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1 Identifying spatial domain

1.0.1 SpaCell

Results: SpaCell was tested on prostate cancer [1] and amyotrophic lateral sclerosis [2]. The results prove that the
SpaCell outperformed all methods that used either gene expression or histology imaging by 8-14% improvement
in cell-type clustering results (accuracy, precision, F-score, and AUC) and 4% in the classification results.

1.0.2 stLearn

Method: The first step is the normalization of gene expression with spatial information, and H&E tissue images.
Regarding spot Si in spatial data, there is a neighborhood spot Sj if the distance between those centres PDij

is shorter than the radial of the predefined disk smoothing (PDij < r). After identifying neighbor’s spots, the
morphological similarity was measured by the corresponding HE images. StLearn then feeds images to the CNN
model to extract numerical features from images with network weights pre-trained on the ImageNet dataset. The
output from ResNet50 is a 2048-dimensional vector which was reduced to 50 by the principal component analysis
(PCA) algorithm [3]. Therefore, the morphological distance (MD) can be calculated by the cosine distance between
the obtained latent features Mi and Mj as:

MD(Si, Sj) =
Mi.Mj

∥Mi∥.∥Mj∥
(1)

The normalization of gene expression, called SME normalization, can be performed as:

GE′
i = GEi +

∑n
j=1 GEj .MDij

n
(2)

where GE′
i is the normalized gene expression spot Si. GEi and GEj are the raw gene expression for spot Si and

its n neighbor spots Sj .
Results: StLearn examined twelve human and mouse brain datasets and achieved a greater Adjusted Rand Index
(ARI) value compared to the SpatialLIBD (a graph-based clustering method) [4] and detected two more tissue
layers than Seurat.

1.0.3 SpaGCN

Method: In the pre-processing step, SpaGCN eliminated each gene expression that appeared in less than three
spots and stored the rest in a matrix along with the two spatial coordinates of each sample. SpaGCN normalized
the given spot’s gene count by dividing them by the total count across all genes, multiplied them by 10,000, and
then transformed them into a natural log scale. SpaGCN then constructed an undirected graph G(V,E) to identify
the spatial domain, in which the edge weights were specified by distances between each spot ∈ V . Given the spatial
gene expression (x, y), SpaGCN added a new dimension z by considering the pixel at coordinate (xpv, ypv) from
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the spot v in the histology image. First, it draws a square centred on (xpv, ypv) containing 50× 50 pixels and then
calculated the mean color value (rv, gv, bv), which zv can be measured as:

zv =
rv × Vr + gv × Vg + bv × Vb

Vr + Vg + Vb
(3)

where Vr,g,b = V ariance(rv, gv, bv) for all v ∈ V . Second, SpaGCN rescaled zv as:

z∗v =
zv − µz

σz
×max(σx, σy)× s (4)

where µz represents the mean of zv, and σx,y,z are the standard deviations of xv, yv, and zv, for all v ∈ V , and
s is a scaling factor. Thus, (xv, yv, z

∗
v) denotes the three dimensional space for each spot v in a graph. To sum up,

SpaGCN measured the weight of the edge between two spots v1 and v2 as:

w(v1, v2) = exp(−d(v1, v2)
2

2l2
) (5)

where d(v1, v2) is the Euclidean distance between the two spots and l is a hyper-parameter.
Results: The authors applied SpaGCN on five public datasets, four including sequencing-based data and one
including MERFISH. SpaGCN recognized more spatial domains compared to other methods and obtained a higher
ARI value than k-means and Louvain’s [5] algorithm.

1.0.4 SEDR

Method: SEDR has three main steps: (1) learning latent features from the gene expression matrix X and recon-
structing it as X ′ by deep autoencoder, (2) embedding the spatial information by using VGAEs, and (3) employing
an unsupervised deep embedded clustering (DEC) to group the cells into different categories.
In the first step, SEDR obtains the latent features Zf from the output of the encoder part of the autoencoder
(with two fully connected layers). Next, low-dimensional representation Zf and spatial embedding Zg, obtained
by step two, were concatenated into latent representation Z. SEDR trained the AE by maximizing the similarity
between X and X ′ (the output of the decoder part) using the MSE loss function. In the second step, SEDR
constructs the adjacency matrix A by the ten nearest neighbors obtained from the Euclidean distances between
image coordinates. In other words, SEDR embeds the spatial information and learns the graph embedding Zg

via VGAE (parameterized by a two-layer GCN) from the adjacency matrix and its degree matrix D. While the
reconstruction matrix A′ obtained by Zg.Z

T
g , SEDR optimized the Zg by minimizing the cross-entropy between

A and A′ and KL divergence between p(Z—A) and its prior, simultaneously. In the last step, SEDR performs an
unsupervised clustering method (DEC) [6] on the latent feature representation Z to enhance the compactness of
the learned features. SEDR then uses an SGD algorithm to optimize its parameters for clustering.
Results: The authors benchmarked SEDR against Seurat as a method that uses only gene expression, and Giotto,
stLearn [7], SpaGCN [8], and BayesSpace [9] as methods which integrate gene expression and spatial information
in their approaches. They tested these methods on the human dorsolateral prefrontal cortex (DLPFC) [4] and 10x
Visium spatial transcriptomics data of human breast cancer and showed that the SEDR achieved higher ARI value
than all other methods, even those with histology images (stLearn and SpaGCN). In addition to the high cluster-
ing performance of SEDR, the latent representation learned by SEDR can be effectively used in two procedures,
i.e., (a) batch effect correction, in which SEDR could remove the batch effect in DLPFC data, and (b) tumour
heterogeneity estimation in human breast cancer and high-resolution spatial data such as the mouse olfactory bulb
dataset.

1.0.5 STAGATE.

Method: STAGATE constructs a spatial neighbor network (SNN) through two options. (a) Creating GAT network
with adjacency matrix A to convert the spatial information into the undirected graph according to the predefined
radius r, where the matrix elements equal 1 if the Euclidean distance between two spots is less than r. The number
of neighbors, and the parameter r were defined based on the SRT datasets. (b) Cell type aware SNN obtained
via pruning the GAT network relevant to pre-clustering gene expressions. These two modules can adaptively be
selected as the input of the graph attention layer. STAGATE sets the encoder into the two neural network layers,
where just the first layer was adopted to the attention layer. The two layers can be obtained as:

h1
i =

∑
j∈Si

att1ijσ(W1h
0
j ), (layer1) (6)

h2
i = σ(W2h

1
i ), (layer2) (7)

where h1
i is the input gene expression spot i, W is the trainable weight matrix, Si is the neighboring set of spot i,

σ is the non linear activation function, and attij is the output of the graph attention layer measured as:

e1ij = Sigmoid(v1
(T )

s σ(W1h
0
i ) + v1

(T )
r σ(W1h

0
j )), (8)
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where v1s and v1r are the trainable vectors. The output of the attention layer can be measured by normalizing the
eij via the soft-max activation function:

att1ij =
exp(e1ij)∑

i∈Si
exp(e1ij)

, (9)

The attij can be obtained through Graph attention convolution SNN (attspatial) or cell type-aware SNN (attaware).
In other words, STAGATE multiplies the hyper-parameter α into the two obtained SNN in an adaptive way as
follows:

attij = (1− α)attspatialij + αattaware
ij , (10)

STAGATE sets the decoder part as the encoder, which receives the latent feature as an input and reverses it into
the reconstructed gene expression input h. Same as the encoder, STAGATE uses the attention layer in the first
layer of the decoder. Ultimately, STAGATE minimizes the

∑N
i=1 ∥xi−hi∥2 loss function and updates the trainable

weights. Then, it performs mclust [10], and Louvain clustering algorithms for the labeled and unlabeled data on
the learned features, respectively.
Results: The authors applied STAGATE to the DLPFC dataset (almost 4789 spots), Stereo-seq mouse olfactory
bulb data (19109 spots), and Slide-seqV2 mouse hippocampus data (19285 spots), and mouse olfactory bulb data
(20139 spots) obtained by different SRT technologies. STAGATE performed better in clustering than spatial
methods, including SEDR, StLearn, BayesSpace (a Bayesian model), and the non-spatial method SCANPY [11]
(a Python-based implementation framework). It was also able to accurately reduce noise in the DLPFC dataset
and enhance the gene expression profiling ability within spatial domains. Removing batch effects in the seven
hippocampus sections profiled by Slide-seq was another ability of STAGATE, which enables extracting 3D patterns
by utilizing 3D SNN.

1.0.6 RESEPT

Results: The authors selected various benchmarking metrics including ARI, rand index (RI), and Fowlkes–mallows
index (FM) to evaluate the obtained segmentation and manual annotation. The Moran’s I and PSNR (see Supple-
mentary Table S1) metrics were used to assess the quality of the predicted segmentation map and 3D embedding
evaluation, respectively. They applied RESEPT on 16 SRT samples (12 published and four in-house including
two Alzheimer disease (AD), health, and tumour samples) from the human brain cortex region and compared
RESEPT to SpaGCN, stLearn, and other ML methods. They achieved a higher ARI value than other models.
Moreover, RGB images generated from the RNA velocity can reveal clear domains in AD samples (higher Moran’s I
compared to the models that use gene expression as an input). Given this performance, they analyzed the glioblas-
toma dataset published by 10x Genomics to evaluate the clinical applications of RESEPT in the oncology field and
found RESEPT accurately identified the eight segmented areas. Those areas represented a good understanding
of glioblastoma heterogeneity. Furthermore, providing two input options for the graph autoencoder is the novel
quality of RESEPT, allowing to investigate well-differentiated architectures in the SRT data.

1.0.7 ECNN

Results: The authors used the SRT dataset in [12] including seven H&E-stained tissue slides and applied the
Calinski–Harabasz [13] method to detect the number of clusters per slide. First, they obtained the Dice index
matrix to compare predicted clusters to manual annotations, which ECNN achieved coherent regions even using
other clustering methods, such as K-means, Gaussian mixture model (GMM) [14], and spectral clustering. The
results also illustrate that the automatically obtained color maps successfully separated different heterogeneity
regions. It was shown that the pre-trained ECNN using ImageNet could considerably downgrade the performance.

1.0.8 JSTA

Results: The performance of JSTA was tested first on the synthetic data from mouse hippocampus generated
based on the NCTT [15], in which JSTA outperformed both watershed and pciSeq [16] algorithms in cell type
identification even with a small number of genes. JSTA was also tested on other MERFISH and scRNAseq datasets.
The obtained results demonstrated that JSTA can segment cells in MERFISH data, which are highly correlated
with their scRNAseq counterparts. Also, the previous test was repeated with another MERFISH dataset [17]
including 134 genes, confirming the efficiency of JSTA. Finally, JSTA was evaluated on an osmFISH dataset from
the mouse somatosensory cortex with the 35 genes [18], which JSTA successfully mapped 142 high-resolution cell
types in this region.

1.0.9 conST

Results: The datasets used were mouse hypothalamus MERFISH, and mouse visual cortex seqFISH for image-
based methods; and two datasets generated by 10x genomics, and mouse olfactory bulb Stereo-seq for sequencing-
based methods. The Leiden algorithm was used to cluster the spatial domain with the obtained embeddings.
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conST achieved an ARI of 0.65, approximately a 10% increase compared to other state-of-the-art methods in the
sequencing-based datasets, and demonstrated high performance on the image-based datasets. Since there is no
ground truth for the MERFISH dataset, the performance of the clustering method was compared with three other
unsupervised metrics SC, CHS, and DBI (see Supplementary Table S1).

1.1 Identifying spatially variable genes

1.1.1 CoSTA

Method: The proposed method consists of two steps: clustering and neural network training. In the first step,
CoSTA passes the normalized images through the CNN network (ConvNet), which consists of three convolution
layers. Each layer is followed by a batch normalization layer and max-pooling layer. The flattened layer after the
last max-pooling layer is called as the spatial features of the gene expression data. To cluster features, the method
applies the L2-normalization and UMAP (an unsupervised dimension reduction method) to the feature vector,
respectively. Then, it performs UMAP to reduce the dimensions to 30 features and cluster all samples by GMM.
The authors tested various cluster numbers in Slide-seq data and proved that the proposed network could converge
regardless of cluster number during training, but 30 clusters showed better specificity. The purpose of clustering
is to generate labels for training ConvNet. Moreover, each gene is assigned to a cluster by an auxiliary target
distribution, which is the likelihood of the gene belonging to the cluster. The probability of the soft assignment of
each sample i can be measured based on the Euclidean distances di to cluster centroids ci as follows:

p(y = i | x) = e1/di∑N
i=1 e

1/di

(11)

where, N is the total number of clusters. The auxiliary target probability of jth sample belonging to the ith cluster
qij is calculated using Eq 12.

qij =
p2ij/fi∑N
i=1 p

2
ij/fi

(12)

where, fi =
∑M

j=1 pij , and pij is obtained through Eq 11.
Once the label generation in the first step is finished, the second step adds a fully connected layer (FC), with the
softmax activation function, to the last max-pooling layer. The output size of the FC layer is equal to the number
of clusters in the previous step and produces the probability of the input gene belonging to each cluster. The
method uses the FC layer just during training, and it would be discarded in the first mentioned step. Moreover,
it retains trained ConvNet just for feature extraction in the other stages.
Result: The CoSTA model was tested on three different types of datasets. a. Typical image datasets, such as
MNIST, USPS-digit, and Fashion, to assess the network ability of spatial pattern recognition and correlation in
the absence of overlapping. b. Simulation datasets, consist of five synthetic datasets with different noise levels,
to determine the robustness of the proposed method against varying degrees of noise: c. MERFISH and Slide-
seq dataset. In the first category, the proposed method was benchmarked against supervised and unsupervised
learning methods and achieved less accuracy than supervised methods in three datasets. With regards to the
NMI metric (see Supplementary Table S1), CoSTA obtained higher NMIs than other cluster learning methods
when it was applied to MNIST and Fashion and was scored as the second-best model in USPS-digit dataset. To
confirm that the network learns features based on pixel correlation rather than pixel-wise, CoSTA was tested on
the shuffled pixel positions. The authors found that CoSTA could not distinguish the spatial patterns in the
synthetic datasets, and it proved that the CoSTA learns features based on the correlations between neighboring
pixels. CoSTA recognized the quantitative similarity between genes in the Merish dataset, which achieved less
sensitivity and more specificity (identified 133 spatially expressed (SE) genes) than the Spark (145 SE genes) and
SpatialDE (139 SE genes) methods. The CoSTA results on Slide-seq data demonstrated that it identified spatial
patterns-dependent, accurately. They also repeated the shuffling approach on Slide-seq data, which suggested
again that the learned patterns by the proposed method are highly related to the spatial expression pattern, even
using actual biological data.

1.1.2 ST-Net

Results: ST-Net was trained on a breast cancer spatial transcriptomics dataset, including 30,612 spots in 68 breast
tissue sections from 23 patients using leave-one-patient-out cross-validation, where it was repetitively trained on
22 patients and tested on the remaining held-out patient. ST-Net achieved a mean square error of 0.31 and
acceptable Pearson’s correlation (the average of 0.33 across all 234 genes), in which 102 of the 250 genes were
correlated positively in almost 20 patients. Moreover, ST-Net was externally validated on the 10x Genomics breast
cancer dataset and the breast cancer samples of the Cancer Genome Atlas (TCGA). ST-Net predicted 207 of the
234 genes and 177 of 249 genes with a positive correlation and 0.73 and 0.83 area under curve (AUC) in the former
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and latter datasets, respectively. All results were obtained without any prior modifications, proving the robustness
and generalisability of the proposed deep model in the breast cancer dataset. The authors plotted UMAP for
visualizing the latent feature vector and found that the latent feature can separate the tumour and non-tumour
spots, which can be leveraged in clustering and cell-type composition.

1.1.3 HisToGene

Results: The results consisted of three parts: a. Applying on the HER2 + breast cancer dataset [21] including
36 tissue sections from 8 patients; b. Generalising the model on the cutaneous squamous cell carcinoma (cSCC)
dataset [22], including 12 tissue sections from 4 patients; c. Clustering spatial domains using predicted gene
expressions on the HER2 + breast cancer dataset. In the first part, the authors trained the model on 32 sections
from 7 patients with leave-one-out (32-fold) cross-validation, in which they trained the model using 31 tissue and
tested on the one remaining tissue. They compared the HisToGene with ST-Net, which consistently outperformed
ST-Net in correlation. In the second part, despite the better performance of the proposed method rather than
ST-Net, neither model could achieve acceptable (high accuracy) results due to the low resolution of spots. The
authors performed K-means clustering in the third part, in which HisToGene obtained a higher ARI than ST-Net.

1.1.4 CNNTL

Result: The CNNTL approach was tested on the Cortex study dataset obtained from 42 donors. The metric
is rank-1 accuracy at the level of images, which is the proportion of images for which the Euclidean distance of
their embeddings computes the closest image of the same gene. The CNNTL achieved rank-1 accuracy of 38.3%,
which performed better than single ResNet or random models. Also, with the learned embeddings by CNNTL,
the proposed method could successfully predict tissue source (AUC = 0.902), expression intensity (AUC = 0.898),
laminar patterns (AUC = 0.879), and cell-type specificity (AUC = 0.805), which are higher than the results
obtained from the baseline ResNet50. The authors validated the triplet model on the Schizophrenia study dataset
(rank-1 score of 60.2%), and with the help of learned features, CNNTL achieved an AUC of 0.59 in predicting
Schizophrenia.

1.1.5 DeepSpaCE

The DeepSpaCE was tested on a dataset from human breast cancer consisting of three tissue sections A, B, C, and
related consecutive sections (D1–D3). First, the model was trained on the D2 for predicting three breast cancer-
marker genes (SmoothL1 loss function), in which the model obtained 0.588 correlation coefficients between the
measured and predicted values. Next, the authors used DeepSpaCE to predict cell-type clusters (Cross-Entropy
Loss function) and utilized the obtained clusters via the Space Ranger software as a ground truth, which the
proposed method achieved high recall value.
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Supplementary Table 1: Evaluation metrics used in surveyed DL algorithms.

Evaluation method Equations Explanation Model

Entropy of mixing[23] E =
∑c

i=1 xilog(xi) This metric quantifies the extent of the inter-
mingling of cells from different batches. xi is
the proportion of cell i and c is the number of
batches.

gimVI

Kullback–Leibler (KL) divergence [24] DKL(P ∥ Q) =
∑

x∈X P (x)log( P (x)
Q(X) ) The Kullback–Leibler divergence measures

how the two distributions P and Q on space
X are different.

gimVI

Jaccard Index J(X,Y ) = |X∩Y |
|X∪Y | JI metric measures the similarity between two

sets X and Y .
gimVI

NMI[25] NMI = 2I(A,B)
H(A)+H(B) The Normalized Mutual Information (NMI) is

a cluster comparison metric between the two
clusters, A and B. H and I are the entropy
and joint entropy of the two clusters, respec-
tively. The output are bounded in [0,1], where
1 means the two clusters are identical.

CoSTA
stPlus

Adjusted Rand index[26] ARI = RI−expectedRI
maxRI−expectedRI

RI = TP+TN
TP+FP+FN+TN

The Adjusted Rand index measures the sim-
ilarity between two clusters, where the RI
stands for the rand index.

stlearn
SpaGCN
SEDR

STAGATE
HisToGene

stPlus
RESEPT
conST

Moran’s I[19] I = N
W

∑
i

∑
j [wij(xi−x̂)(xj−x̂)]∑

i(xi−x̂)2 The Moran’s I is a metric of spatial autocorre-
lation, and the range is between [-1,1], where
values closer to 1 indicate a better spatial pat-
tern. Where the xi and xj are the gene ex-
pression of the spot i and j, wij is the spatial
distance between two spots, x̂ is the mean ex-
pression of gene, W is the sum of wij .

SpaGCN
SEDR

STAGATE
RESEPT
conST

Pearson’s correlation[27] ρX,Y =
∑

(Xi−X̂)(Yi−Ŷ )√∑
(Xi−X̂)2

√∑
(Yi−Ŷ )2

The Pearson’s correlation measures the simi-
larity between two objects which produce the
score from -1 and 1, representing 1 (high corre-
lation), 0 (uncorrelated), and -1 (inverse cor-
relation).

ST-Net
HisToGene

JSTA
DSTG
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Supplementary Table 1: Evaluation metrics used in surveyed DL algorithms.

Evaluation method Equations Explanation Model

Spearman Correlation[28] ρs = 1− 6
∑

(rX−ry)
2

n(n2−1) The Spearman Correlation measures the de-
gree of association between two variables X
and Y , where rX and rY are the ranks of the
two variables.

gimVI
stPlus

Root mean squared error[29] RMSE=
√

1
n

∑n
i=1 e

2
i The RMSE is the static metric for evaluating

the model, where ei denotes the error between
the predicted and actual value of sample i, and
n is the number of total samples.

ST-Net
XFuse

AUC - The ROC curve can be plotted based on the
true-positive rate(y-axis) and false-positive
rate(x-axis), which show the trade-off be-
tween them. The area under the obtained
curve (AUROC or AUC) can illustrate the ML
model’s performance.

SpaCell
ST-Net
GCNG

AMI[30] AMI = I(A,B)−E(I(A,B))
avg[H(A),H(B)]−E[I(A,B)] The Adjusted mutual information is the clus-

tering metric to assess the similarity between
the two clusters A and B. E(.) denote the ex-
pectation function. (Refer to NMI formula for
the other functions).

stPlus
RESEPT

Homo[31] 1− I(T |P )
I(T ) The homogeneity score estimate whether the

predicted clusters P contain only object of the
same population. The output equals 1, if all
the objects through the same cluster corre-
spond to the same population.

stPlus

Dice index[32] D(G,C) = 2|G∩C|
|G|+|C| The Dice index numerically assesses the

shared region between ground-truth G and the
obtained cluster c. The output is between
[0,1], which 1 denotes high similarity.

ECNN

RMI[32] RF,C = I(F (In))−I(F (Out))
I(Fi(In))+I(Fi(Out)) The relative mean intensity value measures

whether the obtained cluster C is relevant to
the gene expression in ST data. First, thou-
sand gene expressions are summarized to the
25 gene factors Fi by the methods in [1, 12],
then the mean factor intensity I inside and
outside of the cluster C are measured.

ECNN
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Supplementary Table 1: Evaluation metrics used in surveyed DL algorithms.

Evaluation method Equations Explanation Model

MAE MAE =
∑n

i=1|yi−xi|
n The mean absolute error calculates the aver-

age absolute value of the difference between
each predicted object xi and the ground truth
yi for all n samples.

GIST

FM[33] FM =
√
precision.recall The Fowlkes–Mallows index measures the con-

sistency of obtained results between the ob-
tained cluster and ground truth. The results
are ∈ [0, 1], which 1 denoting perfect cluster-
ing.

RESEPT

PSNR[33] PSNR =
∑p

i=1 10log10(
MAX2

i
MSEi

×ai)∑p
i=1 ai

The peak signal-to-noise ratio metric assess
the similarity between the color distribution of
an RGB image and its corresponding labeled
segmentation map, where ai is the number of
pixels in ith segment, MAXi represents the
maximum pixel value in ith segment, MSEi

denote as pixel-wise mean square error of the
ith segment, and p is the total number of seg-
mented areas. The higher value of PSNR im-
plies the better quality of mapped RGB im-
ages.

RESEPT

JSD[34] JSD(P i||Qi) = 1
2

∑
k∈[1,...,C] p

k
i log(

pk
i

(pk
i +qki )/2

) +

1
2

∑
k∈[1,...,C] q

k
i log(

qki
(pk

i +qki )/2
)

The Jensen–Shannon divergence (JSD) score
is a similarity measurement, which obtain the
similarity between the probability distribution
of ground truth composition P i = (pi1, p −
2i, ..., piC) and distribution of predicted com-
position Qi = (qi1, q−2i, ..., qiC) at spot i. The
lower JSD score exhibits a higher similarity.

DSTG

Silhouette Coefcient (SC)[26] SC = b−a
max(a,b) This metric evaluates the performance of un-

supervised clustering, where b represents the
average nearest cluster distance for every sam-
ple and a stands for the mean cluster centroid
distance. The result would range from [-1,1],
where a higher value indicates a better clus-
tering performance.

conST
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Supplementary Table 1: Evaluation metrics used in surveyed DL algorithms.

Evaluation method Equations Explanation Model

Calinski Harabasz Score (CHS)[35] CHS = trBk

trWk
× nE−k

k−1 Also known as the Variance Ratio Criterion,
which measures the clustering performance
when no ground truth is available. tr is a
trace between-group dispersion matrix Bk and
within-cluster dispersion matrix Wk, where
nE is the data size and k represents the clus-
ter’s number. A higher score represents a bet-
ter clustering performance.

conST

Davies Bouldin Index(DBI)[35] 1
k

∑k
i=1 max(

si+sj
dij

) This metric measures the average the similar-
ity between each cluster i = 1, ..., k and most
similar one j, where si and sj are cluster di-
ameter and dij denotes the distance between
cluster centroids i and j. A lower DBI stands
for a model with better separation between
the clusters.

conST

Recall Recall = TP
TP+FN It measures the ratio of positive class (TP) out

of all positive examples.FN: false negative
DeepSpaCE
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Supplementary Table 2: SRT data sources used by different DL algorithms.

Title Number of genes/spots Sources
zebrafish embryo 47 genes https://dropbox.com/s/

ev78jelev0jgu5s/seurat_files_zfin.

zip?dl=1

Drosophila embryo 84 genes -
mouse frontal cortex 32,285 genes https://support.10xgenomics.com/

spatial-gene-expression/datasets/1.1.

0/V1_Mouse_Brain_Sagittal_Anterior

mSMS [18] 33 genes -
mPFC [36] 166 genes -

mouse hypothalamic MERFISH [17] 134 genes https://figshare.com/articles/

dataset/Raw_images/14531553

mouse visual cortex seqFISH [37] 25 genes https://spatial.rc.fas.harvard.edu

DLPFC (12 slices) [4] 33,538 genes (slice 151673) http://spatial.libd.org/spatialLIBD

mouse olfactory bulb Stereo-seq [38] 19,109 spots https://github.com/JinmiaoChenLab/

SEDR_analyses

Slide-seq [39] - https://portals.broadinstitute.org/

single_cell/study/slide-seq-study

Slide-seqV2 mouse hippocampus 19,285 spots https://singlecell.broadinstitute.

org/single_cell/study/SCP815

Slide-seqV2 mouse olfactory bulb 20,139 spots https://singlecell.broadinstitute.

org/single_cell/study/SCP815

MERFISH MOp 254 genes https://doi.brainimagelibrary.org/

doi/10.35077/g.21

STARmap [36] 1020 genes -
human brain datasets on 10x Visium - https://www.10xgenomics.com/products/

spatial-gene-expression

HDST - https://singlecell.broadinstitute.

org/single_cell

Globus - http://research.libd.org/globus/

human breast cancer - https://www.10xgenomics.com/

resources/datasets/

seqFISH+ mouse cortex [40] 10,000 genes(913 cells) https://github.com/CaiGroup/

seqFISH-PLUS

seqFISH+ mouse olfactory bulb [40],10,000 genes (2050 cells) https://github.com/CaiGroup/

seqFISH-PLUS

MERFISH [41] 10,050 genes https://www.pnas.org/content/116/39/

19490/tab-figuresdata
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Supplementary Table 2: SRT data sources used by different DL algorithms.

Title Number of genes/spots Sources
breast-cancer (68 tissues) 30,612 genes http:/www.spatialtranscriptomicsresearch.

org

10x Spatial Genomics (breast cancer) - https://wp.10xgenomics.com/

spatial-transcriptomics

mouse olfactory bulb (MOB)[42] 16,218 genes (262 spots) https://drive.google.com/drive/

folders1C4l3lBaYl7uuV2AA2o0WDzO_mkc_

b0pv?usp=sharing

mouse posterior cerebrum 31,053 genes (3,353 spots) https://support.10xgenomics.com/

spatial-gene-644expression/datasets/

1.0.0/V1_Mouse_Brain_Sagittal_

Posterior

human primary pancreatic cancer [43] 16,448 genes (224 spots) -
MERFISH mouse hypothalamus [17] 161 genes (5,665 cells) https://datadryad.org/stash/dataset/

doi:10.5061/dryad.8t8s248

osmFISH [44] 35 genes -
HER2+ breast cancer [21] 36 tissue sections (180 spots per section) https://github.com/almaan/her2st

cutaneous squamous cell carcinoma (cSCC) [22] 12 tissue sections -
Prostate Cancer ST [12] 23,282 spots -

prostate cancer [1] 12,000 genes (12 tissue slides) -
amyotrophic lateral sclerosis [2] - -

Cortex Study [45] 1,000 genes (human cerebral cortex) https://figshare.com/s/

43ebba2711adc3ccdc13

Schizophrenia Study [46] 78 genes https://figshare.com/s/

43ebba2711adc3ccdc13
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