

Supplementary Figure 2. Distribution of immune genes in ICP-LncCRCTs across all cancers, with different colors representing different cancers.

Supplementary Figure 3. The numbers of common IncRNAs are similar when five to 6~14 are changed.

Supplementary Figure 4. Degree distributions of IncRNA, ICP and IMM in the ICP-LncCRCTs network. P-values for the K-W test are at the upper left. Black boxes indicate the interquartile range of the data. White dots indicate the median. Black vertical lines indicate 95% confidence intervals. The width of the violin plot indicates the density of the data.

Supplementary Figure 5. The vast majority of ICP-related IncRNAs are associated with immune infiltration. The bar graph demonstrates the proportion of ICP-related IncRNAs associated with infiltration to all ICP-related IncRNAs in the five immune cell types.

Supplementary Figure 6. Comparison of immune infiltration correlation of common ICP-related IncRNAs with other IncRNAs. Different colors represent different types of cancer.

Supplementary Figure 7. Radar plots indicate the proportion of highly expressed ICP-related IncRNAs in different cells.

Supplementary Figure 8. Violins indicate the differential expression of MIR155HG in different types of immune cells in the GSE75688, GSE125449 and GSE103322 datasets. White dots indicate the median. Black vertical lines indicate 95% confidence intervals. The width of the violin plot indicates the density of the data.

Supplementary Figure 9. Violins indicate the differential expression of IncRNA-ICP relationship pairs between different cell types in different single-cell datasets. Black boxes indicate the interquartile range of the data. White dots indicate the median. Black vertical lines indicate 95% confidence intervals. The width of the violin plot indicates the density of the data.

Supplementary Figure 10. Common ICP-related IncRNAs clustered with MIR155HG show a close co-expression. Correlation is assessed using the Pearson correlation coefficient.

Supplementary Figure 11. Prognosis-related ICP-related IncRNAs. Shades of color indicate the strength of the correlation with prognosis.

Supplementary Figure 12. KM curves of each gene in ICP-LncCRCT MIR155HG/CXCL10/EBI3. Solid blue lines indicate the high expression group and solid yellow lines indicate the low expression group. Shaded areas indicate 95% confidence intervals. Asterisks on the curves indicate censoring points.

Supplementary Figure 13. Comparison of ICP-associated Inc with immuneassociated Inc in ImmLnc work. P-values are calculated using the hypergeometric test with a background gene cunt of 13953.

Select gene

Other gene

Supplementary Figure 14. The samples are divided into two groups according to tumor purity score, and their partial correlation is calculated, and the ANOVA is performed. Black boxes indicate the interquartile range of the data. White dots indicate the median. Black vertical lines indicate 95% confidence intervals. The width of the violin plot indicates the density of the data.

Select gene

Other gene

Supplementary Figure 15. Comparison of ICP-associated Inc with immuneassociated Inc in ImmLnc work. P-values are calculated using the hypergeometric test with a background gene cunt of 13953. Black boxes indicate the interquartile range of the data. White dots indicate the median. Black vertical lines indicate 95% confidence intervals. The width of the violin plot indicates the density of the data.

Supplementary Table 1. Dataset sources and sample size statistics							
TCGA	Detail	Num	GTEx	Num			
BLCA	Bladder Urothelial	430					
BRCA	Breast invasive carcinoma	1217					
CHOL	Cholangiocarcinoma	45					
COAD	Colon adenocarcinoma	512					
ESCA	Esophageal carcinoma	173					
GBM	Glioblastoma multiforme	173					
HNSC	Head and Neck squamous cell carcinoma	547					
KIRC	Kidney renal clear cell carcinoma	607					
LIHC	Liver hepatocellular carcinoma	424					
LUAD	Lung adenocarcinoma	585					
LUSC	Lung squamous cell carcinoma	550					
OV	Ovarian serous cystadenocarcinoma	379	Ovary	89			
PRAD	Pancreatic adenocarcinoma	551					
READ	Rectum adenocarcinoma	177					
SKCM	Skin Cutaneous Melanoma	472	Skin	234			
STAD	Stomach adenocarcinoma	407					
THCA	Thyroid carcinoma	569					
UCEC	Uterine Corpus Endometrial Carcinoma	583					

Gunnla w Table 1 Dataset sources and sample size statistics

Supplementary Table 2. Independent dataset for validation

Dataset	Detail	Source
GBM-325	Glioblastoma multiforme	CGGA
PRAD-FR	Pancreatic adenocarcinoma in France	ICGC

Supplementary Table 3. Single-cell datasets

Dataset	Cancer Type	Number of cell					
GSE127471	NSCLC	1443					
GSE117570	NSCLC	1931					
GSE69405	LUAD	208					
GSE75688	BRCA	563					
GSE118389	BRCA	1534					
GSE125449_set2	CHOL	4831					
GSE81861	COAD	590					
GSE103322	HNSC	5902					
GSE125449_set1	LIHC	5115					
GSE72056	SKCM	2840					

Supplementary Table 4. Dataset used for ICB response analysis

			•		
Cohort	Treatment	Sample	Responder	Non-responder	PMID
Gide et al. ¹	anti-CTLA-4+PD-1	32	21	11	30753825
Gide et al. ¹	anti-PD-1	41	19	22	30753825
Van Allen et al. ²	anti-CTLA-4	37	14	23	26359337
Riaz et alNaive ³	anti-PD-1	25	6	19	29033130
Riaz et alProg ³	anti-PD-1	26	4	22	29033130

Supplementary References

- 1 Gide, T. N., Quek, C., Menzies, A. M., et al. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 35, 238-255 e236. https://www.ncbi.nlm.nih.gov/pubmed/30753825 (2019).
- 2 Van Allen, E. M., Miao, D., Schilling, B., et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207-211. https://www.ncbi.nlm.nih.gov/pubmed/26359337 (2015).
- 3 Riaz, N., Havel, J. J., Makarov, V., et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 171, 934-949 e916. https://www.ncbi.nlm.nih.gov/pubmed/29033130 (2017).