. S26. Frequency-sweep tests of the products of ACNA + BCCB + AdoB12 (A) and ACNA + BCCB + MeB12 (B) before and after photolysis. Experiments were performed at a fixed strain of 10% at 23 °C.

Fig. S27. Erosion profiles of Ado and Me gels. Data are presented as mean \pm SD ($n = 5$). Hydrogels were prepared by mixing 16.6 μL of ACCA (10 wt % in PBS), 27.8 μL of BCNB (10 wt % in PBS) and 5.4 μ L of AdoB₁₂ or MeB₁₂ (10 mM in PBS). The products were cured in the dark for 24 h. Half of the resulting materials were further exposed to 30 kilolux light for another 24 h. Then all samples were immersed by 1 mL of PBS (pH 7.4). Aliquots of 75 μL were taken at defined time points and fresh PBS (75 μL) was added back to keep the volume constant. All the experiments were performed at 23 °C. The absorbances of these aliquots at 280 and 522 nm were measured using a NANODROP 2000C spectrophotometer (Thermo Scientific). Protein concentrations were calculated based on the previous published equations (24):

$$
A_{280}(protein) = A_{280} - A_{522} * \frac{A_{280}(AdoB_{12}, 100\mu M)}{A_{522}(AdoB_{12}, 100\mu M)}
$$

$$
C(protein) = \frac{A_{280}(protein)}{Ext.coeff}
$$

Fig. S28. Time-sweep test of ACCA + BCNB + AdoB12 in the dark. Experiments was performed at a fixed frequency of 1 rad/s and strain of 5% at 23 °C.

A

Fig. S29. Influence of gel precursors on cell viability. (A and B) Representative images of 3T3 fibroblasts (A) and human mesenchymal stem cells (hMSCs) (B) cultured in growth medium (1 mL) spiked with gel precursors including ACCA (1.7 mg or 50 nmol), BCNB (2.8 mg or 50 nmol), and $AdoB_{12}$ or MeB_{12} (56 nmol). The dry weights of these gel precursors in 1 mL of growth medium were the same as in the cell encapsulation experiments. Three independent experiments were performed. Cell cultures free of gel precursors were used as control groups. (C and D) Cell viability was calculated as the ratio of live cell population to entire cell population and presented as mean \pm SD ($n = 3$).

Fig. S30. Encapsulation of mouse 3T3 fibroblasts. (A) One-day culturing with an Ado gel in the dark. (B) Three-day culturing with an Ado gel in the dark. (C) One-day culturing with a photo-weakened Ado gel. (D) One-day culturing with a photo-strengthened Me gel. Cell viability was assessed by the standard live (green) /dead (red) staining assay. Three independent cell encapsulation experiments were performed, each time done in triplicate (with three identical gels prepared for each corresponding encapsulation condition). Cell viability under each condition was calculated as the ratio of live cell population to entire cell population based on the three parallel experiments and presented as mean \pm SD ($n = 3$).

3T3 fibroblasts

Fig. S31. Images of 3D encapsulation of 3T3 fibroblasts and hMSCs obtained from two additional independent experiments. Cell viability was assessed by the standard live (green) /dead (red) staining assay.

Table S1. Bacterial strains, plasmids, and primers used in this study.

```
Appendix:
###MATLAB code (size-exclusion chromatography data fitting)
load FeiData2.mat
% C: CarHcC(t) g
% N: CarHcN(t) y
% NC: k
% MeDark: b
% MeLight: r
filter = x > 15 & x < = 22;
x=x(filter);
C=C(filter);
N=N(filter);
NC=NC(filter);
MeDark=MeDark(filter);
MeLight=MeLight(filter);
CNDark=CNDark(filter);
CNLight=CNLight(filter);
figure;
subplot(5,1,1)plot(x,C,'g','linewidth',4)
hold on 
plot(x,N,'y','linewidth',4)
plot(x,NC,'k','linewidth',4)
set(gca,'tickdir','out','linewidth',2,'fontsize',16)
legend({'CarH_CN','CarH_CC','CarH_CN+CarH_CC'})
subplot(5,1,2)plot(x,MeDark,'b','linewidth',4)
hold on 
b1=[N C NC]\MeDark;
plot(x,b1(1)*N+b1(2)*C+b1(3)*NC,'b--','linewidth',4)
set(gca,'tickdir','out','linewidth',2,'fontsize',16)
legend({'MeDark','MeDark-Fit'})
subplot(5,1,3)plot(x,MeLight,'r','linewidth',4)
hold on 
b2=[N C NC]\MeLight;
plot(x,b2(1)*N+b2(2)*C+b2(3)*NC,'r--','linewidth',4)
set(gca,'tickdir','out','linewidth',2,'fontsize',16)
legend({'MeLight','MeLight-Fit'})
subplot(5,1,4)plot(x,CNDark,'b','linewidth',4)
hold on
```

```
b3=[N C NC]\CNDark;
```

```
plot(x,b3(1)*N+b3(2)*C+b3(3)*NC,'b--','linewidth',4)
set(gca,'tickdir','out','linewidth',2,'fontsize',16)
legend({'CNDark','CNDark-Fit'})
subplot(5,1,5)
plot(x,CNLight,'r','linewidth',4)
hold on 
b4=[N C NC]\CNLight;
plot(x,b4(1)*N+b4(2)*C+b4(3)*NC,'r--','linewidth',4)
set(gca,'tickdir','out','linewidth',2,'fontsize',16)
legend({'CNLight','CNLight-Fit'})
```