Carbon Economics and Assimilation in Dynamic Light Environments Calculations

1. Construction Cost Equations:

(1.1)  Alkalinity (

mEq) __ HCl (Mol)-NaOH (Mol)
g 2

/Ash (9)

(1.2)  Mineral Content (%) = Ash (%) — Alkalinity (mTEq) * 30 + Nitrate (%)

mg i mg ™) _ mg
(1.3) Construction Cost (g gl,ucose) = (—1.041 + 5.077 * <M)> * (1 — <MLLM(~"))> + (5_325 * <M)>
g tissue 1000 1000 1000

2. Assimilation Equations:

(phi*PAR+Amt—(‘/((phi*PAR+Amt)2—4*theta*phi*PAR*Asat))

2xtheta

(2.1)  Assimilation (umol m™2s™1) =

3. Converting assimilation from pmol CO2 m* to grams glucose per gram tissue:

sz
(31) glucose(g) — <(um01m 2)*SLA(T)> * 180

tissue(g) 6000000000

4. Carbon Economic Trait Equations:

Construction Cost

L . 5 l
<A551mzlatlon(‘g‘?gucose>+Rd<g‘L;ucose))*%oo)*lz

s~1 s—1

(4.1)  Payback time (days) = <

(4.2)  Return on Investment (g glucose) = (((AS“"””“"""" (ggglicfe) +Rd (ggglif'fe» * 3600) x 12> « (Leaf lifespan — payback time)

5. Daily Integrated PPFD when PAR is constant (12-hour light period):

PAR*43200
106

(5.1) Integrated PPFD (molm=2d~1) =

6. Light Levels Across the Day (all trig functions using radians):

365

(6.1)  Solar declination angle = (—23.5  05(626+day Gullan days)+10)) * (1?0)

(6.2) Hour angle = 0.262 * (time (hours) — 12)

(6.3) Solar elevation angle =
asin(sin(latitude) = sin(solar declination angle) + cos(latitude) * cos(solar declination angle) * cos(hour angle))

1

(6.4) Direct Light = 2600 * 0.75(5“1(50“" elevation anyle)) * sin (solar elevation angle)

1
(6.5) DiffuseLight = 0.3 * (1 - 0.75(5“1(501‘" elevation angle))) * 2600 * sin(solar elevation angle)

6.6) Light during sunfleck = (Dif fuse Light)exp~ %784l 4 Direct Light
9 ) ) p )
(6.7)  Light during shadefleck = (Dif fuse Light)exp™078LAl

7. Sun and Shadefleck equations:
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( LAI )
1—exp sin(solarelevationangle)

( LAI )
exp sin(solarelevationangle)

(7.1)  Sunfleck length = shadefleck length/

Al
1—exp( sin(solarelevationangle))

( LAI )
exp sin(solarelevationangle)

(7.2) Shadefleck length = sunfleck length *

8. Light induction variables equations:

0.65%400

(8.1)  AfT = (Agq +RA) * (

)

Ci-sat

0.65%400
Ci

(8.2) A*=(A+Rd)=*( )

(8.3) tau = —1/slope of In(Af* — A*) vs Time from minutes 1 — 10 of induction

A—-Rd
Agqt—Rd

(8.4) Induction state (%) = ( ) * 100

9. Assimilation in dynamic light equations:

(phi*PAR+Asat—(\/((phi*PAR+AS[1[)Z—4*theta*phi*PAR *Asat)))

9.1)  Aaf =

(2*theta)

(9.2)  Ai=Acalculated for the proceeding interval during a sunfleck, A calculated for the proceeding interval using tau when light is
decreasing (estimated at 5x induction tau) during a shadefleck, or is 0 at first light.

1
(9.3) A =Af —(Af — Ai) x exp tau
1
(9.4)  Aint (integrated CO, assimilation — 1 min intervals) = Af * 60 — (Af — Ai) = tau + (Af — Ai) = tau * exp )

Abbreviations and Variables:

A — Instantaneous assimilation rate LAl — Leaf area index

A’-- Assimilation rate corrected for changes in Ci PAR — Photosynthetically Active Radiation

Af — Potential maximum assimilation rate phi — quantum yield of photosynthetic light response

Af-- Potential maximum assimilation rate corrected for PPFD — Photosynthetic Photon Flux Density
changes in Ci SLA — Specific Leaf Area

Ai — Initial assimilation rate prior to induction tau — relaxation time for Rubisco activation

Aint — Integrated assimilation theta — curvature of photosynthetic light response

Asat— Light saturated assimilation rate Rd — Respiration

Ci— Intercellular CO2 concentration
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