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Supplementary Methods

Proof about optimization for objective function

To couple the nonnegative factorization of matrices O and E, we additionally define a matrix
A ∈ Rp×p to represent the linked sensitivity of expression to copy number. The matrix A can
be estimated priorly either by a linear regression model using public paired RNA and DNA
bulk sequencing data, or by using the uninformative identity matrix. Hence, we simultaneously
co-factorize the datasets O and E by minimizing the following objective function

F(W,H) = min
W1,H1,W2,H2≥0

1

2
∥O −W1H1∥2F +

λ1

2
∥E −W2H2∥2F − λ2tr(W

T
2 AW1) (1)

subject to : ∥W1∥2F = 1, ∥W2∥2F = 1,W1,W2, H1, H2 ≥ 0.

where we denote W1 ∈ Rp×k,W2 ∈ Rp×k and H1 ∈ Rk×n1 , H2 ∈ Rk×n2 by shorthands W
and H, tr() is the trace of matrix.

Next, we applied the alternating direction methods of multipliers (ADMM) to find the
gradients of Equation (2). Let µ1 and µ2 be the matrices containing the Lagrangian multipliers
for W1 and W2, thus we had the transformed objective function as follows:

L(W,H, µ1, µ2) = F(W,H) +

2∑
n=1

µntr(W
T
n Wn) (2)

Then we will prove the update equations correctly are the optimal solution of the objective
function (Equation 1). We just show the details about variable W1, and the proof of H1, H2

and W2 following the same procedure. As in Equation 2, the Lagrangian multiplier µ1 is for
the constraint ∥W1∥2F = 1. We simplified the Lagrangian function:

L(W1) =
1

2
∥O −W1H1∥2F − λ2tr(W

T
2 AW1) + µ1(tr(W

T
1 W1)− 1) (3)

Its first order derivative is:

∂L(W1)

∂W1
= (W1H1H

T
1 + 2µ1W1)− (OHT

1 + λ2A
TW2) (4)

The KKT condition for the constranit W1 ≥ 0 gives

((W1H1H
T
1 + 2µ1W1)− (OHT

1 + λ2A
TW2))ijw

1
ij = 0 (5)

Combining with the constraint condition ∥W1∥2F = 1, which means tr(W T
1 W1) = 1, then

2µ1 = tr(W T
1 (OHT

1 + λ2A
TW2)−W1H1H

T
1 ) (6)

Consider the Equation (4) = 0 and Equation (6), we conduct

W1H1H
T
1 − (OHT

1 + λ2A
TW2) +W1tr(W

T
1 (OHT

1 + λ2A
TW2 −W1H1H

T
1 )) = 0 (7)

Finally, we get the update rule for W1

w1
ij ← w1

ij

(OHT
1 + λ2A

TW2 +W1m11)ij

(W1H1HT
1 +W1m12)ij

(8)
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where

m11 ← tr(W T
1 (W1H1H

T
1 )),

m12 ← tr(W T
1 (OHT

1 + λ2A
TW2)).

(9)

Finally, we used the obtained gradients with a descent algorithm to iteratively update and
optimize the objective function until convergence by the following steps:

h1ij ← h1ij
(W T

1 O)ij

(W T
1 W1H1)ij

,

w1
ij ← w1

ij

(OHT
1 + λ2A

TW2 +W1m11)ij

(W1H1HT
1 +W1m12)ij

,

h2ij ← h2ij
(W T

2 E)ij

(W T
2 W2H2)ij

,

w2
ij ← w2

ij

(EHT
2 + λ2

λ1
AW1 +W2m21)ij

(W2H2HT
2 +W2m22)ij

,

(10)

where

m11 ← tr(W T
1 (W1H1H

T
1 )),

m12 ← tr(W T
1 (OHT

1 + λ2A
TW2)),

m21 ← tr(W T
2 (W2H2H

T
2 )),

m22 ← tr(W T
2 (EHT

2 +
λ2

λ1
AW1)).

(11)

Framework of simulation procedures

We first evaluated CCNMF using simulated paired scDNA and RNA data following the pro-
cedure as illustrated in Figure S1. The simulation principle is to coherently generate scRNA
and scDNA data from the same ground truth genetic copy number and clonality while also
allowing adding sequencing platform specific noises. To simplify the simulation, we set the total
number of clones to be k = 3 in all simulated scenarios. We always specified that the first clone
(cluster) as normal cells with a genetic copy number profile vector V1 = [2, · · · , 2] ∈ Rm, where
m enumerates over all genome segmental bins.

We specified the second cluster to represent clonal deletions. We obtained its associated
genetic copy number vector V2 ∈ Rm by replacing fractional components of V1 with the absolute
copy number values randomly sampled from {0, 1} according to parameters. Similarly, we
specified the third cluster to represent clonal amplifications and obtained V3 ∈ Rm by replacing
fractional components of V1 with copy number randomly sampled from {3, 4}. We also recorded
the ground truth clonal genetic copy numbers as GCN

i .
Next, we defined the observed copy number per gene and cell as OCN

i , which is the exper-
imentally observed scDNA copy number data. We recognized that various batch, sequencing
and platform noises can affect the genome segmentation results from experiments and cause
OCN

i to deviate from GCN
i . To realistically simulate OCN

i , we used a Markovian model, which
we estimated the transition probability matrix P (OCN |GCN ) from the bulk copy number data
of the TCGA project. To simplify the computation, the dimension of P (OCN |GCN ) was set to
Cmax + 1, such that the copy number states can range from 0 to Cmax . In practice, we chose
Cmax = 4 as the maximum cut-off for copy number, which means any copy number larger than
4 (inclusive) were grouped into the state Cmax.
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Specifically, we estimated the transition matrix as follows: we downloaded the TCGA genetic
copy number difference GCN

diff data from cBioPortal [1, 2] with 171 triple-negative breast cancer

basal samples on paired bulk RNA-seq and DNA-seq data. where GCN
diff = {−2,−1, 0, 1, 2} and 0

means diploid/normal. We transformed GCN
diff to the integral copy number by GCN = GCN

diff +2.
We also downloaded the TCGA tumor purities for all samples from Butte et al.[3] and denoted
them by Purity = {p1, · · · , pn}. To estimate P (OCN |GCN ): (1) We compensated for the
associated purity and arrived at the raw copy number number RCNV

n = (2 × CNR
diff )/pn + 2;

(2) We grouped the RCNV according to their underlying genetic copy number GCN status (see
Figure S2); (3) We fitted a Gaussian mixture model to each grouped RCNV (see Figure S3); (4)
We calculated the P (OCN |GCN ) by non-parametric binning of the histogram from the fitted
Gaussian mixture per GCN status.

Note that P (OCN ) = P (OCN |GCN ) ∗ P (GCN ) is the empirically estimated multinomial
probability vector we will use to simulate observed copy number OCN given the underlying
genetic GCN . We therefore simulated per gene per cell scDNA data Dij by randomly sampling
from these multinomial distributions, such that Dij ∼ multinomial(P (OCN |GCN ) ∗P (Vi)). As
the last step, we added technology, batch and platform specific outliers and dropouts to the
simulated scDNA data following the same procedure as for simulating the scRNA data that we
described immediately below.

We simulated the scRNA data based on their associated clonal copy number profiles us-
ing the Splatter pipeline [4]. Specifically: (1) We simulated the i-th clonal gene expression
background with multiplying the copy number profile Vi by the dosage effect [5], such that the
gene-wise expression mean of the i-th cluster is λ

′
i = λi ∗ Vi; (2) We proportionally adjusted

the gene-wise means for each cell using every cell’s library sizes (Lj) which can be fitted by a
log normal function with the estimated parameters from real data (see details in [4]), where
λ

′
ij = Lj(λ

′
i/
∑

(λ
′
i); (3) We generated reads for each gene and each cell where their counts

followed a Poisson mixture with an outlier component, such that X
′
ij = 1Oij(X

O
ij ) + (1− 1Oij)Xij ,

Xij ∼ Poission(λ
′
ij), 1

O
ij ∼ Bernoulli(πO), πO is the probability of outlier occurrence, and XO

ij

is the outlier’s expression; (4) We simulated cell-wise gene dropout events by randomly replac-
ing fractions of the generated gene expression with zeros, such that Gij = 1ijX

′
ij mimicking a

dropout effect 1ij ∼ Bernoulli(1/(1 + λ
′
i)).
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Supplementary Figures
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Figure S1: The flowchart of simulation for paired single-cell DNA-seq and RNA-seq datasets.
Firstly, we generate the associated clonal profile which has cluster/clone level’s copy number
change as V. For scRNA data, the parameters (as α, β, ϕi, Lj , λij) can be estimated by Splatter
pipeline from a real single-cell dataset. Then there are four procedures: (1) simulating the i−th
clone gene expression background by multiply the i− th clone’s CNV profile Vi as dosage effect
and generate the mean gene expression for i− th cluster; (2) proportionally adjusting the gene
means for each cell by the estimated library sizes; (3) generating read counts for each gene and
each cell from a Poisson distribution by adding outlier; (4) simulating dropout events which
each gene expression can be randomly replaced by zero according to Bernoulli distribution. As
far as scDNA data, we first estimate the specific parameters of bulk copy number data from the
same tissues with the above scRNA data. Thus, the bulk copy number ration difference and
bulk genetic copy number can be downloaded from cBioportal (http://www.cbioportal.org).
After that, (1) we estimate probability transition matrix after compensating the raw copy
number variants with purity derived the observed; (2) grouping the RCNV according to their
underlying different genetic copy number status (see Figures S2), and estimating the mixture
normal distribution of each group row copy number as shown in Figures S3; (3) deriving the
probability transition matrix by non-parametric binning of the histogram from mixture normal
distribution given each genetic copy number status; (4) simulating the clustering CNV for each
gene and each cell by randomly sampled from multinomial distribution; (5) simulating the
outlier values and dropout events as the same as scRNA-seq simulator.
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Figure S2: The Fitted Observed gene-wise segmental copy number (CN) distributions by the
underlying Genetic Copy Number Groups after purity correction.
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Figure S3: The density of mixture normal distributions for Raw-CNV given genetic CNV (from
0 to 4). The blue line is the histogram density of Raw-CNV. The green line represents the
density functions of fitted mixture normal model. The red lines are the normal distributions.
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Figure S4: The density of mixture normal distribution of cells’ CNV variance. The cells belong
to green part are replicating cells. y-axis is variance.
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Figure S5: Heatmap shows CNVs changes across replicating cells and scDNA’s clones of NCI-
N87 cell line. Each row represents a single cell and each column represents a genomic region.
The color in each dot of the heatmap represents the CNV status. C0 represents the identified
replicating cells, C1 and C2 are the detected subclones of G0/G1 phase of scDNA.
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Figure S6: Heatmap shows CNVs changes across normal cell and replicating cells P5931 primary
gastric cancer scDNA. Each row represents a single cell and each column represents a genomic
region. The color in each dot of the heatmap represents the CNV status. C1 represents the
detected normal cells, C2 represents the identified replicating cells.
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Convergence of CCNMF on OV

Figure S7: The objective function of CCNMF on OV data across 10 times runs converges to 8.5
×105 when increasing iterations, demonstrating the convergence of the algorithm. The X axis
represents the times of iterations, and the Y axis represents the objective function of CCNMF.
We run CCNMF 10 times on OV data.
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Figure S8: The objective function of CCNMF on NCI-N87 data across 10 times runs converges
to 5.5 ×104 when increasing iterations, demonstrating the convergence of the algorithm. The
X axis represents the times of iterations, and the Y axis represents the objective function of
CCNMF. We run CCNMF 10 times on NCI-N87 data.
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Figure S9: The objective function of CCNMF on P5931 data across 10 times runs converges
to 3.8 ×104 when increasing iterations, demonstrating the convergence of the algorithm. The
X axis represents the times of iterations, and the Y axis represents the objective function of
CCNMF. We run CCNMF 10 times on P5931 data.
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Figure S11: Comparison of constructed subclone structure of scDNA between NMF and CC-
NMF for three real datasets. (A) The recovery subclone of OV when applying NMF on indi-
vidual scDNA. (B) The recovery subclone of OV when using CCNMF to integrate scDNA and
scRNA. (C) The recovery subclone of NCI-N87 when applying NMF on individual scDNA. (D)
The recovery subclone of NCI-N87 when using CCNMF to integrate scDNA and scRNA. (E)
The recovery subclone of P5931 when applying NMF on individual scDNA. (F) The recovery
subclone of P5931 when using CCNMF to integrate scDNA and scRNA.
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Figure S12: Comparing the constructed scRNA’s subclone structure of OV using iNMF, Seurat,
Clonealign. (A) UMAP plot of scDNA and scRNA in OV using iNMF. (B) UMAP plot for
scRNA and scDNA clusters OV when using iNMF to integrate scDNA and scRNA. (C) The
constructed subclone of OV’s scDNA by iNMF. (D) Inferred CNV of scRNA clones of OV by
iNMF. (E) Inferred CNV of scRNA clones of OV by Seurat. (F) Inferred CNV of scRNA clones
of OV by Clonealign.
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Figure S13: Comparing the constructed scRNA’s subclone structure of NCI-N87 using iNMF,
Seurat, Clonealign. (A) UMAP plot of scDNA and scRNA in NCI-N87 using iNMF. (B)
UMAP plot for scRNA and scDNA clusters NCI-N87 when using iNMF to integrate scDNA
and scRNA. (C) The constructed subclone of NCI-N87’s scDNA by iNMF. (D) Inferred CNV of
scRNA clones of NCI-N87 by iNMF. (E) Inferred CNV of scRNA clones of NCI-N87 by Seurat.
(F) Inferred CNV of scRNA clones of NCI-N87 by Clonealign.
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Figure S14: Comparing the constructed scRNA’s subclone structure of P5931 using iNMF,
Seurat, Clonealign. (A) UMAP plot of scDNA and scRNA in P5931 using iNMF. (B) UMAP
plot for scRNA and scDNA clusters P5931 when using iNMF to integrate scDNA and scRNA.
(C) The constructed subclone of P5931’s scDNA by iNMF. (D) Inferred CNV of scRNA clones
of P5931 by iNMF. (E) Inferred CNV of scRNA clones of P5931 by Seurat. (F) Inferred CNV
of scRNA clones of P5931 by Clonealign.
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Supplementart Tables

Table S1. Performance (Adjusted Rand Index) of CCNMF by simulated copy number fractions

Table S3. Performance (Adjusted Rand Index) of CCNMF by simulated outlier percentages

Table S2. Performance (Adjusted Rand Index) of CCNMF by simulated dropout percentages

10% 20% 30% 40% 50% 60% 70% 80% 90%
scRNA 1 0.99 1 1 1 1 1 1 0.97
scDNA 1 0.99 1 0.99 1 1 0.81 0.99 0.99
scRNA 1 1 1 1 1 1 1 1 1
scDNA 1 1 1 1 1 1 1 1 1

Linear

Bifurcate

Data TypeClonal Structure
Simulated Dropout Percentages

10% 20% 30% 40% 50%
scRNA 0.98 1 1 1 1
scDNA 1 1 1 1 1
scRNA 1 1 1 1 1
scDNA 1 1 1 1 1

Linear

Bifurcate

Simulated Copy Number FractionsData TypeClonal Structure

10% 20% 30% 40% 50% 60% 70% 80% 90%
scRNA 0.96 0.96 0.71 0.63 0.57 0.53 0.49 0.49 0.77
scDNA 1 1 1 1 1 1 1 1 1
scRNA 1 1 1 1 0.92 0.99 0.91 0.99 0.37
scDNA 1 1 1 1 0.92 0.97 0.63 0.98 0.42

Linear

Bifurcate

Simulated Outlier PercentagesData TypeClonal Structure

Cluster 1 (C1): normal cells

Linear Bifurcate

C1 C2 C3 C1

C2

C3

The performance of CCNMF on various configuration simulated datasets. There are main two
structures including linear and bifurcate as shown in the left top box. For each structure, three
configurations such as copy number fractions, outlier percentages and dropout percentages at
different levels separately corresponds to Table S1, Table S2 and Table S3.
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