Carbon Economics and Assimilation in Dynamic Light Environments Calculations

1. Construction Cost Equations:

(1.1) Alkalinity
$$\left(\frac{mEq}{q}\right) = \frac{HCl (Mol) - NaOH (Mol)}{2} / Ash (g)$$

(1.2) Mineral Content
$$\left(\frac{mg}{g}\right) = Ash\left(\frac{mg}{g}\right) - Alkalinity\left(\frac{mEq}{g}\right) * 30 + Nitrate\left(\frac{mg}{g}\right)$$

$$(1.3) \qquad \textit{Construction Cost}\left(\frac{g \; \textit{glucose}}{g \; \textit{tissue}}\right) = \left(-1.041 + 5.077 * \left(\frac{\mathcal{C}\left(\frac{mg}{g}\right)}{1000}\right)\right) * \left(1 - \left(\frac{\textit{Mineral}\left(\frac{mg}{g}\right)}{1000}\right)\right) + \left(5.325 * \left(\frac{\mathcal{N}\left(\frac{mg}{g}\right) - \textit{Nitrate}\left(\frac{mg}{g}\right)}{1000}\right)\right) + \left(\frac{1.30}{1000} + \frac{1.30}{1000} +$$

2. Assimilation Equations:

$$(2.1) \quad Assimilation \left(\mu mol \ m^{-2} s^{-1}\right) = \frac{\left(phi*PAR+A_{sat} - \left(\sqrt{((phi*PAR+A_{sat})^2} - 4*theta*phi*PAR*A_{sat}\right)\right)}{2*theta}$$

3. Converting assimilation from µmol CO₂ m⁻² to grams glucose per gram tissue:

(3.1)
$$\frac{glucose(g)}{tissue(g)} = \left(\frac{(\mu mol \ m^{-2})*SLA\left(\frac{cm^2}{g}\right)}{6000000000}\right) * 180$$

4. Carbon Economic Trait Equations:

$$(4.1) \quad Payback \ time \ (days) = \frac{Construction \ Cost}{\left(\left(Assimilation\left(\frac{gglucose}{g \ s^{-1}}\right) + Rd\left(\frac{gglucose}{g \ s^{-1}}\right)\right) * 3600\right) * 12}$$

$$(4.2) \qquad \textit{Return on Investment (g glucose)} = \left(\left(\left(Assimilation \left(\frac{gglucose}{g \, s^{-1}} \right) + Rd \left(\frac{gglucose}{g \, s^{-1}} \right) \right) * 3600 \right) * 12 \right) * (\textit{Leaf lifespan - payback time})$$

5. Daily Integrated PPFD when PAR is constant (12-hour light period):

(5.1) Integrated PPFD (mol
$$m^{-2}d^{-1}$$
) = $\frac{PAR*43200}{10^6}$

6. Light Levels Across the Day (all trig functions using radians):

(6.1) Solar declination angle =
$$\left(-23.5 * \frac{\cos(6.28*day (julian \, days) + 10)}{365} \right) * \left(\frac{pi}{180} \right)$$

(6.2) Hour angle =
$$0.262 * (time (hours) - 12)$$

(6.3) Solar elevation angle =
$$asin(sin(latitude) * sin(solar declination angle) + cos(latitude) * cos(solar declination angle) * cos(hour angle))$$

(6.4)
$$Direct \ Light = 2600 * 0.75^{\left(\frac{1}{\sin(solar \ elevation \ angle)}\right)} * \sin(solar \ elevation \ angle)$$

(6.5)
$$Diffuse\ Light = 0.3 * \left(1 - 0.75^{\left(\frac{1}{\sin(solar\ elevation\ angle)}\right)}\right) * 2600 * \sin(solar\ elevation\ angle)$$

(6.6) Light during sunfleck =
$$(Diffuse\ Light)exp^{-0.78*LAI} + Direct\ Light$$

(6.7) Light during shadefleck = (Diffuse Light)exp
$$^{-0.78*LAI}$$

7. Sun and Shadefleck equations:

Carbon Economics and Assimilation in Dynamic Light Environments Calculations

(7.1)
$$Sunfleck\ length = shadefleck\ length / \frac{1 - exp}{exp} \left(-\frac{LAI}{\sin(solarelevationangle)} \right)$$

$$(7.2) \quad Shadefleck\ length = sunfleck\ length * \frac{\frac{1 - exp}{\left(-\frac{LAI}{\sin(solarelevationangle)}\right)}}{exp} = \frac{LAI}{exp} \left(-\frac{LAI}{\sin(solarelevationangle)}\right)$$

8. Light induction variables equations:

(8.1)
$$Af^* = (A_{sat} + Rd) * (\frac{0.65*400}{C_{i-sat}})$$

(8.2)
$$A^* = (A + Rd) * (\frac{0.65*400}{c_i})$$

(8.3)
$$tau = -1/slope \ of \ ln(Af^* - A^*) \ vs \ Time \ from \ minutes \ 1 - 10 \ of \ induction$$

(8.4) Induction state (%) =
$$\left(\frac{A-Rd}{A_{sat}-Rd}\right) * 100$$

9. Assimilation in dynamic light equations:

(9.1)
$$Af = \frac{\left(phi*PAR+A_{sat}-\left(\sqrt{((phi*PAR+A_{sat})^2-4*theta*phi*PAR*A_{sat})}\right)\right)}{(2*theta)}$$

(9.2) *Ai* = *A* calculated for the proceeding interval during a sunfleck, *A* calculated for the proceeding interval using tau when light is decreasing (estimated at 5x induction tau) during a shadefleck, or is 0 at first light.

(9.3)
$$A = Af - (Af - Ai) * exp^{-\frac{1}{tau}}$$

(9.4) Aint (integrated CO_2 assimilation -1 min intervals) = $Af * 60 - (Af - Ai) * tau + (Af - Ai) * tau * exp^{(-\frac{1}{tau})}$

Abbreviations and Variables:

A – Instantaneous assimilation rate

A*-- Assimilation rate corrected for changes in Ci

Af – Potential maximum assimilation rate

Af-- Potential maximum assimilation rate corrected for changes in C_i

Ai – Initial assimilation rate prior to induction

Aint - Integrated assimilation

A_{sat} – Light saturated assimilation rate

C_i – Intercellular CO₂ concentration

LAI - Leaf area index

PAR - Photosynthetically Active Radiation

phi - quantum yield of photosynthetic light response

PPFD – Photosynthetic Photon Flux Density

SLA – Specific Leaf Area

tau – relaxation time for Rubisco activation

theta – curvature of photosynthetic light response

Rd - Respiration

References:

Campbell GS, Norman JM. **1998**. *An Introduction to Environmental Biophysics*. New York: Springer Verlag. [Equations:6.4, 6.5]

Lobo F de A, de Barros MP, Dalmagro HJ, Dalmolin ÂC, Pereira WE, de Souza ÉC, Vourlitis GL, Rodríguez Ortíz CE. 2013. Fitting net photosynthetic light-response curves with Microsoft Excel-a critical look at the models. *Photosynthetica* 51: 445–456. [Equation: 2.1]

Mott KA, Woodrow IE. **2000**. Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis. *Journal of Experimental Botany* **51**: 399–406.

[Equations: 9.3, 9.4]

Poorter H, Villar R. 1997. The Fate of Acquired Carbon in Plants: Chemical Composition and Construction Costs. In: Bazzaz FA, Grace J, eds. Plant Resource Allocation. New York: Academic Press, 39–72.

[Equations: 1.1, 1.2, 1.3]

Poorter H. **1994**. Construction costs and payback time of biomass: a whole plant perspective. In: J. Roy and E. Garnier, ed. A Whole Plant Perspective on Carbon-Nitrogen Interactions. The Netherlands: SPB Academic Publishing, 111–127. [Equation: 1.3]

Poorter H, Pepin S, Rijkers T, De Jong Y, Evans JR, Kö Rner C. **2006**. Construction costs, chemical composition and payback time of high-and low-irradiance leaves. *Journal of Experimental Botany* **57**: 355–371. [Equations: 3.1, 4.1]

Salter WT, Merchant AM, Richards RA, Trethowan R, Buckley TN. **2019**. Rate of photosynthetic induction in fluctuating light varies widely among genotypes of wheat. *Journal of Experimental Botany* **70**: 2787–2796. [Equations: 6.4, 6.5, 6.6, 6.7, 7.1, 7.2]

Taylor SH, Long SP. **2017**. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. *Philosophical Transactions of the Royal Society B* **372**: 20160543. [Equations: 8.1, 9.1, 9.2]

Woodrow IE, Mott KA. **1989**. Rate Limitation of Non-steady-state Photosynthesis by Ribulose-1,5-bisphosphate Carboxylase in Spinach. *Australian Journal of Plant Physiology* **16**: 487–500. [Equations: 8.1, 8.2, 8.3, 9.2]

Zhu X-G, Ort DR, Whitmarsh J, Long SP. **2004**. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. *Journal of Experimental Botany* **55**: 1167–1175.

[Equations: 6.1, 6.2, 6.3]