
Supplementary Methods

Perturbation MPRA library design
Choosing region and motif combinations

General description:
In our previous analysis [1], we identified 1,547 regulatory regions of interest and multiple oc-
currences of motifs within these regions. Then, our primary objective was to curate the most
informative set of [region × motif] combinations, each corresponding to a specific motif instance,
to fit within the confines of a single Massively Parallel Reporter Assay (MPRA) design. To address
this challenge, we developed a sophisticated selection methodology that accounts for various bio-
logical factors within our system and accommodates the experimental limitations concerning the
number of sequences that can be assayed.

To do this, we formalized the existing knowledge regarding motifs and genomic regions into
a tripartite graph structure, where three distinct layers of nodes are employed to represent critical
elements of our analysis.

The first layer of nodes pertains to DNA regions, specifically the 1,547 genomic regions we
previously identified [1]. These regions exhibit temporal activity, as confirmed through lentiMPRA
assays conducted across seven different time points.

The second layer comprises nodes representing motifs, computed computationally via the Fimo
algorithm (P values < 5 × 10−5, [2]), using two sets of transcription factor motifs [3, 4]. Edges
between the first two layers establish connections between each motif and the regions in which it is
found.

The third layer consists of property nodes, each characterizing a unique property of motifs
or regions based on genomic assays conducted in our previous work, which included ATAC-
seq, H3K27ac and H3K27me3 ChIP-seq, and RNA-seq data gathered across the same seven time
points [1]. For instance, we identified distinct temporal patterns associated with each of these
data modalities, and we designated each pattern as a node in this layer (e.g., a node for “regions
exhibiting a transient peak in H3K27ac at 48 hours post-induction”). We established connections
between a region and a property node if the corresponding pattern is observed in that region within
the endogenous genome. Similarly, connections were formed between a motif node and a property
node based on the presence of the designated pattern for that motif in the endogenous genome (e.g.,
a node for “motifs associated with a transcription factor that is expressed 24 hours post-induction”).

In total, our graph comprises 1,547 region nodes, 4,393 motif nodes, and 68 property nodes,
all interconnected by a complex web of 99,165 edges. Our current objective revolves around
identifying the minimum number of [region × motif] combinations, each representing a distinct
motif instance (or equivalently, an edge in our graph), which will ensure adequate coverage of each
property within the third layer. In essence, we seek to pinpoint a minimal subset of motif-region
pairs such that every “property node” in our third layer is linked to a sufficient number of motifs
and regions, as elaborated further below.

The utilization of this tripartite graph structure has empowered us to rephrase our objective
as a constrained optimization problem, aiming to guarantee a minimum level of connectivity for
the third layer while simultaneously minimizing the selection of nodes and edges within the first



two layers. Given that this problem falls into the NP-hard category, we have adopted the common
practice of formulating it as an integer linear program (ILP). Solving this ILP efficiently is possible
through various heuristics with readily available solvers.

Utilizing this ILP formulation, we have successfully identified 591 regulatory regions and 255
motifs, organized into 2144 [region × motif] pairs, meeting our criteria. Below, we offer a more
comprehensive description of this intricate process.
Defining the property layer:
We compiled a list of biological attributes by integrating data from published literature and our
own analysis of ATAC-seq, H3K27ac, H3K27me3 ChIP-seq, and RNA-seq data, as detailed in our
prior publication [1]. These biological attributes associated with transcription factors (TFs) and
genomic regions encompass the following criteria:

(i) Activation of TFsregions at specific temporal points;
(ii) Significant co-occurrence of TFs/regions with temporal MPRA, H3K27ac, ATAC-seq, and

RNA-seq signals, delineated by overlapping sub-clusters as we defined in previous studies[1];
iii) Association of TFs or proximal genes with known neural factors or relevant pathways.

Known neural factors include: POU3F1, MYT1L, SOX2, POU3F2, LHX2, PAX6, ASCL1, SOX1,
OTX2, ZNF521, NEUROG1, NEUROG2, NEUROG3, NEUROD1, NEUROD2. Pathways were
extracted from KEGG72, comprising FGFMAPK signaling pathway (hsa04010), IGF-1mTOR
signaling pathway (hsa04150), WntCa+PCP signaling pathway (hsa04310), and Sonic Hedgehog
signaling pathway (hsa04340);

(iv) Selection of specific TFs, including those with documented roles in neural differentiation
from our previous results [1] or based on their expression in the neuroectoderm of mouse embryos,
or high “TF activity scores” at relevant time points in our previous research [1].

The direct edges from motifs and regions to these attributes represent the fulfillment of the
aforementioned biological criteria.
The optimization program:

1. Minimize: (∑
r∈R

θr

)
+ 3

 ∑
(t,r)∈E;t∈T ;r∈R

et,r


Subject to:

2.
∑

(t,p′)∈E;t∈T

θt ≥ 12 ∀p′ ∈ P

3.
∑

(r,p′)∈E;r∈R

θr ≥ min{17, degR(p
′)} ∀p′ ∈ P

4.
∑

(t,r′)∈E;t∈T

θt ≥ θr′ min{3, degT (r
′)} ∀r′ ∈ R

5.
∑

(t′,r)∈E;r∈R

θr ≥ θt′ min{20, degR(t
′)} ∀t′ ∈ T
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6. et,r ≥ θt + θr − 1 ∀(t, r) ∈ E; t ∈ T ; r ∈ R

7.
∑
t∈Ti

θt ≤ 2 ∀Ti

8.
∑
t∈Ti

θt ≥ 1 ∀Ti ∈ HandPicked

9.
∑
r∈R

θr ≥ 0.4 · |R|

10.
∑

(t,r)∈E;t∈T ;r∈R

et,r ≥ 5 ·
∑

(t,r)∈Ep;t∈T ;r∈R

et,r

11.
∑
t∈TB

θt ≥ 1.5 ·
∑
t∈TS

θt

12. θt, θr, et,r ∈ {0, 1}

The decision variables represent the following: θt is a binary variable that indicates whether we
chose the motif t; θr is a binary variable that represents whether the region r was selected. et,r is a
binary variable that denotes whether a [region × motif] pair (r and t) has been selected.
Parameters include:

P represents the properties.
R represents the regions.
T represents the motifs.
degR(p) represents the number of edges connecting property p to regions.
degR(t) represents the number of edges connecting motif t to regions.
degT (r) represents the number of edges connecting region r to motifs.
Ti is a subset of T that contains all the motifs corresponding to TF i.
Ep is defined as a subset of the edges with lower confidence (i.e., edges that connect to properties

representing non-significantly overlapping sub-clusters of temporal MPRA and H3K27ac/ATAC-
seq/RNA-seq signals),

We define TB as the subset of motifs connected to at least 5 regions, and TS as the subset of
motifs connected to fewer than five regions.
Constrains:
The constraints described in the equations above ensure that: (1) Each property is connected to at
least 12 motifs; (2) Each property is connected to at least 17 regions (or all regions if it’s below
17); (3) Each region is connected to at least 3 motifs; (4) Each motif is connected to at least 20
regions; (5) An edge is active if both nodes of the edge are active; (6) For each TF, no more than two
motifs are chosen; (7) All hand-picked TFs are used at least once; (8) At least 40% of all regions
are used; (9) At most 16 of the total edges used are low-confidence edges; (10) At least 60% of the
motifs chosen are the motifs connected with many regions (TB), such that the solver does not bias
towards lowly connected motifs; (11) All variables are binary. For each Ti ∈ Hand-picked, one
representative motif must be in the solution.
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Our objective is to minimize the overall number of MPRA sequences to design. It is a sum that
accounts for the number of unperturbed (WT) regions plus the number of perturbations (i.e., [region
× motif] combinations). We multiply by 3 since we have three perturbation methods (i.e., we need
three MPRA sequences for every pair).

Different categories of sequences designed on the array:

Overall, the solver selected 591 regions, encompassing 255 unique motifs corresponding to 166
distinct transcription factors (TFs). We employed the combinations of regions and motifs chosen
by the solver to represent the following sequence categories on the array:

1. hit1: One motif is perturbed in the sequence. For [region × motif] combinations where the
motif is detected once in the sequence (N = 1620).

2. hit2: Two motifs of the same kind are perturbed in the sequence. For [region × motif]
combinations where the motif is detected twice in the sequence if the +/- strand carries
exactly the same motif, we replace the motif only once in the + strand (hit2, N=62). Otherwise
(hit2diff, N=90), we perturbed each motif separately and then both of them, starting with
the + strand. If three or more occurrences of the same motif are observed, we discard those
[region × motif] combinations (N=52).
In addition to the combinations selected by the solver, we considered the 591 wild-type (WT)
regions and added more combinations (not chosen by the solver) containing motifs of the
following 11 TFs. These TFs were selected (LHX5, MEIS2, PAX6, FOXB1, SOX1, IRX3,
OTX2, ZIC2, SP8, POU3F1, HOMEZ) based on their high “TF activity scores” at relevant
time points in our data [1] and their mRNA expression in the neuroectoderm of the mouse
embryo.

3. One motif is perturbed in the sequence. For [region × motif] combinations where the motif is
detected once in the sequence (Overexpressed hit1, N=221, and Overexpressed permuta-
tion, N=58).

4. Two variations of the same kind are perturbed in the sequence. For [region × motif]
combinations where the motif is detected twice in the sequence if the +/- strand carries
exactly the same motif, we replace the motif only once in the + strand (Overexpressed hit2,
N=3). Otherwise (Overexpressed hit2diff, N=1), we perturb each motif separately and then
both of them, starting with the + strand.

5. Combinations of two or more variations of one motif are perturbed in the sequence. For
[region × motif] combinations, we observe two or more different motifs in the sequence
(Overexpressed permutation, N=125). We examined combinations of motif hits from
these 11 TFs in our regions.

In summary, most of the data involve a single motif perturbation per region (N=2144), with
a smaller portion having two or more motif perturbations per region (N=216, comprising N=154
with two motifs and N=62 with more than two motifs), totaling 2360 designed region and motif
sequences.
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In this study, we used the single motif perturbation sequences (N = 2144) for our analyses.
We also assayed WT and control sequences:

1. We assayed 591 WT sequences. WT sequences are the endogenous 171-bp sequences.

2. We assayed 591 scrambled sequences (SCRAM). Scrambled sequences are based on WT
sequences with shuffled nucleotides, creating a set of negative controls.

3. We assayed 591 sequences with random alterations (RAND), where we randomly selected a
location in the region and perturbed the median motif size (12 bp), starting at that location,
creating an additional set of negative controls.

We perturbed one single motif in each of the 2,144 perturbation sequences. We use three
respective perturbation approaches for each motif perturbation: the first two methods replace
the predicted binding site with a “non-motif” sequence; the third method randomly shuffles the
nucleotides of the predicted binding site described in the next section. For the RAND sequence
category, we used the same three perturbation approaches.

Different Motif Scrambling (Perturbation) Approaches
Approaches 1 & 2: Replacing the motifs with “non-motif” sequences

For these two approaches, we first generated a set of “non-motif” sequences and filtered them using
two strategies:
Step 1: Creating “scrambled motifs”:
To generate scrambled motifs, we followed these workflows:

1. We first utilized all the 2,464 MPRA sequences from our previous work [1] based on their
potential for neural differentiation activity.

2. We determined the frequency and percentage of di-nucleotides within these sequences.

3. We generated di-nucleotide scrambled sequences of maximal motif length, referred to as
“scrambled motifs.”

4. We then created 1,000 such “scrambled motifs.”

5. Using Fimo[2] to analyze these 1,000 “scrambled motifs” against two sets of TF motifs [5, 4],
we selected those with the fewest motif hits P < 10−4. In this study, we ended up with 13
“scrambled motifs” yielding zero hits.

Step 2: Generating “non-motif” sequences using “scrambled motifs”:
Within each chosen [region × motif] combination (as described in the previous section), we replaced
the original motif occurrences with one of the 13 “scrambled motif” prefix sequences, adapting
it to the motif’s length. This is done using these two strategies to prevent motif creation at the
sequence edges:
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• Approach 1: incorporating a 3-bp downstream and upstream sequence of the original motif,
which is in the format of “3bp scrambled motif prefix 3bp.” Using the example in Figure 1,
the sequences generated using this approach are in the format of:
1 TGTXXXXXXX XXXACA,

where the red-colored sequence is one of the 13 scrambled motifs (of which the length has
been adjusted) created by the previous step.

• Approach 2: using the entire original sequence, which follows the format “original sequence
start scrambled motif prefix original sequence end.” Using the example in Figure 1, the se-
quences generated using this approach are in the format of:
1 CCCTCCCTGC CAGGTCGGCC CAGGCAGCCT GAGGTCAGGA GGGATTTGTX XXXXXXXXXA

61 CAGGCCCCTC GTTGCCCTGG CAACAGGCCC CGCCCCTCCA GCCTGGCCCG GGAAGGGGGG

121 ACAGCCCCTC CTCCGCCCTG CTGCCCTCCA CACCCCGCCC CTCCTTGCCT C,
where the red-colored sequence is one of the 13 scrambled motifs (of which the length has been
adjusted) created by the previous step.

These two strategies are repeated 13 times respectively using each of the 13 0-hit “scrambled
motifs.”
Step 3: Selecting the “non-motif” sequences generated by each approach:
Using each approach described above, we have generated a total of 27,872 “non-motif” sequences,
resulting from 13 of 0-hit “scrambled motifs” sequences each with 2,144 [region × motif] combi-
nations. Subsequently, we applied the Fimo algorithm [2] to evaluate these sequences. We selected
the sequence with the fewest motif hits, as indicated by the median rank for each approach.

Consequently, we have identified a single “non-motif” sequence for each approach. These
selected sequences have been employed to replace the target motif sequences within the 2,144
[region × motif] perturbations associated with each approach. As a result, we now possess 2,144
sequences representing each of the 2,144 distinct [region × motif] perturbations for both approaches.

Approach 3: Shuffling the motif sequences

In each chosen combination of region and motif, we scrambled the target motif by randomly
shuffling its nucleotides.
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Supplementary Notes

The DNA sequences in illustrative examples
• Figure 1:

– In the illustration part of Figure 1 (top left), we used the motif “GATA known9” as an example
(the target motif is colored green in the WT sequence, and perturbed ones are colored red):
>WT region211 chr9:126122582-126122753:
1 CCCTCCCTGC CAGGTCGGCC CAGGCAGCCT GAGGTCAGGA GGGATTTGTA AAGATAAGCA

61 CAGGCCCCTC GTTGCCCTGG CAACAGGCCC CGCCCCTCCA GCCTGGCCCG GGAAGGGGGG

121 ACAGCCCCTC CTCCGCCCTG CTGCCCTCCA CACCCCGCCC CTCCTTGCCT C

>hit1 PERT1 chr9:126122582-126122753 GATA known9:
1 CCCTCCCTGC CAGGTCGGCC CAGGCAGCCT GAGGTCAGGA GGGATTTGTA CTAAAGAATA

61 CAGGCCCCTC GTTGCCCTGG CAACAGGCCC CGCCCCTCCA GCCTGGCCCG GGAAGGGGGG

121 ACAGCCCCTC CTCCGCCCTG CTGCCCTCCA CACCCCGCCC CTCCTTGCCT C

>hit1 PERT2 chr9:126122582-126122753 GATA known9:
1 CCCTCCCTGC CAGGTCGGCC CAGGCAGCCT GAGGTCAGGA GGGATTTGTC GAGCATCTTA

61 CAGGCCCCTC GTTGCCCTGG CAACAGGCCC CGCCCCTCCA GCCTGGCCCG GGAAGGGGGG

121 ACAGCCCCTC CTCCGCCCTG CTGCCCTCCA CACCCCGCCC CTCCTTGCCT C

>hit1 PERT3 chr9:126122582-126122753 GATA known9:
1 CCCTCCCTGC CAGGTCGGCC CAGGCAGCCT GAGGTCAGGA GGGATTTGTC GTGAAAAAAA

61 CAGGCCCCTC GTTGCCCTGG CAACAGGCCC CGCCCCTCCA GCCTGGCCCG GGAAGGGGGG

121 ACAGCCCCTC CTCCGCCCTG CTGCCCTCCA CACCCCGCCC CTCCTTGCCT C

• Figure 2:

– In Figure 2A, we use the motif BCL6 M6136 1.02 on chromosome 1 as an example to illustrate
“Hit” and “Fail” sequences:
>WT region327 chr1:38736205-38736376:
1 CCCTGAGAAA CAACTCCCAG CGTAGACAAT GGGCAAAACA AAGGGCAGGA AGGAAAGGAA

61 GTGGTCTGTC AGCACCTGGG GCTGCTGTGG AGCGCAGACC CACCTGAGCT CTGCAGGTAG

121 GCAATCCTGG CTGGGATTCT GCAGACAGGC CTGGAGCAGA GCCCCCCCCA A

>hit1 PERT1 chr1:38736205-38736376 BCL6 M6136 1.02:
1 CCCTGAGAAA CAACTCCCAG CGTAGACAAT GACTAAAGAA TCTACAAATG ATCTCTCAAA

61 TTGGTCTGTC AGCACCTGGG GCTGCTGTGG AGCGCAGACC CACCTGAGCT CTGCAGGTAG

121 GCAATCCTGG CTGGGATTCT GCAGACAGGC CTGGAGCAGA GCCCCCCCCA A

>hit1 PERT2 chr1:38736205-38736376 BCL6 M6136 1.02:
1 CCCTGAGAAA CAACTCCCAG CGTAGACAAT GCGAGCATCT TTAAGAGTTA GAGTAGGCAA

61 ATGGTCTGTC AGCACCTGGG GCTGCTGTGG AGCGCAGACC CACCTGAGCT CTGCAGGTAG

121 GCAATCCTGG CTGGGATTCT GCAGACAGGC CTGGAGCAGA GCCCCCCCCA A

>hit1 PERT3 chr1:38736205-38736376 BCL6 M6136 1.02:
1 CCCTGAGAAA CAACTCCCAG CGTAGACAAT GAAAAAGGCG AGAAAGAAGG CGAAAGGGAG

61 CTGGTCTGTC AGCACCTGGG GCTGCTGTGG AGCGCAGACC CACCTGAGCT CTGCAGGTAG

121 GCAATCCTGG CTGGGATTCT GCAGACAGGC CTGGAGCAGA GCCCCCCCCA A
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Notes:
◦ In the WT sequence, the target motif is BCL6 M6136 1.02: 1

GGCAAAACAA AGGGCAGGAA GGAAAGGAAG

◦ In PERT1 and PERT2 sequences: BCL6 M6136 1.02 are removed respectively → both sequences
are annotated as “Hit”
◦PERT3: A variation of BCL6 M6136 1.02 is found at the same genomic position 1

AAAAAGGCGA GAAAGAAGGC GAAAGGGAGC → this sequence is annotated as “Fail”

– In Figure 2B, we use the motif BHLHE40 disc2 on chromosome chr14 as an example to illustrate
“Perturbed” and “Not perturbed” sequences:
>WT region462 chr14:77428196-77428367:
1 GGGCCGGAAG CCCCGCTGCG GCCCCAGCCC GCGGTTAGCC CCTGTTTGTC ATTTTGCAAA

61 TCTGGTCAAC CCACCTCCGG TGAAAACTCC CAACCTCACC CCAGGGGGCA ATGACTAATT

121 ACAAAACACA TTTTCTCTCG TTTTCGTCAA GCTCGCTGTC CCGCCCACAC A

>hit2diff 2 PERT1 chr14:77428196-77428367 BHLHE40 disc2:
1 GGGCCGGAAG CCCACTAAAG AATCTACAAA GCGGTTAGCC CCTGTTTGTC ATTTTGCAAA

61 TCTGGTCAAC CCACCTCCGG TGAAAACTCC CAACCTCACC CCAGGGGGCA ATGACTAATT

121 ACAAAACACA TTTTCTCTCG TTTTCGTCAA GCTCGCTGTC CCGCCCACAC A

>hit2diff 2 PERT2 chr14:77428196-77428367 BHLHE40 disc2:
1 GGGCCGGAAG CCCCGAGCAT CTTTAAGAGT GCGGTTAGCC CCTGTTTGTC ATTTTGCAAA

61 TCTGGTCAAC CCACCTCCGG TGAAAACTCC CAACCTCACC CCAGGGGGCA ATGACTAATT

121 ACAAAACACA TTTTCTCTCG TTTTCGTCAA GCTCGCTGTC CCGCCCACAC A

>hit2diff 2 PERT3 chr14:77428196-77428367 BHLHE40 disc2:
1 GGGCCGGAAG CCCGGCTCGA CGCCCGCCCC GCGGTTAGCC CCTGTTTGTC ATTTTGCAAA
61 TCTGGTCAAC CCACCTCCGG TGAAAACTCC CAACCTCACC CCAGGGGGCA ATGACTAATT

121 ACAAAACACA TTTTCTCTCG TTTTCGTCAA GCTCGCTGTC CCGCCCACAC A

Notes:
◦ The WT sequence contains two variations of the target motif BHLHE40 disc2:
1 CGCTGCGGCC CCAGCCC (bolded in the sequence),
1 CCGCTGCGGC CCCAGCC (small-sized in the sequence)

◦ In PERT1 and PERT2 sequences: BHLHE40 disc2 are removed respectively → both sequences
are annotated as “Perturbed”
◦ PERT3: Two variations of BHLHE40 disc2 are found:
1 CGGCTCGACG CCCGCCC (italic in the sequence)
1 GGCTCGACGC CCGCCCC (bolded in the sequence)

→ this sequence is annotated as “Not perturbed”

• Figure 3:

– In Figure 3A (Perturbation specificity), we used a sequence from PERT2 to illustrate the
perturbation specificity:
>WT region255 chr14:63163083-63163254:
1 CACCGTACTC ACAACTACAG TGGCCAATGA AACGCACTTG GAAGTCACTT GGGTTTCTGG
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61 CAGGACTCAC TGAAAGCTGA TCTGATCCTT TTGTCTTCT G C C C T G C C C C T T C T T C C T T T C

121 T GAAAGGCAA GTGTGGCCCT GCAGGTGGCC CATACTTCTT GCAACTACAG G

>hit1 PERT2 chr14:25412372-25412543 ATF5 M2977 1.02 :
1 CACCGTACTC ACAACTACAG TGGCCAATGA AACGCACTTG GAAGTCACTT GGGTTTCTGG

61 CAGGACTCAC TGAAAGCTGA TCTGATCCTT TTGTCTTCTG CCCTGCCCCC GAGCATCTTC
121 TGAAAGGCAA GTGTGGCCCT GCAGGTGGCC CATACTTCTT GCAACTACAG G

Notes:
◦ In the WT sequence, the target motif is ATF5 M2977 1.02:
1 TTCTTCCTTT

◦ Four motifs in the WT sequence are overlapped with the target motif:
△ NF4 known12 (small-sized in the sequence):
1 T G C C C T G C C C C T T C T T C C T T T C T G

△ VDR 3 (italic in the sequence):
1 C C T G C C C C T T C T T C C T T T C T

△ IRF disc4 (bolded in the sequence):
1 T G C C C T G C C C C T T

◦ In the perturbation sequence, two motifs are removed (NF4 known12 and VDR 3). However, a
variation of motif IRF disc4 is found:
1 TCTGCCCTGC CCCCG

– In Figure 3B (Newly introduced target motifs per sequence), we used a sequence from PERT3
to illustrate the newly introduced target motif:
>WT region350 chr10:100206539-100206710:
1 AGGACCGGAT CAACTCTCCG GGACCCCTAG GGACCCTACC TCACTTCCGG GAGGGTTGAA

61 GGGGGGCTCC GGAGGGAGGA TCGCCGCCCC CAGAGGGGAC AGCCCGGAGG CCCACGTACC

121 GGATCGCGGC GCGCACAGCG CCCCGCCTGC AGGAGCCCGG GCGCGCTTCC GGGTAGGACC

181 GCGTGACATT GCGTGAACCG A

>hit2diff 1 PERT3 chr10:100206539-100206710 BHLHE40 disc2:
1 AGGACCGGAT CAACTCTCCG GGACCCCTAG GGACCCTACC TCACTTCCGG GAGGGTTGAA

61 GGGGGGCTCC GGAGGGAGGA TCGCCGCCCC CAGAGGGGAC AGCCCGGAGG CCCACGTACC

121 GGATCGCGGC GCGCACAGCA TGAG C G G C C C C C G C G C C C G G GCGCGCTTCC GGGTAGGACC
181 GCGTGACATT GCGTGAACCG A

Notes:
◦ In the WT sequence, the target motif is BHLHE40 disc2: 1

CGCCCCGCCT GCAGGAG

◦ In the perturbation sequence, two variations of motif BHLHE40 disc2 is introduced:
1 G C G G C C C C C G C G C C C G G (small-sized in the sequence)
1 C C C G C G C C C G GGCGCGC (bold italic in the sequence)

In this study, the sequences of non-motifs are:
◦ non-motif PERT1:
1 ACTAAAGAAT CTACAAATGA TCTCTCAAAT

Page 9



◦ non-motif PERT2:
1 CGAGCATCTT TAAGAGTTAG AGTAGGCAAA

◦ non-motif-RAND PERT2:
1 ACTAAAGAAT CT

◦ non-motif-RAND PERT2:
1 CGAGCATCTT TA

The exclusion criteria of low-quality sequences
In the barcode association step of this study, a barcode was confidently assigned to a sequence if at
least 3 unique UMIs supported that assignment and at least 80% of the UMIs associated with that
barcode were aligned to the sequence. Barcodes that were not confidently assigned were considered
ambiguous and discarded from downstream analyses. The number of discarded sequences of each
perturbation approach: PERT1 = 35, PERT2 = 32, PERT3 = 2. These sequences are marked as
N/A in Figure 2A.

Page 10



Supplementary Figures and Tables
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Supplementary Figure 1: Performance of regression models. Comparison of the Log2FC of RAND
sequences among three perturbation approaches. The Log2FC values are separated by time point
before being compared among three perturbation approaches.
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Supplementary Figure 2: Performance of regression models. (A) The Kendall correlation co-
efficients of different regression models. Asterisks/ns indicate levels of statistical significance,
calculated by pairwise Wilcoxon rank sum tests (P-value < 0.05 *, < 0.01 **, < 0.001 ***, <
0.0001 ****; ns, non-significant). (B) A summary of the mean ± standard deviation values for
Kendall correlation coefficients of regression models.
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Supplementary Figure 3: Performance of regression models. (A) The Spearman correlation
coefficients of different regression models. Asterisks/ns indicate levels of statistical significance,
calculated by pairwise Wilcoxon rank sum tests (P-value < 0.05 *, < 0.01 **, < 0.001 ***, <
0.0001 ****; ns, non-significant). (B) A summary of the mean ± standard deviation values for
Spearman correlation coefficients of regression models.
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