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Supplementary Material

S1 Additional Data

In addition to the data utilized in the main body of our paper, we employed sev-
eral publicly available datasets in the supplementary material. These datasets
can be accessed via the following websites or using the provided accession
numbers: (1) Stereo-seq data[48].

S2 Comparison baselines

Our experimental results demonstrate that our approach achieves very high
accuracy. However, it is important to note that previous literature on these
methods has some limitations:

1. Previous spatial transcriptomics analysis methods have not been able
to enhance gene expression to single-cell resolution without using single-cell
RNA-seq data.

2. Certain deconvolution methods use public single-cell RNA-seq refer-
ences, including the Human Cell Atlas, the BRAIN Initiative Cell Census
Network (BICCN), and the Human BioMolecular Atlas, to address the prob-
lem of low resolution in spatial transcriptomics. However, these methods are
prone to incomplete identification of cell types due to batch effects and tissue
heterogeneity in samples. Additionally, the accuracy of deconvolution may be
impacted by the different perturbations that affect single-cell references and
spatial transcriptomics.

To overcome these limitations, we propose a novel framework called
TransformerST, which utilizes a Transformer-based approach to associate the
heterogeneity of local gene expression properties and reveal the structural rela-
tionships at nearly single-cell resolution. We have also included a table that
compares the features of various spatial transcriptomics analysis methods,
highlighting their respective strengths and limitations (Supplementary Table
1).

S3 Tissue identification with Stereo-seq
technology

We use the proposed method to a Stereo-seq dataset derived from mouse olfac-
tory bulb tissue. Nowadays, stereo-seq is one of the most promising new spatial
holography methods available. DNA nanosphere-patterned array chips provide
spatial resolution down to the subcellular level. The information in this study
was split down to a cellular level (14 m) for clarity. The rostral migratory
stream (RMS), granular cell layer (GCL), endothelial cell layer (GCL), internal
plexiform layer (IPL), filamentous cell layer (MCL), exterior plexiform layer
(EPL), and olfactory nerve layer were all labeled in DAPI-stained pictures of
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Supplementary Table 1 Comparison between TransformerST with baselines.

Methods Objective Super-resolution Reference-free
Histology
image

TransformerST
Clustering,

super-resolution
Single-cell Yes Yes

SpaGCN Clustering Original No Yes

BayesSpace
Clustering,

super-resolution
Multi-cellular Yes No

CCST Clustering Original No No
STAGATE Clustering Original No No
DeepST Clustering Original No Yes
stLearn Clustering Original No No

STdeconvolve Deconvolution Multi-cellular Yes No

the coronal mouse olfactory bulb by Fu et al.[48]. The results are shown in Sup-
plementary Supplementary Fig. 1. The results derived from TransformerST
align with the Allen Reference Atlas, as depicted in Supplementary Supple-
mentary Fig. 1b, demonstrating the method’s precision and consistency. In
Supplementary Supplementary Fig. 1c, TransformerST, utilizing the original
spot resolution, yielded results that closely mirrored those of the Allen Ref-
erence Atlas. This showcases its capacity to capture intricate gene expression
patterns and cellular structures.

Furthermore, in Supplementary Supplementary Fig. 1d, TransformerST
effectively reconstructed the original resolution of spatial transcriptomics data
using downsampled inputs. The outcomes closely resembled those in the Allen
Reference Atlas, underscoring TransformerST’s robustness and flexibility in
managing various data resolutions and ensuring accurate results irrespective
of input quality.

The compatibility of TransformerST with the Allen Reference Atlas can
also be attributed to its sophisticated algorithms. These enable the precise
identification of spatial gene expression patterns and facilitate the extraction of
biologically significant information. Additionally, the method’s robust feature
extraction and pattern recognition capabilities aid in effectively distinguishing
between different cell types, tissue structures, and gene expression patterns.
Moreover, TransformerST’s versatility allows it to be applied across multi-
ple platforms and datasets, maintaining consistent performance under a wide
array of experimental conditions. This adaptability ensures the method’s reli-
ability and relevance, further reinforcing its alignment with the established
Allen Reference Atlas.

In conclusion, the concordance between the results obtained from Trans-
formerST and the Allen Reference Atlas can be attributed to the method’s
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Original Image
Allen Reference Atlas

TransformerST Super-resolution

Supplementary Figure 1 TransformerST improves the identification of known tissue
structures in the olfactory bulb tissue

precision, consistency, adaptability, and its ability to effectively manage various
data resolutions. These attributes position TransformerST as a valuable tool in
spatial transcriptomics analysis, offering researchers reliable and biologically
pertinent insights.

We applied the proposed methods to a segment of mouse lung tissue
profiled by Stereo-seq and found that the spatial regions identified by the
method showed strong concordance with the patterns of the original image
(Supplementary Supplementary Fig. 2). This underscores the effectiveness of
our approach in accurately delineating tissue structures and gene expression
patterns, a critical aspect for understanding the complex biological processes
within the sample. The method’s ability to yield results consistent with expert
annotations underscores its potential as a valuable tool for spatial transcrip-
tomics analysis across diverse tissue types and experimental conditions. We
also showcase the results of the BayesSpace method in Supplementary Sup-
plementary Fig. 2d, which uses the original data for tissue type clustering.
Our simulation outcome aligns with the results of BayesSpace. Importantly,
our simulation results for super-resolution with downsampled data are capa-
ble of producing more refined patterns that closely mirror the original image.
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Original Image
TransformerST

clustering with spot 

resolution

Super-resolution

BayesSpace

Supplementary Figure 2 TransformerST improves the identification of known tissue
structures in the mouse lung tissue

This further attests to the effectiveness of our proposed approach in handling
various resolutions and providing detailed spatial transcriptomics analysis.

For both datasets, our proposed method produced visually superior tissue
identification and super-resolution results when compared to other methods.
In the two figures, ’TransformerST’ denotes the clustering result at the origi-
nal resolution, while ’Super-resolution’ refers to the super-resolution outcome
achieved by TransformerST. BayesSpace denotes the result achieved when data
at the original resolution is employed for tissue type clustering.

S4 Enhanced Gene Expression Prediction at
Sub-cellular Resolution

Enhanced Gene expression prediction at sub-cellular resolution in
breast cancer data HER2+. To evaluate the tissue identification and super-
resolution performance in predicting gene expression at sub-cellular resolution
using histology images, we employed the leave-one-out method (36 fold) using
HER2+ breast cancer data, which includes 36 tissue sections from 8 patients.
This approach underscores the effectiveness in gene expression prediction and
super-resolution. For the leave-one-out evaluation, 32 sections were utilized to
train the tissue identification and super-resolution model, with the remaining
sections reserved for evaluation. The results of this approach are represented
as TransformerST. We also assessed the super-resolution performance at the
sub-cellular level, referred to as Super-resolution.

Manual annotation of three tissue sections was included for evaluating
clustering accuracy [49]. We compared our proposed method, TransformerST,
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Supplementary Table 2 Average correlation of predicted expression for top 50 most
highly variable genes (HVG) compared to ground truth expressions on held out dataset

Methods HVG
TransformerST 0.226

BLEEP 0.168
TCGN 0.151

with TCGN [37] and BLEEP [36] for gene expression prediction using three
tissue sections, as detailed in Supplementary Fig. 3. TCGN and BLEEP,
in comparison, demonstrated less effective gene prediction performance. The
leave-one-out evaluation showed a higher correlation with biological interpre-
tation.

TransformerST markedly improved clustering accuracy (ARI) for the eval-
uated sections out of the 32 samples, significantly outperforming TCGN and
BLEEP. This advancement in clustering accuracy by TransformerST is evident
in the results for sample B1 (Supplementary Fig. 3a), where TransformerST
achieved the highest clustering accuracy (ARI of 0.308 for TransformerST com-
pared to lower ARIs for TCGN and BLEEP). Similarly, Supplementary Fig.
3b displays the superiority of TransformerST (ARI=0.325) over TCGN and
BLEEP. These results might be due to substantial gene expression differences
among patients, which led to the leave-one-out evaluation by TransformerST
attaining superior tissue identification performance, as shown in Supplemen-
tary Fig. 3). Supplementary Table 2 displays the performance comparison of
BLEEP, TCGN, and TransformerST in predicting the top 50 most highly
variable genes (HVG). In this assessment, the expression profiles predicted by
TransformerST showed the strongest correlation with the actual data among
all gene sets.

The enhanced single-cell resolution results further demonstrate Trans-
formerST could predict the biological meaningful patterns as in the manual
annotations. While it is hard to estimate the ARI for the super-resolution
result, the study is visually consistent with the manual annotations by
pathologists in the spatial domain (Supplementary Fig. 3).

S5 Meta Gene and SVGs Analysis with
DLPFC and IDC Samples

To further demonstrate that TransformerST could explore the biological rel-
evance, we detected the spatial variable genes and meta genes for LIBD
human dorsolateral prefrontal cortex (DLPFC) data and IDC sample. As
shown in Supplementary Fig. 4a, SVGs and their corresponding meta gene
show similar spatial patterns for human DLPFC samples at spot resolution.
For example, TMSB10 is enriched in cluster 0 of tissue sample 151508. The
combination of meta genes (TMSB10+MBP-MT-CO2) shows the strength-
ened spatial patterns in the neighboring regions. GFAP is enriched in cluster
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2 of tissue sample 151508, its corresponding meta gene is GFAP+SNORC-
TMSB10+CDT3-MBP, which is also spatially correlated with the SVGs of
cluster 2 in the histology image.

As illustrated in Supplementary Fig. 4b, boxplots display Moran’s I and
Geary’s C values for spatially variable genes (SVGs) identified by Transform-
erST, SpatialPCA [38], and Vesalius[39], offering a comparative analysis of
the performance of these methods in detecting spatial patterns in brain tissue
slice 151508. Notably, the Moran’s I and Geary’s C values for SVGs detected
by SpatialPCA and Vesalius are lower than those identified by Transform-
erST, indicating a weaker presence of spatial patterns in their results. The
experimental results with different tissue samples and different cluster domains
demonstrate TransformerST could mark specific gene-expressed regions for
different cluster domains.

To illustrate how TransformerST works for different tissue samples, We
detected the spatial variable genes and meta gene for IDC samples at nearly
single-cell resolution. As shown in Supplementary Fig. 4c, TransformerST
detected single SVGs (ACADSB) for cluster 2. Its corresponding meta gene was
defined as ACADSB+NME2-MUC1+ATP5MPL-CD74+LAPTM4B-CRIP1.
TransformerST detected DEGS1 SVG for cluster 3, which accords with
its meta gene DEGS1+RPS18-CXCL14+AGR2-MGP+CSTA-NEAT1 visu-
ally. TTLL12 is enriched in cluster 4 with its corresponding meta gene as
TTLL12+HMGN2-MALAT1+KRT8-SLC9A3R1.

The detection outcomes for metagenes and SVGs demonstrate that Trans-
formerST can effectively identify heterogeneity among spatial domains and
predict boundaries not recognized by current state-of-the-art methods. These
findings highlight TransformerST’s ability to better uncover spatial patterns
utilizing a graph transformer network.The detection outcomes for metagenes
and SVGs showcase that TransformerST not only effectively identifies het-
erogeneity among spatial domains, but also accurately predicts boundaries
that remain undetected by current state-of-the-art methods. These findings
not only highlight TransformerST’s superior performance in uncovering spa-
tial patterns but also emphasize its ability to leverage a graph transformer
network for a more comprehensive understanding of spatial transcriptomics
data. Consequently, TransformerST emerges as a valuable tool for researchers
aiming to analyze complex spatial relationships within biological samples.

S6 Tissue identification and super-resolution in
breast cancer block at nearly single-cell
resolution with Xenium technology.

We introduce the cutting-edge Xenium In Situ technology, which has a wide
field of view and the unique ability to combine gene expression and histo-
logical pictures (H&E and IF staining) in a single tissue segment. Using this
method, Chromium scFFPE-seq data were generated from 2 x 25 µm FFPE
sections obtained from a breast cancer block (stage II-B, ER+/PR-/HER2+).
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These sections subjected to scFFPE-seq were situated across the tissue sections
employed for Visium and Xenium procedures.

The Visium CytAssist and Xenium platforms were employed to analyze
5 µm tissue sections adjacent to those used for scFFPE-seq. Prior to imag-
ing, sections subjected to Visium were deparaffinized and stained with H&E.
The glass slides containing tissue sections were then processed using a Visium
CytAssist instrument to transfer analytes to Visium slides. Using the same
probe set as in scFFPE-seq, 18,536 genes targeted by 54,018 probes were quan-
tified for sections subjected to Visium. The median number of genes in the
Visium data set was 5,712, and dimensionality reduction revealed 17 spatial
clusters (the same number of clusters as the scFFPE-seq data). The molecular
subtypes of ductal carcinoma in situ (DCIS) (hence referred to as DCIS #1
and DCIS #2) and invasive tumors were each identified as separate clusters
by scFFPE-seq, and Visium was able to determine their exact locations.

We use the following pipeline to show the performance of the proposed
method. Firstly, we choose the region of interest using the Visium image.
Then we obtain the corresponding higher-resolution image and gene expression
using Xenium technology. We perform cell segmentation. To allocate mRNAs
to cells, facilitating subsequent analysis and integration with Chromium and
Visium data, the spatial boundaries between cells and mRNA transcripts need
to be determined. Initially, DAPI images were employed to identify nuclei
using a neural network. Subsequently, each nucleus was expanded outward up
to a maximum distance of 15 µm or until encountering the border of another
cell. With the original Visium image, we perform cell-type clustering. Next,
we employ the proposed method to perform super-resolution, utilizing the
clustering and cell segmentation outcomes. The processed steps are shown in
Supplementary Fig. 5a.

As shown in Supplementary Fig. 5b, similar to Xenium, the proposed
method is able to pinpoint precisely where adipocyte markers are located,
but it shows much more detail in cases when adipocyte transcripts escape the
boundaries of the cells. The examination of TransformerST and BayesSpace
demonstrates that the methods can be replicated with high precision. Notably,
strong correlations were observed between the quantities of transcripts and the
proportions of cell types in these replicates, further validating the effectiveness
and reproducibility of the approaches.
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Supplementary Figure 3 Super-resolved gene expression prediction with breast cancer
data. The first column displays the histology image accompanied by pathologists’ annota-
tions, in which the red lines represent invasive cancer, green lines signify breast glands, yellow
lines indicate immune infiltration and blue lines denote connective tissue. a, Tissue type
assignments and nearly single cell super-resolution using B1 section. b, Tissue type assign-
ments and nearly single cell super-resolution using E1 section. TransformerST refers to the
clustering results obtained from TransformerST. Super-resolution, on the other hand, repre-
sents the ability of the method to achieve sub-cellular resolution performance in enhancing
the spatial transcriptomics data.
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Supplementary Figure 4 Spatial variable genes (SVGs) and meta gene detection.a, SVGs
and corresponding meta genes for cluster 0 (TMSB10, TMSB10+MBP-MT-CO2), cluster 2
(GFAP, GFAP+SNORC-TMSB10+CDT3-MBP) in brain tissue slice 151508 at spot resolu-
tion. b, Boxplots of Moran’s I and Geary’s C values for SVGs detected by TransformerST,
SpatialPCA, and Vesalius using brain tissue slice 151508. c, SVGs and corresponding meta
gene for cluster 2 (ACADSB, ACADSB+NME2-MUC1+ATP5MPL-CD74+LAPTM4B-
CRIP1), cluster 3 (DEGS1, DEGS1+RPS18-CXCL14+AGR2-MGP+CSTA-NEAT1), and
cluster 4 (TTLL12, TTLL12+HMGN2-MALAT1+KRT8-SLC9A3R1) in IDC sample at
nearly single cell resolution. Pathologist annotated different regions in different colors (IC
outlined in red, carcinoma in yellow, benign hyperplasia in green, unclassified tumor in grey).
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Manual Annotation BayesSpace TransformerST

Higher resolution Image
Cell Segmentation

Super-resolutionVisium Spatial Gene Clustering

Supplementary Figure 5 Tissue identification and super-resolution in breast cancer
block at nearly single-cell resolution with Xenium technology. a, Schematic illustration of
TransformerST with Xenium data. b, Tissue identification in breast cancer tissue with
Xenium and Visium data.
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