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Abstract: In classic semi-quantitative metabolomics, metabolite intensities are affected by
biological factors and other unwanted variations. A systematic evaluation of the data
processing methods is crucial to identify adequate processing procedures for a given
experimental setup. Current comparative studies are mostly focused on peak area
data, but not on absolute concentrations. In this study, we evaluated data processing
methods to produce outputs that were most similar to the corresponding absolute
quantified data. We examined the data distribution characteristics, fold difference
patterns between two metabolites, and sample variance. We used two metabolomic
data sets from a retail milk study and a lupus nephritis cohort as test cases. When
studying the impact of data normalization, transformation, scaling, and combinations of
these methods, we found that the cross-contribution compensating multiple standard
normalization (ccmn) method, followed by square root data transformation, was most
appropriate for a well-controlled study such as the milk study data set. Regarding the
lupus nephritis cohort study, only ccmn normalization could slightly improve the data
quality of the noisy cohort. Since the assessment accounted for the resemblance
between processed data and the corresponding absolute quantified data, our results
denote a helpful guideline for processing metabolomic data sets within a similar
context (food and clinical metabolomics). Finally, we introduce Metabox 2.0, which
enables thorough analysis of metabolomic data, including data processing, biomarker
analysis, integrative analysis, and data interpretation. It was successfully used to
process and analyze the data in this study. An online web version is available at
http://metsysbio.com/metabox.
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Response to Reviewers: Reviewer reports:

Reviewer #1: Wanichthanarak et al. present a benchmarking study of different data
processing methods and their combinations. More than 90 method combinations which
cover different normalization, transformation and scaling methods were evaluated
using two metabolomics datasets. The performance of methods was evaluated
primarily based on the comparison to the absolute concentration data. A major
difference between this study and previous benchmarking studies is the utilization of
absolute concentration data as a reference point for method evaluation. The results
indicate that the cross-contribution compensating multiple standard normalization
combined with square root data transformation was most appropriate for well-
controlled studies. The authors also present a new version of Metabox (version 2) in
the manuscript. Overall, the manuscript is well-written, and the study is of interest.

Answer: Thank you very much for your positive comments on our manuscript. We
highly appreciate your time and consideration for our manuscript.

Minor comments:
1.     How  cross-contribution compensating multiple standard normalizations is
performed? Details should be described in the manuscript.

Answer: We thank the reviewer for this comment. Accordingly, we have clarified this
point in ‘Analysis workflow’ section as follows:
The ccmn normalization was performed using the normalize_input_data_byqc function
from the R package Metabox 2.0. The function was implemented from the CRMN R
package for normalization of metabolomics data [22]. Heptanoic methyl ester and
anthranilic acid C13 were used as an IS in study I and study II, respectively. Known
amounts of ISs were added to samples before sample preparation, so that metabolite
peak areas were normalized with respect to the responses of the ISs.

2.     What are the differences among Metabox 2.0, Metabox 1.0 and other commonly
used pipelines in metabolomics? It will be useful to add a table to show the features of
these different tools.

Answer: We thank the reviewer for this comment. We have provided comparison of
Metabox 2.0, Metabox 1.0, and other tools in a Table S8.

3.     The manuscript is mainly about the benchmarking of different data processing
methods. However, the title of the manuscript seems to indicate that the manuscript is
focused on the development of a new version of a data processing tool (Metabox 2.0).
To better align with the actual content, I'd like to suggest the authors change the title to
accurately reflect the primary focus of the manuscript.

Answer: We thank the reviewer for this comment. We have changed the title to ‘Data
processing solutions to render metabolomics more quantitative: case studies in food
and clinical metabolomics using Metabox 2.0’. We would like to keep the word
“Metabox” in there because we have been working to develop this tool since the last
version. This will keep current users updated on new features and attract other
potential users.

4.     Page 13 - Effects on data properties: "For each metabolite, we considered …"
should be "For each DP scheme, we considered …"?

Answer: We thank the reviewer for pointing out this point. This point has been fixed.
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Reviewer #2: The manuscript titled "Metabox 2.0: The data processing solution that
renders metabolomics more quantitative" provides a comprehensive evaluation of data
processing methods in the context of metabolomics, with a focus on achieving results
closely aligned with absolute concentrations. The authors address a crucial aspect in
metabolomics research, particularly in distinguishing appropriate processing
procedures for a given experimental setup.

While the manuscript provides a comprehensive analysis of the impact of different data
processing methods on semi-quantified metabolites, some critical questions need to be
addressed before publication to improve the clarity of the method and to prove the
robustness of the method.

1.    While PCA plots are informative, the interpretation could be enhanced by explicitly
stating the biological relevance of observed separations or clustering, such as
enrichment analysis. A more detailed discussion on the biological implications of the
observed patterns in the PCA plots would provide additional context.

Answer: We thank the reviewer for this comment. Although, biological implications are
not the main focus of this manuscript, we have improved this point in ‘Effects on
multivariate analysis’ section as follows:
Since C18:1 cis9 and C18:2n-6 were the important plant UFAs, a clustering of plant-
based milk products was observed. Meanwhile, the whole and lactose-free bovine milk
were clustered together because their FA profiles were similar (Figure S2). The key
distinction between these bovine milk types was the absence of lactose in lactose-free
bovine milk [18].

And in ‘Effects on multivariate analysis in the absence of highly abundant metabolites’
section as follows:
Even without the plant UFAs, the clustering of plant-based and bovine milk types
persisted. This was because of the differences in FA compositions as reported by
Jariyasopit et al., [18]. Both bovine milk types were more enriched with saturated FA
compared to plant-based milk products (Figure S2).

And in ‘Data processing effects on the semi-quantified metabolites in urine samples’
section as follows:
However, the clustering of different subject groups was largely due to tryptophan
(Figure S9A), This metabolite was reported as a potential biomarker for chronic kidney
diseases [17].

2.    While the study effectively compares various DP methods, a critical examination of
the performances, limitations, and assumptions of each method could further inform
the readers, in the form of tables or figures. Discussing the potential biases introduced
by certain methods or scenarios where specific methods might not be suitable would
contribute to a more balanced evaluation.

Answer: We thank the reviewer for this comment. We have included the principles,
equations, and limitations of the DP methods in Table S1.
In ‘Discussion’ section, we provided discussion on the performance of vast and level
scaling based on different characteristics of milk and urine data as follows:
The vast-scaled milk and level-scaled urine produced the most divergence among VIP
results from the CONC data. This is due to the fact that vast scaling is more suitable for
data sets with small induced fluctuations [11, 24], which is not the case in this study.
The FAs with a large variation were considered less important, while a low-deviated
metabolite became more significant after vast scaling. In contrast to level scaling, this
approach is suggested for a study that involves large relative responses of a biological
factor [11, 24]. This method failed when using the urine sample data because the
signal-to-noise ratio was low.

And we have discussed more on the performance of log transformation as follows:
Transformation by log family is a commonly used approach in omic data analysis. Its
transformation is stronger than cube and sqrt methods (i.e., transformed data is more
divergent from the original). The log transformation performs well for data with constant
relative standard deviation [24]. However, it is not always the case in metabolomics,
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where variance gets larger with an increasing intensity level. The log transformation
tends to reduce the large variance for large values, but it rather inflates the variance of
metabolites close to zero [50]. In this study, its performance was modest for both milk
and urine sample data sets (VIP similarity = 35-45%). By using the log transformation,
one needs to balance the trade-off between obtaining more discriminant metabolites
and gaining more false positives.

3.    The decision to exclude major metabolites is justified, but a more extensive
discussion on the potential consequences and limitations of this choice would add
depth. Addressing how excluding major metabolites may impact the overall
conclusions or generalizability of the findings is essential. In another word, how
robustness the method would be by only comparing quantified and semi-quantified
FAs?

Answer: We thank the reviewer for this comment. As previously discussed, metabolites
present in high concentrations might influence discriminant analysis. In our study, the
plant UFAs (C18:1 cis-9 and C18:2) have very high concentrations compared to the
other FAs. We, therefore, demonstrated this point by using data sets with C18:1 cis-9
and C18:2, and without both FAs. We have clarified this point in ‘Effects on multivariate
analysis in the absence of highly abundant metabolites’ section as follows:
The absolute amounts of C18:1 cis-9 and C18:2 were relatively high compared to
those of the other FAs (Figure S2). They were the main discriminants between almond
milk, soymilk, and plant-based and bovine milk in the PLS-DA (Figure 3). The previous
section showed a case study involving variables with strong relative responses of a
biological factor (milk types). We continued our evaluation of the milk data set,
excluding the major metabolites C18:1 cis-9 and C18:2. This was to represent a case
study without extreme relative responses.

And we have provided more discussion in ‘Discussion’ section as follows:
Class separation in multivariate models such as PCA, and PLS-DA is attributed to
metabolites with high loadings, which are usually proportional to the concentration or
magnitude of fold change [24, 50, 51]. These dominant sources of variation could be
informative markers or obscure dominators. We showed that, with the presence of very
high concentrations of plant UFAs (C18:1 cis-9 and C18:2), they were always the main
discriminants between almond milk, soymilk, and plant-based and bovine milk. Without
both plant UFAs, the second most abundant FAs (C16:0, C4:0, and C14:0) became the
key source of variation between plant-based and bovine milk types. However, vast,
range, and auto greatly minimized the importance of plant UFAs and resulted in a
higher loading for metabolites with low measured levels. Different transformation and
scaling methods adjust scale-size effects to a certain degree, allowing low-
concentration metabolites to be more important [24]. If a low-abundant metabolite
could reflect the variation of interest, it is worth considering the separation of very high-
abundant metabolites to enable exploration of low-concentration regions.

4.    The study focuses on the semi-quantitative analysis and its alignment with
quantitative data. However, a critical discussion on the inherent limitations and
potential biases introduced by semi-quantitative methods compared to absolute
quantification would be valuable.

Answer: We thank the reviewer for this comment. We have discussed these issues and
added them in ‘Discussion’ section.
In the field of metabolomics, quantitative analysis is important for understanding
cellular metabolism because the abundances of metabolites affect both free energy
and metabolic reactions [47]. Nonetheless, a number of obstacles, including the
absence of standardized methods and the accessibility of reference standards, lead
the majority of metabolomics research to be conducted using a semi-quantitative
analysis. Although semi-quantitative analysis does not provide the true value of a
metabolite’s concentration, it is still useful for the discovery of important metabolites in
many studies [3]. Often, the potential bias or technical errors introduced by this
approach can be removed or minimized through techniques in analytical chemistry and
bioinformatics [2, 7]. The major limitation of semi-quantitative compared to quantitative
analysis is that it is challenging to compare results across different studies, leading to
difficulty translating the potential metabolites into practice, especially in clinical
research [48].
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5.    The study could benefit from a sensitivity analysis, exploring how the results might
vary under different conditions or datasets. Examining the robustness of conclusions
by introducing existing pairs of quantified and semi-quantified dataset.

Answer: We thank the reviewer for this comment. We agree with this comment.
Unfortunately, most studies either provide quantitative or semi-quantitative data, there
is a very limited number of both semi-quantified data and its quantitative companion
publicly available for comparison. In this study, we used our own data sets, which were
recently published with rigorous method validation. We assure that the use of milk and
urine sample data sets could represent common scenarios in metabolomics, including
a data set for studying the relative responses of a biological factor and a data set with a
complex matrix, as stated in the Discussion section. We believe that our findings and
method evaluation strategies will be a helpful resource for the metabolomic community.
However, we are welcome any further comments or suggestions.

6.    English need to be significantly improved.

Answer: We thank the reviewer for this comment. The manuscript was proofread by
SAGE Author Services prior to submission. This revised manuscript was also
proofread by Dr. Jonathan Robinson as stated in ‘Acknowledgments’ section.

In summary, the study's approach to evaluating DP methods with respect to
quantitative data serves as a novel and valuable contribution to the field. However, the
generalizability and the robustness of Metabox 2.0 need to be answered before
publication.

Answer: Thank you very much for this comment. We appreciate your time and the time
you have to spend on this manuscript.
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Abstract 

 In classic semi-quantitative metabolomics, metabolite intensities are affected by biological 

factors and other unwanted variations. A systematic evaluation of the data processing 

methods is crucial to identify adequate processing procedures for a given experimental setup. 

Current comparative studies are mostly focused on peak area data, but not on absolute 

concentrations. In this study, we evaluated data processing methods to produce outputs that 

were most similar to the corresponding absolute quantified data. We examined the data 

distribution characteristics, fold difference patterns between two metabolites, and sample 

variance. We used two metabolomic data sets from a retail milk study and a lupus nephritis 

cohort as test cases. When studying the impact of data normalization, transformation, scaling, 

and combinations of these methods, we found that the cross-contribution compensating 

multiple standard normalization (ccmn) method, followed by square root data 

transformation, was most appropriate for a well-controlled study such as the milk study data 

set. Regarding the lupus nephritis cohort study, only ccmn normalization could slightly 

improve the data quality of the noisy cohort. Since the assessment accounted for the 

resemblance between processed data and the corresponding absolute quantified data, our 

results denote a helpful guideline for processing metabolomic data sets within a similar 

context (food and clinical metabolomics). Finally, we introduce Metabox 2.0, which enables 

thorough analysis of metabolomic data, including data processing, biomarker analysis, 
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integrative analysis, and data interpretation. It was successfully used to process and analyze 

the data in this study. An online web version is available at http://metsysbio.com/metabox. 

 

Keywords: Metabolomics, Quantitative analysis, Semi-quantitative analysis, Data processing, 

Normalization, Transformation, Scaling, R package 
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Introduction 

 Metabolomic analysis is widely accepted as a reliable technology for investigating 

biochemical activities within a cell or tissue of a living organism, and it has been used to 

address various questions in biology, drug metabolism, food and nutrition, natural products, 

and biomedicine [1-3]. Typically, the metabolite level in a sample can be determined 

quantitatively or semi-quantitatively. Metabolomic quantitative analysis (absolute 

quantification) aims to ensure the comparability of metabolite concentrations from 

measurements obtained at different times or locations. On the other hand, semi-quantitative 

analysis (relative quantification) determines the ratio of metabolite intensity from different 

samples [4, 5]. Therefore, the absolute concentrations of metabolites represent a benchmark 

data set that allows an unbiased comparison across different studies. Due to the limited 

availability of reference standards, most metabolomic studies are conducted in a semi-

quantitative manner. However, the inability to compare or correlate the results from different 

studies remains one of the major limitations of semi-quantitative analysis [6]. This is a primary 

roadblock in the development of metabolomics research. It is therefore essential to 

encourage the metabolomics community to increase focus on quantitative analyses.  

Data processing (DP) plays an important role in semi-quantitative and quantitative 

analyses; the procedures include imputation, normalization, transformation, scaling, and 

combinations thereof [7]. To date, numerous DP methods have been proposed in 

metabolomic studies [7-10], each with distinct advantages and pitfalls. Therefore, thorough 

method evaluations are crucial to pinpointing the best-performing process for a given 

metabolomic study. Many studies have evaluated and compared DP strategies based on 

different perspectives, including the normality structure of the data, changes in global 
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variations, reduction of intra-group distance, univariate or multivariate analysis, consistent 

ranks of putative markers, and classification accuracy [11-15]. DP methods are context-

dependent and not determined by a sole criterion.  

 Since quantitative analysis is not applicable in every metabolomic study, choosing proper 

DP schemes for polishing the peak areas is crucial to best estimate the true metabolite levels. 

This study aimed to employ another strategy to assess the performance of well-known DP 

methods. The most desirable DP scheme is the one that yields identical statistical results 

between the processed data and its quantitative companion. The results obtained constitute 

a useful and unbiased reference for DP recommendations. The impact of DP method on data 

distribution, fold-difference patterns between metabolite pairs, and sample variance need to 

be studied. The DP schemes investigated in this study covered internal standard (IS)-based 

normalization, transformation, scaling, transformation followed by scaling, and 

combinations. We used two metabolomic data sets representing different types of data: data 

relating to a food product with definitive markers and clinical metabolomic data with 

indistinct variations.  

 Lastly, we introduced an updated version of the R package Metabox [16] to consolidate a 

state-of-the-art set of methods for metabolomic analysis from several R packages. Metabox 

2.0 enables the in-depth analysis of metabolomic data covering the DP steps, biomarker 

identification, integrative analysis of multiple data types, and functional interpretation. The 

software is assembled with ready-to-use R functions that are highly flexible for programming 

tasks and have broad application potential. This tool was used for all processing steps and 

analyses in this study. 

 

Materials and methods 
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Metabolomic data sets 

 Quantitative and semi-quantitative metabolomic data were obtained from our recent 

studies [17, 18]. The first data set (study I) included the nutrient metabolite composition of 

various retail milk samples purchased in Thailand [18]. In this study, the analysis was focused 

on 16 fatty acids (FAs) from four milk types: whole bovine milk (n = 13), bovine lactose-free 

milk (n = 6), soymilk (n = 7), and almond milk (n = 3). Each sample was analyzed in triplicate. 

The data set contained ten quality control (QC) samples pooled from a mixture of all the milk 

samples. The FAs were acquired using gas chromatography coupled to a time-of-flight mass 

spectrometer (GC-TOFMS, Pegasus BT, Leco Corp., St.Joseph, MI).  

 The second data set (study II) contained information on urine samples collected from 

Ramathibodi Hospital, Thailand [17]. This was done with approval from the Faculty of 

Medicine Ethics Committee, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. 

The urine samples were acquired from 53 healthy subjects (N) and 63 (LN) patients with lupus 

nephritis. The metabolites of the kynurenine pathway (KP) were measured using an ultra-

performance liquid chromatography platform coupled to a Xevo TQ-S tandem mass 

spectrometer (LC-MS/MS) and interfaced by an electrospray ionization source (Waters, MA).  

 The mass spectrometry (MS) data from both studies were pre-processed and quantified as 

described in previous publications [17, 18]. The concentration of each FA was normalized by 

its molecular weight (µMol) allowing quantitative comparison across studies. The 

concentration of KP metabolites was normalized by the concentration of urinary creatinine. 

This follows the standard practice of adjusting the concentration of a metabolite to creatinine 

filtration in nephrotic syndromes [19, 20]. Additionally, missing value imputation was 

performed on the milk data set before data analysis. A minimum value of each metabolite 

was imputed to a metabolite with missing values higher than 30 % group-wise. This step was 



 
 

7 

needed because of the true-negative absence of metabolites under specific conditions, as 

defined by concentrations that were below the detection limit [21]. If applicable, the non-

detected metabolites at random (the percentage of non-detected metabolites <30 %) were 

then imputed by the random forest (RF) method. 

 

Data processing schemes 

 This study evaluated the DP schemes commonly applied in a general metabolomic 

workflow [7]. This included normalization, transformation, scaling, and their combinations. 

 

 Cross-contribution compensating multiple standard normalization 

 Cross-contribution compensating multiple standard normalization (ccmn) is an IS-based 

normalization in which metabolite abundances are estimated proportionately to a known IS 

quantity [22]. Additionally, it considers systematic error and study factors as independent 

sources of variation on ISs; important information is unaffected by normalization [22]. In 

contrast to a closely related method, such as normalization using an optimal selection of 

multiple internal standards (nomis), this method removes unwanted systematic variation 

based on the variability of single or multiple ISs [23]. 

 

 Data transformation 

 Transformation aims to reduce data skewness, fix heteroscedasticity, and turn 

multiplicative metabolite relationships into additive relationships [24]. Six transformation 

methods were assessed in this study, including cube root (cube), logarithm (log2 and log10), 

generalized log (glog2 and glog10), and square root (sqrt) transformations (Table S1). 

Transformations can reduce the differences between large and small values, whereby large 
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values are scaled down much more than small values [24]. These transformations lead to a 

depletion in right skewness, which is an observed characteristic of omics data such as 

metabolomic and transcriptomic data [25]. The cube and glog transformations accept zero 

and negative values, whereas the sqrt transformation can only manage zero values. In 

contrast, log transformations can only handle non-zero and non-negative values. The glog 

transforms the data using a specific parameter for each data set [26]. Additionally, it focuses 

on stabilizing data variance, i.e., keeping the variance constant and independent from the 

mean [26, 27]. 

 

 Data scaling 

 Scaling reduces the fold difference between metabolite concentrations based on scaling 

factors [24]. This is unlike the pseudo-scaling effect of transformations. Here, a scaling factor 

is determined explicitly for a particular metabolite. This study compared six scaling methods: 

auto, level, pareto, power, range, and vast scaling (Table S1). The auto, pareto, range, and 

vast scaling estimates are scaling factors that are based on data dispersion. In contrast, level 

scaling is based on the mean value [24]. Power scaling performs an average subtraction in 

combination with the sqrt transformation [28]. 

 

Analysis workflow 

 Different DP schemes were investigated using study I [18] and study II [17] data sets that 

comprised both quantitative (the absolute levels) and semi-quantitative (the peak areas of 

metabolites) results. Key DP schemes were performed to evaluate their effect on the peak 

area data, which included (A) no processing (raw area), (B) transformation, (C) scaling, (D) 

transformation followed by scaling, (E) IS-based normalization by the ccmn method, and (F) 
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ccmn normalization combined with transformation, scaling, or a combination of both (Figure 

1). The ccmn normalization was performed using the normalize_input_data_byqc function 

from the R package Metabox 2.0 (RRID: SCR_024443). The function was implemented from 

the CRMN R package for normalization of metabolomics data [22]. Heptanoic methyl ester 

and anthranilic acid C13 were used as an IS in study I and study II, respectively. Known amounts 

of ISs were added to samples before sample preparation, so that metabolite peak areas were 

normalized with respect to the responses of the ISs. 

 In total, 97 processed data sets were analyzed, and unprocessed data was considered. We 

evaluated the influence of the DP methods and their combinations on different aspects, 

including normality, skewness, coefficient of variation (CV), the trend of fold differences, 

sample heterogeneity, and multivariate analysis outputs.  

 The normality test and measures of skewness were computed by the Shapiro-Wilk 

normality test [29] and the skewness function of the e1071 R package [30], respectively. A p-

value > 0.05 indicates a normal distribution, and the symmetric skewness ranges from −0.5 to 

0.5. The CV for a metabolite is the ratio of the standard deviation to the mean within a group. 

The fold and directional differences of a metabolite from a reference were calculated. Since 

most DP methods strongly affect highly abundant metabolites, the metabolite with the 

highest level was used as a reference point. An across-group relative log abundance (RLA) plot 

was applied to explore the grouping structure, outliers, and variation within each group. Each 

metabolite was standardized by subtracting the median from across all groups [31]. A 

principal component analysis (PCA) was performed to visualize the major variations in the 

data regarding the biology of interest. 

 Moreover, the effects of various DP methods on the partial least squares-discriminant 

analysis (PLS-DA) in comparison to the absolute concentration (CONC) data were examined. 
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The variable importance in projection (VIP) of a metabolite indicates its degree of contribution 

to the variance in the PLS model [32]. The similarity between the resulting VIPs from the CONC 

data, raw area data, and processed data was computed. The similarity between the two 

approaches, 𝑥  and 𝑦 , was calculated using Euclidean distance according to the following 

equation (1):           

             

 (1) 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑥, 𝑦) =  1 − √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖
 

 For method 𝑥 , we denoted the VIP score of the 𝑖𝑡ℎ  metabolite as 𝑥𝑖 ; where 𝑖 =

1, 2, … , 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠 (𝑛) . The same definition was applied to method 𝑦 . 

Hierarchical clustering of the VIP scores was performed to infer the grouping of the DP 

schemes. The ComplexHeatmap R package [33] was used for clustering analysis. All DP tasks, 

PCA, PLS-DA, and plot generation, were performed using the R package Metabox 2.0 DP and 

analysis pipeline. 

 

Implementation of Metabox 2.0 

 Metabox 2.0 is a standard R package developed from R version 4.2.0, providing a 

substantial update to the first Metabox version [16]. An extensive collection of R packages for 

metabolomic analysis is included (Table S1). We enclosed the sequences of DP and analysis 

tasks in R functions. A graphical user interface (GUI) is implemented with the R package Shiny 

[34]. An overview of the analysis pipelines is illustrated in Figure S1. 

 

 Data processing and analysis pipeline 
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 This analysis pipeline supports DP and consecutive data analyses, including essential 

statistical analyses and biomarker discovery (Figure S1A). The DP module includes all major 

metabolomic DP tasks, starting with missing value imputation, normalization, transformation, 

and data scaling. A collection of commonly used methods is integrated into Metabox 2.0 

(Table S1). Three types of imputation methods are provided, including single value, local 

similarity, and global structure approaches [21]. The normalization module covers IS-, QC 

sample- and data-based approaches, which aim to eliminate unwanted errors while 

maintaining crucial biological variation [8, 31]. IS-based and QC sample-based normalization 

rely on spike-in ISs and the intensity of QC samples, respectively [8]. Meanwhile, the data-

driven normalization summarizes a sample-specific factor for the adjustment [31]. The 

transformation methods for decreasing right skewness and scaling methods based on either 

data dispersion or mean value are included. When performing both data transformations and 

scaling, the differences in magnitude between large and small metabolite values are adjusted, 

so that those metabolites are comparable. In total, there are 10 imputations, three IS-based 

normalizations, two QC sample-based normalizations, 12 data-driven normalizations, six 

transformations, and six scaling methods. 

 The statistical analysis module comes with a collection of univariate analysis methods. 

These are statistical hypothesis testing methods and post hoc tests covering parametric and 

non-parametric tests, a pairwise correlation analysis, and linear mixed modeling from the 

lmm2met package [7] (Table S2). For multivariate analysis, both unsupervised and supervised 

multivariate analyses are included, incorporating PCA, PLS-DA, and orthogonal PLS-DA (OPLS-

DA) implemented from the ropls package [35]. 

 The biomarker analysis module supports regression and classification analyses using the 

PLS or random forest (RF) approach. We incorporate recursive variable elimination within a 
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repeated double cross-validation (repCV) approach from the MUVR package [36] to identify 

informative metabolites. The algorithm addresses prediction accuracy, model overfitting, and 

optimally relevant metabolites. 

 

 Data integration pipeline 

 Metabox 2.0 supports the joint analysis of multiple data types, such as omics and other 

phenotypic data (Figure S1B). The multi-block PLS-DA (MBPLSDA) pipeline from the mbpls 

package [37] is assimilated into the integrative analysis module, focusing on the multivariate 

modeling of concatenated data blocks by considering the specific data structure of each block. 

This method allows the estimation of both variable and block importance. 

 

 Data interpretation pipeline 

 This pipeline includes well-established methods for functional interpretation in the context 

of metabolic pathways and chemical classes (Figure S1C). The set enrichment analysis and 

overrepresentation analysis can be performed with a comprehensive collection of methods 

from the piano package [38], as implemented in Metabox 1.0 [16]. Moreover, integrated 

pathway overrepresentation analysis uses Fisher's method to combine p-value outputs from 

the hypergeometric test. The KEGG database [39] is utilized for pathway information, 

whereas chemical classes of metabolites are based on the HMDB chemical taxonomy [40]. 

 

Results 

The effects of data processing on the semi-quantified fatty acids in milk samples 
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 All 16 FAs were quantified in whole and lactose-free bovine milk (Figure S2). However, 

some FAs, including C10:0 and C14:1, were not detected in the plant-based milk products 

(soymilk and almond milk). C6:0, C14:0, C22:0, and C24:0 were not present in almond milk. 

C8:0, C12:0, C15:0, C16:1, and C17:0 were detectable in soymilk, but absent in almond milk. 

These metabolites were imputed by their minimum value prior to DP. As reported by 

Jariyasopit et al., C16:0 (palmitic acid) and two unsaturated FAs (UFAs) [C18:1 cis-9 (oleic acid) 

and C18:2n-6 or C18:2 (linoleic acid)] were at their highest concentrations (mg/L) in bovine 

milk, almond milk, and soymilk, respectively [18]. The amount of C18:1 cis9 in almond milk 

was markedly high (14230.98 ± 4057.15 µMol). 

 

 Effects on data properties 

 Initially, we explored the effects of each DP scheme on the basic properties of the milk 

data set. For each DP scheme, we considered the number of normally distributed, positively 

skewed, and negatively skewed metabolites and the CV in each sample group (Table S3). All 

FAs in the QC samples were normally and symmetrically distributed for the CONC data. Most 

FAs in bovine milk and soymilk were right-skewed (i.e., a few FAs were highly abundant), while 

the FAs in bovine lactose-free milk were mostly normally distributed. The largest and smallest 

CVs were present in soymilk and almond milk, respectively. Similar aspects were observed in 

the peak area data. The PCA plot showed that the ccmn method was the main factor 

contributing to separation among the DP schemes, with and without this normalization 

(Figure 2A). The number of normally distributed metabolites in the almond milk dramatically 

increased after normalization, and most FAs became slightly negatively skewed. The basic 

properties of the quantified and raw area data were closer to those of the unnormalized data 

sets. Each DP scheme resulted in an apparent cluster. The transformations increased the 
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number of normally distributed metabolites in bovine milk. The area processed by the scaling 

scheme was separated from those altered by the transform+scale and the transformation, 

with and without normalization. All scaling methods returned similar data properties, with 

power scaling being slightly different. After power scaling, the area data had the same data 

properties as those after sqrt+auto, level, pareto, range, or vast scaling (Figure 2B). All glog- 

and log-based transformations produced similar data properties. However, the cube, sqrt, 

and log-based transformations were attributed to slightly different data properties, 

particularly the distribution of metabolites in bovine milk. As such, we noticed a separation 

among the cube, sqrt, and both log-based transformation schemes.  

 

 Effects on multivariate analysis  

 PLS-DA was performed on 97 processed data sets, the absolute FA concentration and peak 

area data sets. Cluster analysis of the resulting VIPs revealed grouping of the CONC data, raw 

area data, ccmn, ccmn+pareto, ccmn+power, and ccmn+sqrt processed data (Figure S3). 

These DP schemes formed a separate branch from the DP, involving log-based 

transformations, auto, range, or vast scaling. The VIP scores of the data that had undergone 

ccmn+power and ccmn+sqrt processing were identical. Moreover, they were similar to the 

VIPs from the quantified data (Figure 3A and Table S4, similarity = 80.32%). The VIPs from the 

unprocessed area data were approximately 20% different from the original CONC data. In 

contrast, when using the glog-, log-, auto-, range-, and vast-based DP methods, the VIP 

similarity was reduced to below 40%. Any DP counting in the vast method led to a low 

similarity of approximately 10% or less. The ccmn+cube+vast was the least alike (similarity = 

4.16%).  
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 C18:1 cis9 and C18:2n-6, the important plant UFAs [41], were the discriminant metabolites 

(VIP  1.5) obtained from the PLS-DA on the CONC and raw area data (Figure S3). Moreover, 

both UFAs were identified from the data processed by sqrt or cube transformation, level, 

pareto, or power scaling. VIP scores increased slightly when ccmn normalization was applied 

together with sqrt, cube, pareto, or power. Combining these transformation and scaling 

methods led to lower VIPs, particularly the VIP of C18:2. C16:0 was an additional discriminant 

for the plant UFAs in the ccmn-normalized data. The DP schemes involving vast scaling failed 

to identify C18:1 cis9 and C18:2n-6, as their VIPs were less than 1.0. The number of FAs with 

VIP >1.0 was increased by glog- or log-based transformation, yet it diminished the importance 

of the plant UFAs in the PLS model. 

 The PCA plots showed a clear partitioning of the almond milk, soymilk, and bovine milk, 

except for the ccmn+cube+vast processed data (Figure 3B). This DP task mitigated the 

variance between soymilk and almond milk. Since C18:1 cis9 and C18:2n-6 were the 

important plant UFAs, a clustering of plant-based milk products was observed. Meanwhile, 

the whole and lactose-free bovine milk were clustered together because their FA profiles 

were similar (Figure S2). The key distinction between these bovine milk types was the absence 

of lactose in lactose-free bovine milk [18]. The variability explained by the 1st and 2nd principal 

components (PCs) was 99.32%, 97.87%, 92.35%, and 84.05% for the CONC, raw area, 

ccmn+sqrt, and ccmn+cube+vast processed data, respectively. Though the observed variation 

of ccmn+sqrt was less than that of the raw area data, the original structure of variation was 

more preserved with ccmn+sqrt processing. The milk data set possessed intragroup 

variability, which was still visible after processing with ccmn+sqrt (Figure S4A). However, this 

within-group variation was inflated, and the plant-based samples displayed a right-skewed 

distribution after applying ccmn+cube+vast.  
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 For the CONC and peak area data, the mean level of the CV (mCV) in each milk type was as 

follows: soymilk > bovine milk > bovine lactose-free milk > QC sample > almond milk (Figure 

S4B). The ccmn+sqrt method could lessen metabolite dispersion, in contrast to the 

ccmn+cube+vast. In sequential order, it enlarged the mCV of the QC, bovine lactose-free milk, 

bovine milk, soymilk, and almond milk samples. In addition, the trend of the fold differences 

between C18:1 cis-9 and the other FAs in all milk types was substantially altered by 

ccmn+cube+vast (Figure S4C). Specifically, the C18:1 cis-9 abundance became less than the 

FAs C8:0, C10:0, C14:1, C15:0, C16:1, and C17:0 in both bovine milk types, as opposed to the 

original CONC data. The amount of C18:1 cis-9 was higher than that of C16:0 in the bovine 

milk samples and lower in the almond milk. In the case of the ccmn+sqrt method, overall fold 

differences were maintained and comparable to the original CONC data. 

 

 Effects on multivariate analysis in the absence of highly abundant metabolites 

 The absolute amounts of C18:1 cis-9 and C18:2 were relatively high compared to those of 

the other FAs (Figure S2). They were the main discriminants between almond milk, soymilk, 

and plant-based and bovine milk in the PLS-DA (Figure 3). The previous section showed a case 

study involving variables with strong relative responses of a biological factor (milk types). We 

continued our evaluation of the milk data set, excluding the major metabolites C18:1 cis-9 

and C18:2. This was to represent a case study without extreme relative responses. 

 From VIP clustering, the CONC, raw area, ccmn-normalized, and pareto-scaled data were 

grouped and formed the closest linkage to a cluster containing either the cube, sqrt, or power 

processing alone or in combination with ccmn normalization (Figure S5). Elements in this 

group included ccmn+pareto, with/without cube or sqrt transformation, and 

ccmn+sqrt+power. These DP schemes formed a distant branch from the DP tasks embracing 
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auto, level, range, vast scaling, or log-based transformations. In particular, the percentage of 

VIP similarity was less than 40%. The VIPs from glog2+vast processed data were the most 

dissimilar (Table S5, similarity = 31.54%), and only C24:0 was the discriminative metabolite 

from this method (Figure S6A). The most similar VIP scores were the VIP scores of the peak 

area (similarity = 83.28%). Whereas, the VIPs from the data processed by the ccmn+power or 

ccmn+sqrt processing were slightly less identical (similarity = 80.35%). The discriminant 

metabolites C16:0 and C4:0 were commonly observed from the CONC, area, and ccmn+sqrt 

processed data. C14:0 was the additional discriminant for the CONC and ccmn+sqrt processed 

data, while C18:0 was identified for the peak area data. 

 The apparent separation between plant-based and bovine milk was observed from the PCA 

plots, except for the area and glog2+vast processed data (Figure S6B). Even without the plant 

UFAs, the clustering of plant-based and bovine milk types persisted. This was because of the 

differences in FA compositions as reported by Jariyasopit et al., [18]. Both bovine milk types 

were more enriched with saturated FA compared to plant-based milk products (Figure S2). 

The data structure of the CONC data was more preserved in the ccmn+sqrt processed data 

set. Meanwhile, the PCA plots of the area data with (Figure 3B) and without the plant UFAs 

(Figure S6B) were comparable. The cumulative variance explained by PC1 and PC2 for the 

CONC, area, ccmn+sqrt, and glog2+vast processed data was 97.43%, 99.47%, 97.40%, and 

83.56%, respectively. Although we noticed a clustering of plant and bovine milk types by the 

glog2+vast method, high variance was introduced within the QC and bovine milk samples. 

Accordingly, we detected a substantial impact on the data distribution, outliers (Figure S6C) 

and metabolite deviation from its mean (Figure S6D). In contrast to ccmn+sqrt, fold difference 

tendencies between C16:0 and the other FAs, in all milk types were markedly influenced after 

applying glog2+vast (Figure S6E). 
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Data processing effects on the semi-quantified metabolites in urine samples 

 Similar aspects were performed to evaluate and compare the effects of the DP methods 

on eight KP metabolites in urine samples (study II). For CONC and raw area data, almost all 

metabolites were positively skewed, and the mCV of the LN samples was slightly higher than 

that of the normal samples (Table S6). The basic properties of the quantified and ccmn-

normalized data were closer than those of the other data sets. However, the combined ccmn 

with transformation, or transform+scale, was not the major factor influencing the separation, 

as observed in study I (Figure S7). When applying the transformation, scaling, or 

transform+scale schemes, the DP effect on the urine data properties appeared consistent 

with the milk sample data. 

 We observed clustering of VIPs from the sqrt, pareto, power, ccmn+cube, ccmn+sqrt, 

ccmn+pareto, ccmn+power, and area data (Figure S8). They formed a distinct branch from 

the DP schemes, including glog, log, auto, level, range, and vast. Meanwhile, the VIPs from 

the CONC and the ccmn-normalized data were distinguished from those of the other 

methods. The VIP scores from the unprocessed peak areas were 55.53%, identical to the 

CONC data (Table S7). The VIP scores of the ccmn-normalized data were the closest to those 

of the quantified data (Figure S9A, similarity = 62.36%). In contrast, the ccmn+level DP led to 

the least similar VIPs (similarity = 41.62%). Tryptophan was the discriminant metabolite (VIP 

 1.2) observed in the CONC data, raw areas, and ccmn processed data. Kynurenic acid was 

identified as an important metabolite in both the CONC and the ccmn-normalized data. 

Picolinic acid (VIP >1.6) was the discriminative metabolite observed in the data sets that 

applied the DP glog, log, auto, level, range, or vast methods (Figure S8). From the CONC data, 
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this metabolite possessed a low VIP weight (VIP = 0.03). In contrast, 3−hydroxykynurenine 

was only reported from the CONC data (VIP = 1.52) and was absent in the other data sets.  

 The urine samples from healthy subjects and LN patients mainly overlapped (Figure S9B) 

and showed high within-group variation (Figure S9C). However, the clustering of different 

subject groups was largely due to tryptophan (Figure S9A), This metabolite was reported as a 

potential biomarker for chronic kidney diseases [17]. The ccmn method improved the 

explained variance in the 1st PC (PC1 = 81.02%) compared to the raw area data (PC1 = 74.78%). 

In contrast, when using the ccmn+level method, we observed large influences on the sample 

distribution, metabolite variation, and fold differences between tryptophan and the other 

metabolites (Figure S9C–E). When using this method, the PC1 and cumulative variance were 

41.77% and 61.56%, respectively. 

 

IS-based normalization performance is dependent on the type of biological factors 

 Two commonly used IS-based normalization methods, ccmn and nomis, were further 

evaluated using milk and urine data sets. The milk data set has a definitive biological effect, 

whereas the urine samples comprise many unknown individual variations. In this assent, the 

informative variation of milk samples was retained by the ccmn method, unlike the nomis 

method (Figure 4A). The variances explained by the 1st and 2nd PCs were 95.97% and 92.20% 

for the ccmn- and nomis-normalized data, respectively. The 1st PC presented the differences 

between almond milk and soymilk for the ccmn-processed data. This aspect was invisible in 

the nomis-normalized data. In the case of the urine data set, we observed that the ccmn 

method performed similarly to the nomis method (Figure 4B). The groups of healthy and LN 

samples were slightly separated. Within the LN group, variation was slightly reduced after 

normalization. Subject-specific variations and the presence of outliers are common in clinical 
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metabolomics. Moreover, the ccmn method only assumes linear relationships between 

measured metabolites and experimental factors, which is not always the case in 

metabolomics [22]. Therefore, the metabolite and IS interferences in the urine matrix may 

not be thoroughly corrected by the ccmn method. 

 

Metabox 2.0: enhancing metabolomic data analysis, integration, and interpretation 

 Metabox 2.0 is implemented as a standard R package. The current version has undergone 

significant redesign and updates since Metabox 1.0 [16], highlighting the analysis of 

metabolomic data from DP steps to biomarker identification and allowing the joint analysis 

of multiple data types, such as LC- and GC-MS metabolomes, metabolomic and transcriptomic 

data sets, or metabolomic and clinical data. Three analysis pipelines are organized as separate 

modules (Figure 5 and Figure S1). A series of scripts for a particular task is encoded in a ready-

to-use R function, allowing the implementation of customized workflows. The key features of 

this version include: 1) a collection of state-of-the-art methods for end-to-end metabolomic 

data analysis; 2) normalization methods for cohort- and laboratory-scale metabolomic 

studies; 3) univariate analysis for one or multiple factors; 4) multivariate modeling for both 

classification and regression; 5) machine learning (ML)-based biomarker analysis with 

minimizing model overfitting and false-positive rates; 6) cross-domain data integration; 7) 

data interpretation in the context of metabolic pathways and chemical classes; 8) various 

kinds of plots for data exploration; and 9) an intuitive GUI for bench biologists (Figure 5). This 

GUI version supports typical analysis and allows broader usability as a hosted web application 

on the server. The integrative exploration of multi-omic levels in biological networks is 

excluded in this version because it requires the pre-installation of a specific graph database 

system. 
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 For metabolomic analysis, this tool serves as an alternative to closely related software such 

as MetaboAnalyst [42], iMAP [43], NOREVA [28], XCMS Online [44], MZmine 3 [45], and OUKS 

[46]. Comparison of the main features with other tools are summarized in Table S8. Metabox 

2.0 covers more DP methods, and is equipped with a tool for integrative analysis of omic and 

non-omic data. It is an open-source R package freely accessible from our Github [47] under 

the GPL-3 license. Furthermore, an online web version is publicly available from our website 

[48]. 

 

Discussion 

 In the field of metabolomics, quantitative analysis is important for understanding cellular 

metabolism because the abundances of metabolites affect both free energy and metabolic 

reactions [49]. Nonetheless, a number of obstacles, including the absence of standardized 

methods and the accessibility of reference standards, lead the majority of metabolomics 

research to be conducted using a semi-quantitative analysis. Although semi-quantitative 

analysis does not provide the true value of a metabolite’s concentration, it is still useful for 

the discovery of important metabolites in many studies [3]. Often, the potential bias or 

technical errors introduced by this approach can be removed or minimized through 

techniques in analytical chemistry and bioinformatics [2, 7]. The major limitation of semi-

quantitative compared to quantitative analysis is that it is challenging to compare results 

across different studies, leading to difficulty translating the potential metabolites into 

practice, especially in clinical research [50]. 

 Quantitative analysis is ideal in metabolomics research; however, the absolute 

quantification of all metabolites can be challenging. A good DP scheme for raw data 
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processing is essential to improve semi-quantitative data such that it resembles quantitative 

data. In this study, we characterized and compared the semi-quantified metabolites after 

different DP treatments to their quantified counterparts. We covered three common 

scenarios in metabolomics, including a data set with apparent markers, a data set with a 

known biological effect, and a data set with obscure variations.  

 The results consistently indicated that normalization and transformation had an impact on 

the data distribution, skewness, and CV, while scaling only influenced the CV of the data. 

Apart from one exception, power scaling behaved like the sqrt+scale scheme. This is because 

the method relies on the square root of metabolite intensity along with a mean subtraction 

[28]. However, these data properties could not directly reflect the final results of statistical 

analyses, e.g., how many significant metabolites are identified or how much class 

discrimination is improved by a specific DP method. An understanding of data distribution 

could guide the choice of subsequent statistical analysis. The change in the CV is an indicator 

of DP performance in reducing group variation [51]. 

 The use of milk and urine sample data sets represented two sides of the story. As a food 

product, the milk samples were produced in well-controlled environments, while the urine 

study data was not. Even though there were strict inclusion and exclusion criteria in the study 

cohort. Inter-individual variations, e.g., dietary, genetic, and demographic background, were 

the key unwanted variations in clinical metabolomics [7]. Accordingly, we observed that the 

PLS-DA result from the milk area data resembled its CONC data more than that of the urine 

study data. The raw peak areas, excluding the two plant UFAs, resulted in the most similar 

result to the CONC data without any processing task. Due to the numerous unknown sample 

matrices, the ccmn method performed similarly to nomis normalization in the urine data set. 

Overall, ccmn normalization improved the quality of semi-quantitative data in every case in 



 
 

23 

our study and is therefore recommended. Furthermore, the ccmn method can segregate IS 

interference because of the correlation with the factors under study [22, 31]. As such, it can 

avoid the risk of losing informative variations in the nomis.  

 The normalization process aims to remove systematic errors and unrelated biological 

variations (if applicable). However, it cannot scale for magnitude differences among 

metabolites. When considering the milk sample data set, which included plant UFAs, the 

ccmn+sqrt method was suggested. This was because the data set had a distinct biological 

factor, and the sqrt transformation had the least effect on the variance structure compared 

to the other transformation methods. In descending order, the effect size ranged from the 

log family, cube transformation, and sqrt method. The performance of the scaling methods, 

power, and pareto, was relatively comparable and had a smaller effect on the data variance 

than the other methods. The vast-scaled milk and level-scaled urine produced the most 

divergence among VIP results from the CONC data. This is due to the fact that vast scaling is 

more suitable for data sets with small induced fluctuations [11, 24], which is not the case in 

this study. The FAs with a large variation were considered less important, while a low-deviated 

metabolite became more significant after vast scaling. In contrast to level scaling, this 

approach is suggested for a study that involves large relative responses of a biological factor 

[11, 24]. This method failed when using the urine sample data because the signal-to-noise 

ratio was low. Transformation by log family is a commonly used approach in omic data 

analysis. Its transformation is stronger than cube and sqrt methods (i.e., transformed data is 

more divergent from the original). The log transformation performs well for data with 

constant relative standard deviation [24]. However, it is not always the case in metabolomics, 

where variance gets larger with an increasing intensity level. The log transformation tends to 

reduce the large variance for large values, but it rather inflates the variance of metabolites 
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close to zero [52]. In this study, its performance was modest for both milk and urine sample 

data sets (VIP similarity = 35-45%). By using the log transformation, one needs to balance the 

trade-off between obtaining more discriminant metabolites and gaining more false positives. 

 Class separation in multivariate models such as PCA, and PLS-DA is attributed to 

metabolites with high loadings, which are usually proportional to the concentration or 

magnitude of fold change [24, 52, 53]. These dominant sources of variation could be 

informative markers or obscure dominators. We showed that, with the presence of very high 

concentrations of plant UFAs (C18:1 cis-9 and C18:2), they were always the main 

discriminants between almond milk, soymilk, and plant-based and bovine milk. Without both 

plant UFAs, the second most abundant FAs (C16:0, C4:0, and C14:0) became the key source 

of variation between plant-based and bovine milk types. However, vast, range, and auto 

greatly minimized the importance of plant UFAs and resulted in a higher loading for 

metabolites with low measured levels. Different transformation and scaling methods adjust 

scale-size effects to a certain degree, allowing low-concentration metabolites to be more 

important [24]. If a low-abundant metabolite could reflect the variation of interest, it is worth 

considering the separation of very high-abundant metabolites to enable exploration of low-

concentration regions. 

 In summary, our study showed that the ccmn or the ccmn+sqrt method yielded the most 

similar PLS-DA results between the quantified and semi-quantified equivalents. Given that 

ccmn outperformed the other methods in this study, various research projects are underway 

to improve the normalization strategy, i.e., the use of quality control metabolites [31], quality 

control samples [8], subject-specific characteristics [7], and nonlinear modeling [8, 9, 22]. The 

transform+scale and normalize+transform+scale schemes could not enhance the quality of 
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the semi-quantitative data in many cases. This may be because of an excessive alteration in 

the data variance by both transformation and scaling.  

 Many studies have compared different strategies for metabolomics data processing [11-

15]. However, this is the first study to use quantitative data as a reference point for DP 

evaluation. Our findings are based on the closest representation of genuine metabolite 

patterns, which could be a valuable guide for the DP procedure. In practice, the CONC data is 

not always available for comparison. Therefore, method evaluations, such as those performed 

in this and the other studies, are highly advised prior to any statistical analysis, e.g., the 

changes in CV, the fold difference trends, the unsupervised patterns of the PCA score plot, 

and the clustering of multivariate analysis outputs. Most bioinformatics tools, such as 

Metabox 2.0, MetaboAnalyst [42], NOREVA [28, 51], and OUKS [46], provide various features 

to facilitate DP evaluations and comparisons.  

 

Conclusion 

 This study reported the effects of DP schemes on data properties and variance structure. 

Normalization and transformations altered the data normality, skewness, and CV, whereas 

data scaling only changed the CV. The PCA and the results of PLS-DA were compared between 

the absolute abundances and the processed peak areas to observe the outcome of different 

DP schemes on the data variance. The ccmn+sqrt outperformed for the data sets with 

apparent markers and a known biological effect. Furthermore, the raw area may be used if 

the samples are from a well-defined experiment and have a known matrix effect. Although 

the resulting VIPs from the raw peak of urine metabolites were slightly over 50% identical to 

the absolute levels, IS-based normalization, such as ccmn, was the best option to improve this 
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clinical metabolomics data. Choosing a strong DP method, e.g., log transformation, auto, 

range, vast, and level scaling, needs careful consideration. These methods have less tolerance 

for outliers and tend to amplify noise. Our study used another aspect of the DP criteria. The 

best DP choice allowed the semi-quantitative data to mimic the quantitative data. 

Additionally, we discussed the bioinformatics toolbox, Metabox 2.0, which contains 

significant updates on the DP tasks, biomarker identification, and integrative analysis, and 

served as a tool for all analyses in this study. 

 

Availability of Source Code 

Project name: Metabox 2.0 

Project home page: https://metsysbio.com/metabox/index.html 

Operating system(s): Platform independent 

Programming language: R 

Other requirements: None 

License: GNU General Public License (v3) 

RRID: SCR_024443 

 

Data Availability 

 R code used for this article and intermediary files are available from GigaScience GigaDB 

[54]. The metabox2 package and its full source code are also available from GitHub [47]. The 

data sets used in this article have been submitted to Metabolomics Workbench repository 

[55], study I (ST002902), and study II (ST002874). 
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List of abbreviations 
CCMN: cross-contribution compensating multiple standard normalization; CONC: absolute 

concentration; CUBE: cube root; CV: coefficient of variation; DP: data processing; FA: fatty 

acid; GC-TOFMS: gas chromatography coupled to a time-of-flight mass spectrometer; GLOG: 
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Figures 

 

Figure 1. Analysis workflow. Different DP schemes were performed in this study, including (A) no 

processing, (B) transformation, (C) scaling, (D) transformation followed by scaling, (E) 

normalization by ccmn, and (F) consisting of ccmn+transform, ccmn+scale, and 

ccmn+transform+scale. The methods of each DP scheme were listed, and the number shown 

represents all combinations of these methods. The DP schemes were applied to semi-

quantitative or peak area data (blue), and the method evaluations were then performed. This 

included effects on data properties and PLS-DA. For each data set, the resulting VIPs from PLS-

DA were compared to those of the quantitative data (red).  
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Figure 2. PCA score plots based on the data properties of absolute concentration, unprocessed 

(raw area), and processed milk data. (A) Major separation based on DP schemes; and (B) major 

separation based on transformation methods. The data properties included normality, skewness, 

and coefficient of variation. 



 

Figure 3. Comparisons of selected DP schemes to absolute concentration and the raw milk area 

data represented by (A) clustering of VIPs and (B) PCA plots. 



 

Figure 4. Effects of the ccmn and nomis normalization methods on the (A) milk data and (B) urine 

data. Color coding indicates sample groups, including the types of milk, the urine samples from 

healthy subjects (N), and patients with lupus nephritis (LN). 



 

Figure 5. Metabox 2.0 GUI and example outputs from the data processing, statistical analysis, 

and biomarker analysis modules 

 

 

 

 

 

 

 

 

 

 



Supplementary figures 

Figure S1. Metabox 2.0 analysis pipelines. Metabox 2.0 provides three analysis pipelines: (A) data 

processing and analysis, (B) data integration, and (C) data interpretation. For each pipeline, the 

analysis module and its major tasks are presented in blue boxes. The data processing and analysis 

pipeline includes separated modules for data processing, statistical analysis and biomarker 

analysis. A comma-separated values (CSV) file is the required input format. The output contains 

a report file, related figures and tables. 

Figure S2. The absolute concentration of 16 FAs in the milk samples. 

Figure S3. Clustering of VIPs from absolute concentration, unprocessed and processed milk data 

by different DP schemes. 

Figure S4. Comparisons of the selected DP schemes to the absolute concentration and 

unprocessed milk data represented by (A) across group RLA plots, (B) CV plots, and (C) fold 

differences of oleic acid to the other fatty acids. The CV of each metabolite is indicated by color 

coding from green to red. The large CV (CV > 1.0) is represented as a dark grey dot. The average 

CV (mCV) of each group is shown. 

Figure S5. Clustering of VIPs from absolute concentration, unprocessed and processed milk data 

without the plant UFAs by different DP schemes. 

Figure S6. Comparisons of the selected DP schemes to the absolute concentration and 

unprocessed milk data without the plant UFAs represented by (A) clustering of VIPs, (B) PCA plot, 

(C) across group RLA plots, (D) CV plots, and (E) fold differences of palmitic acid to the other fatty 

acids. The CV of each metabolite is indicated by color coding from green to red. The large CV (CV 

> 1.0) is represented as a dark grey dot. The average CV (mCV) of each group is shown. 

Figure S7. PCA score plots based on the data properties of absolute concentration, raw area and 

processed urine data sets. (A) Major separation based on DP schemes, and (B) major separation 

based on transformation methods. The data properties included normality, skewness and 

coefficient of variation. 

Figure S8. Clustering of VIPs from absolute concentration, unprocessed and processed urine data 

by different DP schemes. 



Figure S9. Comparisons of the selected DP schemes to the absolute concentration and 

unprocessed urine data represented by (A) clustering of VIPs, (B) PCA plot, (C) across group RLA 

plots, (D) CV plots, and (E) fold differences of tryptophan to the other KP metabolites. The CV of 

each metabolite is indicated by color coding from green to red. The large CV (CV > 1.0) is 

represented as a dark grey dot. The average CV (mCV) of each group is shown. Healthy group (N) 

and lupus nephritis group (LN). 
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Dear editor,  

 

On behalf of the authors, I herewith resubmit our revised manuscript entitled “Metabox 2.0: The 

data processing solution that renders metabolomics more quantitative" to be considered for publication in 

GigaScience journal. 

We thank the reviewers for their constructive comments on the manuscript that lead to the 

improvement of the manuscript. As suggested by Reviewer #1, the title was changed to “Data processing 

solutions to render metabolomics more quantitative: case studies in food and clinical metabolomics using 

Metabox 2.0”. We have addressed point by point response to the reviewers’ comments. All of the changes 

in the revised manuscript can be found in Microsoft word Track changes file. 
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Reviewer reports: 

 

Reviewer #1: Wanichthanarak et al. present a benchmarking study of different data processing 

methods and their combinations. More than 90 method combinations which cover different 

normalization, transformation and scaling methods were evaluated using two metabolomics 

datasets. The performance of methods was evaluated primarily based on the comparison to the 

absolute concentration data. A major difference between this study and previous benchmarking 

studies is the utilization of absolute concentration data as a reference point for method evaluation. 

The results indicate that the cross-contribution compensating multiple standard normalization 

combined with square root data transformation was most appropriate for well-controlled studies. 

The authors also present a new version of Metabox (version 2) in the manuscript. Overall, the 

manuscript is well-written, and the study is of interest. 

Answer: Thank you very much for your positive comments on our manuscript. We highly 

appreciate your time and consideration for our manuscript.    

 

Minor comments: 

1.     How  cross-contribution compensating multiple standard normalizations is performed? Details 

should be described in the manuscript. 

Answer: We thank the reviewer for this comment. Accordingly, we have clarified this point in 

‘Analysis workflow’ section as follows: 

The ccmn normalization was performed using the normalize_input_data_byqc function 

from the R package Metabox 2.0. The function was implemented from the CRMN R package for 

normalization of metabolomics data [22]. Heptanoic methyl ester and anthranilic acid C13 were 

used as an IS in study I and study II, respectively. Known amounts of ISs were added to samples 

before sample preparation, so that metabolite peak areas were normalized with respect to the 

responses of the ISs. 

 

2.     What are the differences among Metabox 2.0, Metabox 1.0 and other commonly used pipelines 

in metabolomics? It will be useful to add a table to show the features of these different tools. 

Answer: We thank the reviewer for this comment. We have provided comparison of Metabox 2.0, 

Metabox 1.0, and other tools in a Table S8. 
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3.     The manuscript is mainly about the benchmarking of different data processing methods. 

However, the title of the manuscript seems to indicate that the manuscript is focused on the 

development of a new version of a data processing tool (Metabox 2.0). To better align with the 

actual content, I'd like to suggest the authors change the title to accurately reflect the primary focus 

of the manuscript. 

Answer: We thank the reviewer for this comment. We have changed the title to ‘Data processing 

solutions to render metabolomics more quantitative: case studies in food and clinical metabolomics 

using Metabox 2.0’. We would like to keep the word “Metabox” in there because we have been 

working to develop this tool since the last version. This will keep current users updated on new 

features and attract other potential users. 

 

4.     Page 13 - Effects on data properties: "For each metabolite, we considered …" should be "For 

each DP scheme, we considered …"? 

Answer: We thank the reviewer for pointing out this point. This point has been fixed. 

 

Reviewer #2: The manuscript titled "Metabox 2.0: The data processing solution that renders 

metabolomics more quantitative" provides a comprehensive evaluation of data processing methods 

in the context of metabolomics, with a focus on achieving results closely aligned with absolute 

concentrations. The authors address a crucial aspect in metabolomics research, particularly in 

distinguishing appropriate processing procedures for a given experimental setup. 

 

While the manuscript provides a comprehensive analysis of the impact of different data processing 

methods on semi-quantified metabolites, some critical questions need to be addressed before 

publication to improve the clarity of the method and to prove the robustness of the method. 

 

1.    While PCA plots are informative, the interpretation could be enhanced by explicitly stating 

the biological relevance of observed separations or clustering, such as enrichment analysis. A more 

detailed discussion on the biological implications of the observed patterns in the PCA plots would 

provide additional context. 



Answer: We thank the reviewer for this comment. Although, biological implications are not the 

main focus of this manuscript, we have improved this point in ‘Effects on multivariate analysis’ 

section as follows: 

Since C18:1 cis9 and C18:2n-6 were the important plant UFAs, a clustering of plant-based 

milk products was observed. Meanwhile, the whole and lactose-free bovine milk were clustered 

together because their FA profiles were similar (Figure S2). The key distinction between these 

bovine milk types was the absence of lactose in lactose-free bovine milk [18]. 

 

And in ‘Effects on multivariate analysis in the absence of highly abundant metabolites’ section as 

follows: 

Even without the plant UFAs, the clustering of plant-based and bovine milk types persisted. 

This was because of the differences in FA compositions as reported by Jariyasopit et al., [18]. Both 

bovine milk types were more enriched with saturated FA compared to plant-based milk products 

(Figure S2). 

 

And in ‘Data processing effects on the semi-quantified metabolites in urine samples’ section as 

follows: 

However, the clustering of different subject groups was largely due to tryptophan (Figure 

S9A), This metabolite was reported as a potential biomarker for chronic kidney diseases [17]. 

 

2.    While the study effectively compares various DP methods, a critical examination of the 

performances, limitations, and assumptions of each method could further inform the readers, in 

the form of tables or figures. Discussing the potential biases introduced by certain methods or 

scenarios where specific methods might not be suitable would contribute to a more balanced 

evaluation. 

Answer: We thank the reviewer for this comment. We have included the principles, equations, and 

limitations of the DP methods in Table S1. 

In ‘Discussion’ section, we provided discussion on the performance of vast and level scaling based 

on different characteristics of milk and urine data as follows:  

The vast-scaled milk and level-scaled urine produced the most divergence among VIP 

results from the CONC data. This is due to the fact that vast scaling is more suitable for data sets 



with small induced fluctuations [11, 24], which is not the case in this study. The FAs with a large 

variation were considered less important, while a low-deviated metabolite became more 

significant after vast scaling. In contrast to level scaling, this approach is suggested for a study 

that involves large relative responses of a biological factor [11, 24]. This method failed when using 

the urine sample data because the signal-to-noise ratio was low. 

 

And we have discussed more on the performance of log transformation as follows: 

Transformation by log family is a commonly used approach in omic data analysis. Its 

transformation is stronger than cube and sqrt methods (i.e., transformed data is more divergent 

from the original). The log transformation performs well for data with constant relative standard 

deviation [24]. However, it is not always the case in metabolomics, where variance gets larger 

with an increasing intensity level. The log transformation tends to reduce the large variance for 

large values, but it rather inflates the variance of metabolites close to zero [50]. In this study, its 

performance was modest for both milk and urine sample data sets (VIP similarity = 35-45%). By 

using the log transformation, one needs to balance the trade-off between obtaining more 

discriminant metabolites and gaining more false positives. 

 

3.    The decision to exclude major metabolites is justified, but a more extensive discussion on the 

potential consequences and limitations of this choice would add depth. Addressing how excluding 

major metabolites may impact the overall conclusions or generalizability of the findings is 

essential. In another word, how robustness the method would be by only comparing quantified and 

semi-quantified FAs? 

Answer: We thank the reviewer for this comment. As previously discussed, metabolites present in 

high concentrations might influence discriminant analysis. In our study, the plant UFAs (C18:1 

cis-9 and C18:2) have very high concentrations compared to the other FAs. We, therefore, 

demonstrated this point by using data sets with C18:1 cis-9 and C18:2, and without both FAs. We 

have clarified this point in ‘Effects on multivariate analysis in the absence of highly abundant 

metabolites’ section as follows: 

The absolute amounts of C18:1 cis-9 and C18:2 were relatively high compared to those of 

the other FAs (Figure S2). They were the main discriminants between almond milk, soymilk, and 

plant-based and bovine milk in the PLS-DA (Figure 3). The previous section showed a case study 



involving variables with strong relative responses of a biological factor (milk types). We continued 

our evaluation of the milk data set, excluding the major metabolites C18:1 cis-9 and C18:2. This 

was to represent a case study without extreme relative responses. 

 

And we have provided more discussion in ‘Discussion’ section as follows: 

Class separation in multivariate models such as PCA, and PLS-DA is attributed to 

metabolites with high loadings, which are usually proportional to the concentration or magnitude 

of fold change [24, 50, 51]. These dominant sources of variation could be informative markers or 

obscure dominators. We showed that, with the presence of very high concentrations of plant UFAs 

(C18:1 cis-9 and C18:2), they were always the main discriminants between almond milk, soymilk, 

and plant-based and bovine milk. Without both plant UFAs, the second most abundant FAs (C16:0, 

C4:0, and C14:0) became the key source of variation between plant-based and bovine milk types. 

However, vast, range, and auto greatly minimized the importance of plant UFAs and resulted in a 

higher loading for metabolites with low measured levels. Different transformation and scaling 

methods adjust scale-size effects to a certain degree, allowing low-concentration metabolites to 

be more important [24]. If a low-abundant metabolite could reflect the variation of interest, it is 

worth considering the separation of very high-abundant metabolites to enable exploration of low-

concentration regions. 

 

4.    The study focuses on the semi-quantitative analysis and its alignment with quantitative data. 

However, a critical discussion on the inherent limitations and potential biases introduced by semi-

quantitative methods compared to absolute quantification would be valuable. 

Answer: We thank the reviewer for this comment. We have discussed these issues and added them 

in ‘Discussion’ section. 

 In the field of metabolomics, quantitative analysis is important for understanding cellular 

metabolism because the abundances of metabolites affect both free energy and metabolic reactions 

[47]. Nonetheless, a number of obstacles, including the absence of standardized methods and the 

accessibility of reference standards, lead the majority of metabolomics research to be conducted 

using a semi-quantitative analysis. Although semi-quantitative analysis does not provide the true 

value of a metabolite’s concentration, it is still useful for the discovery of important metabolites 

in many studies [3]. Often, the potential bias or technical errors introduced by this approach can 



be removed or minimized through techniques in analytical chemistry and bioinformatics [2, 7]. 

The major limitation of semi-quantitative compared to quantitative analysis is that it is challenging 

to compare results across different studies, leading to difficulty translating the potential 

metabolites into practice, especially in clinical research [48]. 

 

5.    The study could benefit from a sensitivity analysis, exploring how the results might vary under 

different conditions or datasets. Examining the robustness of conclusions by introducing existing 

pairs of quantified and semi-quantified dataset. 

Answer: We thank the reviewer for this comment. We agree with this comment. Unfortunately, 

most studies either provide quantitative or semi-quantitative data, there is a very limited number 

of both semi-quantified data and its quantitative companion publicly available for comparison. In 

this study, we used our own data sets, which were recently published with rigorous method 

validation. We assure that the use of milk and urine sample data sets could represent common 

scenarios in metabolomics, including a data set for studying the relative responses of a biological 

factor and a data set with a complex matrix, as stated in the Discussion section. We believe that 

our findings and method evaluation strategies will be a helpful resource for the metabolomic 

community. However, we are welcome any further comments or suggestions.  

 

6.    English need to be significantly improved. 

Answer: We thank the reviewer for this comment. The manuscript was proofread by SAGE Author 

Services prior to submission. This revised manuscript was also proofread by Dr. Jonathan 

Robinson as stated in ‘Acknowledgments’ section. 

 

In summary, the study's approach to evaluating DP methods with respect to quantitative data serves 

as a novel and valuable contribution to the field. However, the generalizability and the robustness 

of Metabox 2.0 need to be answered before publication. 

Answer: Thank you very much for this comment. We appreciate your time and the time you have 

to spend on this manuscript. 
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Abstract 

 In classic semi-quantitative metabolomics, metabolite intensities are affected by biological 

factors and other unwanted variations. A systematic evaluation of the data processing 

methods is crucial to distinguishidentify adequate processing procedures for a given 

experimental setup. Current comparative studies are mostly focused on peak area data, but 

not on absolute concentrations. In this study, we evaluated data processing methods to 

produce outputs that were most similar to the corresponding absolute quantified data. We 

examined the data distribution characteristics, fold difference patterns between two 

metabolites, and sample variance. We used two metabolomic data sets from a retail milk 

study and a lupus nephritis cohort as test cases. When studying the impact of data 

normalization, transformation, scaling, and combinations of these methods, we found that 

the cross-contribution compensating multiple standard normalization (ccmn) method, 

followed by square root data transformation, was most appropriate for a well-controlled 

study such as the milk study data set. Regarding the lupus nephritis cohort study, only ccmn 

normalization could slightly improve the data quality of the noisy cohort. Since the 

assessment accounted for the resemblance between processed data and the corresponding 

absolute quantified data, our results denote a helpful guideline for processing metabolomic 

data sets within a similar context (food and clinical metabolomics). Finally, we introduce 

Metabox 2.0 was introduced, which allows theenables thorough analysis of metabolomic 

data, including data processing, biomarker analysis, integrative analysis, and data 

interpretation. It was successfully used to process and analyze the data in this study. An online 

web version is available at http://metsysbio.com/metabox. 

 

http://metsysbio.com/metabox
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Introduction 

 Metabolomic analysis is widely accepted as a reliable technology for investigating 

biochemical activities within a cell or tissue of a living organism, and it has been used to 

address various questions in biology, drug metabolism, food and nutrition, natural products, 

and biomedicine [1-3]. Typically, the metabolite level in a sample can be determined 

quantitatively or semi-quantitatively. Metabolomic quantitative analysis (absolute 

quantification) aims to ensure the absolute comparability of metabolite concentrations of at 

least twofrom measurements in a sample obtained at different times or placeslocations. On 

the other hand, semi-quantitative analysis (relative quantification) determines the ratio of 

metabolite intensity from different samples [4, 5]. Therefore, the absolute concentrations of 

metabolites represent a benchmark data set that allows an unbiased comparison across 

different studies. Due to the limited availability of reference standards, most metabolomic 

studies are conducted in a semi-quantitative manner. However, the inability to compare or 

correlate the results from different studies remains one of the major limitations of semi-

quantitative analysis [6]. This is thea primary roadblock toin the development of 

metabolomics research. Therefore, itIt is therefore essential to encourage the metabolomics 

community to increase focus more on using quantitative analyses.  

Data processing (DP) plays an important role in semi-quantitative and quantitative 

analyses; the procedures include imputation, normalization, transformation, scaling, and 

combinations thereof [7]. To date, numerous DP methods have been proposed in 

metabolomic studies [7-10]. These methods are mostly based on specific principles and 

usually have, each with distinct advantages and pitfalls. Therefore, thorough method 

evaluations are crucial to pinpointing the best-performing process for a given metabolomic 
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study. Many studies have evaluated and compared DP strategies based on different 

perspectives. These include, including the normality structure of the data, changes in global 

variations, reduction of intra-group distance, results of univariate or multivariate analysis, 

consistent ranks of putative markers, and classification accuracy [11-15]. Clearly, DP methods 

are context-dependent and not determined by a sole criterion. However, using information 

from the classification performance to decide on DP methods is problematic because each 

method is estimated on the altered data set by itself. Therefore, classifications are prone to 

overfitting. 

 Since quantitative analysis is not always applicable in every metabolomic study, choosing 

a proper choice of DP schemes for polishing the peak areas is crucial to best reflectingestimate 

the true metabolite levels. This study aimed to employ another strategy to assess the 

performance of well-known DP methods. The most desirable DP scheme is the one that 

results inyields identical statistical results between the processed data and its quantitative 

companion. The results obtained could beconstitute a useful and unbiased reference for DP 

recommendations. The impact of DP method on data distribution, fold -difference patterns 

between two metabolitesmetabolite pairs, and sample variance need to be studied. The DP 

schemes investigated in this study covered internal standard (IS)-based normalization, 

transformation, scaling, transformation followed by scaling, and combinations. We used two 

metabolomic data sets representing different types of data matrices: data relating to a food 

product with definitive markers and clinical metabolomic data with indistinct variations.  

 Lastly, we introduced an updated version of the R package Metabox [16] to consolidate a 

state-of-the-art set of methods for metabolomic analysis from several R packages. Metabox 

2.0 enables the in-depth analysis of metabolomic data covering the DP steps, biomarker 

identification, integrative analysis of multiple data types, and functional interpretation. The 
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software is assembled with ready-to-use R functions that are highly flexible for programming 

tasks and have broad application potential. This tool was used for all processing steps and 

analyses in this study. 

 

Materials and methods 

Metabolomic data sets 

 Quantitative and semi-quantitative metabolomic data were obtained from our recent 

studies [17, 18]. The first data set (study I) included the nutrient metabolite composition of 

various retail milk samples purchased in Thailand [18]. In this study, the analysis was focused 

on 16 fatty acids (FAs) from four milk types: whole bovine milk (n = 13), bovine lactose-free 

milk (n = 6), soymilk (n = 7), and almond milk (n = 3). Each sample was analyzed in triplicate. 

The data set contained ten quality control (QC) samples pooled from a mixture of all the milk 

samples. The FAs were acquired using gas chromatography coupled to a time-of-flight mass 

spectrometer (GC-TOFMS, Pegasus BT, Leco Corp., St.Joseph, MI).  

 The second data set (study II) contained information on urine samples collected from 

Ramathibodi Hospital, Thailand [17]. This was done with approval from the Faculty of 

Medicine Ethics Committee, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. 

The urine samples were acquired from 53 healthy subjects (N) and 63 (LN) patients with lupus 

nephritis. The metabolites of the kynurenine pathway (KP) were measured using an ultra-

performance liquid chromatography platform coupled to a Xevo TQ-S tandem mass 

spectrometer (LC-MS/MS) and interfaced by an electrospray ionization source (Waters, MA).  

 The mass spectrometry (MS) data from both studies were pre-processed and quantified as 

described in previous publications [17, 18]. The concentration of each FA was normalized by 
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its molecular weight (µMol) allowing quantitative comparison across studies. The 

concentration of KP metabolites was normalized by the concentration of urinary creatinine. 

This follows the standard practice of adjusting the concentration of a metabolite to creatinine 

filtration in nephrotic syndromes [19, 20]. Additionally, missing value imputation was 

performed on the milk data set before data analysis. A minimum value of each metabolite 

was imputed to a metabolite with missing values higher than 30 % group-wise. This step was 

needed because of the true-negative absence of metabolites under specific conditions, as 

defined by concentrations that were below the detection limit [21]. If applicable, the non-

detected metabolites at random (the percentage of non-detected metabolites <30 %) were 

then imputed by the random forest (RF) method. 

 

Data processing schemes 

 This study evaluated the DP schemes commonly applied in a general metabolomic 

workflow [7]. This included normalization, transformation, scaling, and their combinations. 

 

 Cross-contribution compensating multiple standard normalization 

 Cross-contribution compensating multiple standard normalization (ccmn) is an IS-based 

normalization in which metabolite abundances are estimated proportionately to a known IS 

quantity [22]. Additionally, it considers systematic error and study factors as independent 

sources of variation on ISs; important information is unaffected by normalization [22]. In 

contrast to a closely related method, such as normalization using an optimal selection of 

multiple internal standards (nomis), this method removes unwanted systematic variation 

based on the variability of single or multiple ISs [23]. 
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 Data transformation 

 Transformation is a processaims to reduce data skewness, fix heteroscedasticity, and turn 

multiplicative metabolite relationships into additive relationships [24]. Six transformation 

methods were assessed in this study, including cube root (cube), logarithm (log2 and log10), 

generalized log (glog2 and glog10), and square root (sqrt) transformations (Table S1). 

Transformations can reduce the differences between large and small values, whereby large 

values are scaled down much more than small values [24]. These transformations lead to a 

depletion in right skewness, which is an observed characteristic of omics data such as 

metabolomic and transcriptomic data [25]. The cube and glog transformations accept zero 

and negative values, whereas the sqrt transformation can only manage zero values. In 

contrast, log transformations can only handle non-zero and non-negative values. The glog 

transforms the data to whichusing a specific parameter offor each data set applies [26]. 

Additionally, it focuses on stabilizing data variance, i.e., keeping the variance constant and 

independent from the mean [26, 27]. 

 

 Data scaling 

 Scaling reduces the fold difference between metabolite concentrations based on scaling 

factors [24]. This is unlike the pseudo-scaling effect of transformations. Here, a scaling factor 

is determined explicitly for a particular metabolite. This study compared six scaling methods: 

auto, level, pareto, power, range, and vast scaling (Table S1). The auto, pareto, range, and 

vast scaling estimates are scaling factors that are based on data dispersion. In contrast, level 

scaling is based on the mean value [24]. Power scaling performs an average subtraction in 

combination with the sqrt transformation [28]. 
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Analysis workflow 

 Different DP schemes were investigated using study I [18] and study II [17] data sets that 

comprised both quantitative (the absolute levels) and semi-quantitative (the peak areas of 

metabolites) results. Key DP schemes were performed to evaluate their effect on the peak 

area data, which included (A) no processing (raw area), (B) transformation, (C) scaling, (D) 

transformation followed by scaling, (E) IS-based normalization by the ccmn method, and (F) 

ccmn normalization combined with transformation, -combined with scaling, or a combination 

of both (Figure 1). scaling, or a combination of both (Figure 1). The ccmn normalization was 

performed using the normalize_input_data_byqc function from the R package Metabox 2.0. 

The function was implemented from the CRMN R package for normalization of metabolomics 

data [22]. Heptanoic methyl ester and anthranilic acid C13 were used as an IS in study I and 

study II, respectively. Known amounts of ISs were added to samples before sample 

preparation, so that metabolite peak areas were normalized with respect to the responses of 

the ISs. 

 In total, 97 processed data sets were analyzed, and unprocessed data was considered. We 

evaluated the influence of the DP methods and their combinations on different aspects, 

including normality, skewness, coefficient of variation (CV), the trend of fold differences, 

sample heterogeneity, and multivariate analysis outputs.  

 The normality test and measures of skewness were computed by the Shapiro-Wilk 

normality test [29] and the skewness function of the e1071 R package [30], respectively. A p-

value > 0.05 indicatedindicates a normal distribution, and the symmetric skewness wasranges 

from −0.5 to 0.5. The CV for a metabolite wasis the ratio of the standard deviation to the 

mean within a group. The fold and directional differences of a metabolite from a reference 

were calculated. Since most DP methods strongly affect highly abundant metabolites, the 
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metabolite with the highest level was used as a reference point. An across-group relative log 

abundance (RLA) plot was applied to explore the grouping structure, outliers, and variation 

within each group. Each metabolite was standardized by subtracting the median from across 

all groups [31]. A principal component analysis (PCA) was performed to visualize the 

overallmajor variations ofin the data regarding the biology of interest. 

 Moreover, the effects of various DP methods on the partial least squares-discriminant 

analysis (PLS-DA) in comparison to the absolute concentration (CONC) data were examined. 

The variable importance in projection (VIP) of a metabolite indicates its degree of contribution 

to explainthe variance in the PLS model [32]. The similarity between the resulting VIPs from 

the CONC data, raw area data, and processed data was computed. The similarity between the 

two approaches, 𝑥 and 𝑦, was calculated using Euclidean distance asaccording to the 

following equation (1):         

             

   (1) 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑥, 𝑦) =  1 − √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖
 

 For the method 𝑥, we denoted the VIP score of the 𝑖𝑡ℎ metabolite as 𝑥𝑖; where 𝑖 =

1, 2, … , 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠 (𝑛). The same definition was applied to the method 𝑦. 

The hierarchicalHierarchical clustering of the VIP scores was performed to infer the grouping 

of the DP schemes. The ComplexHeatmap R package [33] was used for clustering analysis. All 

DP tasks, PCA, PLS-DA, and plot generation, were performed using the R package Metabox 

2.0 DP and analysis pipeline. 

 

Implementation of Metabox 2.0 
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 Metabox 2.0 is a standard R package developed from R version 4.2.0, providing a 

substantial update to the first Metabox version [16]. AAn extensive collection of R packages 

for metabolomic analysis is extensively applied included (Table S1). We enclosed the 

sequences of DP and analysis tasks in R functions. TheA graphical user interface (GUI) is 

implemented with the R package Shiny [34]. An overview of the analysis pipelines is illustrated 

in Figure S1. 

 

 Data processing and analysis pipeline 

 This analysis pipeline supports the DP step and consecutive data analyses, including 

essential statistical analyses and biomarker discovery (Figure S1A). The DP module includes 

all major metabolomic DP tasks, starting with missing value imputation, normalization, 

transformation, and data scaling. A collection of commonly used methods is integrated into 

the Metabox 2.0 (Table S1). All three mainThree types of imputation methods are provided, 

including single value, local similarity, and global structure approaches [21]. The 

normalization module covers IS-, QC sample- and data-based approaches, which consistently 

aim to accommodateeliminate unwanted errors andwhile maintaining crucial biological 

variation [8, 31]. IS-based and QC sample-based normalization reliesrely on spike-in ISs and 

the intensity of QC samples, respectively [8]. Meanwhile, the data-driven normalization 

summarizes a sample-specific factor for the adjustment [31]. The transformation methods for 

decreasing right skewness and scaling methods based on either data dispersion or mean value 

are included. When performing both data transformations and scaling, the differences in 

magnitude between large and small metabolite values are adjusted, so that those metabolites 

are fairly comparable in statistics.. In total, there are ten10 imputations, three IS-based 
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normalizations, two QC sample-based normalizations, 12 data-driven normalizations, six 

transformations, and six scaling methods. 

 The statistical analysis module comes with a collection of prominent univariate analysis 

methods. These are well-known statistical hypothesis testing methods and post hoc tests 

covering parametric and non-parametric tests, a pairwise correlation analysis, and the linear 

mixed modeling from the lmm2met package [7] (Table S2). For multivariate analysis, both 

unsupervised and supervised multivariate analyses are included, incorporating the PCA, PLS-

DA, and orthogonal PLS-DA (OPLS-DA) implemented from the ropls package [35]. 

 The biomarker analysis module supports regression and classification analyses using the 

PLS or random forest (RF) approach. We incorporate recursive variable elimination within a 

repeated double cross-validation (repCV) approach from the MUVR package [36] to identify 

informative metabolites. The algorithm addresses prediction accuracy, model overfitting, and 

optimally relevant metabolites. 

 

 Data integration pipeline 

 Metabox 2.0 supports the joint analysis of multiple data types, such as omics and other 

phenotypic data (Figure S1B). The multi-block PLS-DA (MBPLSDA) pipeline from the mbpls 

package [37] is assimilated into the integrative analysis module, focusing on the multivariate 

modeling of concatenated data blocks by considering the specific data structure of each block. 

This method allows the estimation of both variable and block importance. 

 

 Data interpretation pipeline 

 This pipeline includes well-established methods for functional interpretation in the context 

of metabolic pathways and chemical classes (Figure S1C). The set enrichment analysis and 
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overrepresentation analysis can be performed with a comprehensive collection of methods 

from the piano package [38], as implemented in Metabox 1.0 [16]. Moreover, integrated 

pathway overrepresentation analysis uses Fisher's method to combine p-value outputs from 

the hypergeometric test. The KEGG database [39] is utilized for pathway information, 

whereas chemical classes of metabolites are based on the HMDB chemical taxonomy [40]. 

 

Results 

The effects of data processing on the semi-quantified fatty acids in milk samples 

 All 16 FAs were quantified in whole and lactose-free bovine milk (Figure S2). However, 

thesome FAs, including C10:0 and C14:1, were not detected in the plant-based milk products 

(soymilk and almond milk). C6:0, C14:0, C22:0, and C24:0 were not present in almond milk. 

C8:0, C12:0, C15:0, C16:1, and C17:0 were detectable in soymilk, but absent in almond milk. 

These metabolites were imputed by their minimum value prior to the DP step. As reported by 

Jariyasopit et al., C16:0 (palmitic acid) and two unsaturated FAs (UFAs) [C18:1 cis-9 (oleic acid) 

and C18:2n-6 or C18:2 (linoleic acid)] were at their highest concentrations (mg/L) in bovine 

milk, almond milk, and soymilk, respectively [18]. The amount of C18:1 cis9 in almond milk 

was remarkedlymarkedly high (14230.98 ± 4057.15 µMol). 

 

 Effects on data properties 

 Initially, we explored the effects of each DP scheme on the basic properties of the milk 

data set. For each metaboliteDP scheme, we considered the number of normally distributed, 

positively skewed, and negatively skewed metabolites and the CV in each sample group (Table 

S3). All FAs in the QC samples were normally and symmetrically distributed for the CONC data. 
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Most FAs in bovine milk and soymilk were of the right skewness-skewed (i.e., a few FAs were 

highly abundant), while the FAs in bovine lactose-free milk were mostly normally distributed. 

The largest and smallest CVs were noticedpresent in soymilk and almond milk, respectively. 

Similar aspects were observed in the peak area data. The PCA plot showed that the ccmn 

method was the main factor contributing to separation among the DP schemes, with and 

without this normalization (Figure 2A). The number of normally distributed metabolites in the 

almond milk dramatically increased after normalization, and most FAs became slightly 

negatively skewed. The basic properties of the quantified and raw area data were closer to 

those of the unnormalized data sets. Each DP scheme resulted in an apparent cluster. The 

transformations increased the number of normally distributed metabolites in bovine milk. 

The area data processed by the scaling scheme was separated from those altered by the 

transform+scale and the transformation, with and without normalization. All scaling methods 

returned similar data properties, with power scaling being slightly different. After power 

scaling, the area data had the same data properties as those after sqrt+auto, level, pareto, 

range, or vast scaling (Figure 2B). All glog- and log-based transformations produced similar 

data properties. However, the cube, sqrt, and log-based transformations were attributed to 

slightly different data properties, particularly the distribution of metabolites in bovine milk. 

As such, we noticed a separation among the cube, sqrt, and both log-based transformation 

schemes.  

 

 Effects on multivariate analysis  

 The PLS-DA was performed on 97 processed data sets, the absolute FA concentration and 

peak area data sets. Cluster analysis of the resulting VIPs revealed grouping of the CONC data, 

raw area data, ccmn, ccmn+pareto, ccmn+power, and ccmn+sqrt processed data (Figure S3). 
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These DP schemes formed a separate branch from the DP, involving log-based 

transformations, auto, range, or vast scaling. The VIP scores of the data that had undergone 

ccmn+power and ccmn+sqrt processing were identical. Moreover, they were similar to the 

VIPs from the quantified data (Figure 3A and Table S4, similarity = 80.32%). The VIPs from the 

unprocessed area data were approximately 20% different from the original CONC data. In 

contrast, when using the glog-, log-, auto-, range-, and vast-based DP methods, the VIP 

similarity was reduced to below 40%. Any DP counting in the vast method led to a low 

similarity of approximately 10% or less. The ccmn+cube+vast was the least alike (similarity = 

4.16%).  

 C18:1 cis9 and C18:2n-6, the important plant UFAs [41], were the discriminant metabolites 

(VIP  1.5) obtained from the PLS-DA on the CONC and raw area data (Figure S3). Moreover, 

both UFAs were identified from the data processed by sqrt or cube transformation, level, 

pareto, or power scaling. VIP scores increased slightly when ccmn normalization was applied 

together with sqrt, cube, pareto, or power. Combining these transformation and scaling 

methods led to lower VIPs, particularly the VIP of C18:2. C16:0 was an additional discriminant 

for the plant UFAs in the ccmn-normalized data. The DP schemes involving vast scaling failed 

to identify C18:1 cis9 and C18:2n-6, as their VIPs were less than 1.0. The number of FAs with 

VIP >1.0 was increased by glog- or log-based transformation, yet it diminished the importance 

of the plant UFAs in the PLS model. 

 The PCA plots showed a clear partitioning of the almond milk, soymilk, and bovine milk, 

except for the ccmn+cube+vast processed data (Figure 3B). This DP task mitigated the 

variance between soymilk and almond milk. Since C18:1 cis9 and C18:2n-6 were the 

important plant UFAs, a clustering of plant-based milk products was observed. Meanwhile, 

the whole and lactose-free bovine milk were clustered together because their FA profiles 
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were similar (Figure S2). The key distinction between these bovine milk types was the absence 

of lactose in lactose-free bovine milk [18]. The variability explained by the 1st and 2nd principal 

components (PCs) was 99.32%, 97.87%, 92.35%, and 84.05% for the CONC, raw area, 

ccmn+sqrt, and ccmn+cube+vast processed data, respectively. Though the observed variation 

of ccmn+sqrt was less than that of the raw area data, the original structure of variation was 

more preserved with ccmn+sqrt processing. The milk data set possessed intragroup 

variability, which was still visible after processing with ccmn+sqrt (Figure S4A). However, this 

within-group variation was inflated, and the plant-based samples displayed a right-skewed 

distribution after applying ccmn+cube+vast.  

 For the CONC and peak area data, the mean level of the CV (mCV) in each milk type was as 

follows: soymilk > bovine milk > bovine lactose-free milk > QC sample > almond milk (Figure 

S4B). The ccmn+sqrt method could lessen metabolite dispersion, in contrast to the 

ccmn+cube+vast. In sequential order, it enlarged the mCV of the QC, bovine lactose-free milk, 

bovine milk, soymilk, and almond milk samples. In addition, the trend of the fold differences 

between C18:1 cis-9 and the other FAs in all milk types was substantially altered by 

ccmn+cube+vast (Figure S4C). Specifically, the C18:1 cis-9 abundance became less than the 

FAs C8:0, C10:0, C14:1, C15:0, C16:1, and C17:0 in both bovine milk types, as opposed to the 

original CONC data. The amount of C18:1 cis-9 was higher than that of C16:0 in the bovine 

milk samples and lower in the almond milk. In the case of the ccmn+sqrt method, overall fold 

differences were maintained and comparable to the original CONC data. 

 

 Effects on multivariate analysis in the absence of highly abundant metabolites 

 The absolute amounts of C18:1 cis-9 and C18:2 were relatively high compared to those of 

the other FAs (Figure S2). C18:1 cis-9 and C18:2They were the main discriminants between 
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almond milk, soymilk, and plant-based and bovine milk in the PLS-DA (Figure 3). The previous 

section showed a case study involving variables with strong relative responses of a biological 

factor (milk types). We continued our evaluation of the milk data set, excluding the major 

metabolites C18:1 cis-9 and C18:2. This was to represent a case study without extreme 

relative responses. 

 From VIP clustering, the CONC, raw area, ccmn-normalized, and pareto-scaled data were 

grouped and formed the closest linkage to a cluster containing either the cube, sqrt, or power 

processing alone or in combination with ccmn normalization (Figure S5). Elements in this 

group included ccmn+pareto, with/without cube or sqrt transformation, and 

ccmn+sqrt+power. These DP schemes formed a distant branch from the DP tasks embracing 

auto, level, range, vast scaling, or log-based transformations. In particular, the percentage of 

VIP similarity was less than 40%. The VIPs from glog2+vast processed data were the most 

dissimilar (Table S5, similarity = 31.54%), and only C24:0 was the discriminative metabolite 

from this method (Figure S6A). The most similar VIP scores were the VIP scores of the peak 

area (similarity = 83.28%). Whereas, the VIPs from the data processed by the ccmn+power or 

ccmn+sqrt processing were slightly less identical (similarity = 80.35%). The discriminant 

metabolites C16:0 and C4:0 were commonly observed from the CONC, area, and ccmn+sqrt 

processed data. C14:0 was the additional discriminant for the CONC and ccmn+sqrt processed 

data, while C18:0 was identified for the peak area data. 

 The apparent separation between plant-based and bovine milk was observed from the PCA 

plots, except for the area and glog2+vast processed data (Figure S6B). Even without the plant 

UFAs, the clustering of plant-based and bovine milk types persisted. This was because of the 

differences in FA compositions as reported by Jariyasopit et al., [18]. Both bovine milk types 

were more enriched with saturated FA compared to plant-based milk products (Figure S2). 
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The data structure of the CONC data was more preserved in the ccmn+sqrt processed data 

set. Meanwhile, the PCA plots of the area data with (Figure 3B) and without the plant UFAs 

(Figure S6B) were comparable. The cumulative variance explained by PC1 and PC2 for the 

CONC, area, ccmn+sqrt, and glog2+vast processed data was 97.43%, 99.47%, 97.40%, and 

83.56%, respectively. Though,Although we noticed the fine clustera clustering of plant and 

bovine milk types by the glog2+vast method, the high variance was introduced within the QC 

and bovine milk samples. Accordingly, we detected a substantial impact on the data 

distribution, outliers (Figure S6C) and metabolite deviation from its mean (Figure S6D). In 

contrast to ccmn+sqrt, fold difference tendencies between C16:0 and the other FAs, in all milk 

types were markedly influenced after applying glog2+vast (Figure S6E). 

 

Data processing effects on the semi-quantified metabolites in urine samples 

 Similar aspects were performed to evaluate and compare the effects of the DP methods 

on eight KP metabolites in urine samples (study II). For CONC and raw area data, almost all 

metabolites were positively skewed, and the mCV of the LN samples was slightly higher than 

that of the normal samples (Table S6). The basic properties of the quantified and ccmn-

normalized data were closer than those of the other data sets. However, the combined ccmn 

with transformation, or transform+scale, was not the major factor influencing the separation, 

as observed in the study I (Figure S7). When applying the transformation, scaling, or 

transform+scale schemes, the DP effect on the urine data properties appeared consistent 

with the milk sample data. 

 We observed the clustering of VIPs from the sqrt, pareto, power, ccmn+cube, ccmn+sqrt, 

ccmn+pareto, ccmn+power, and area data (Figure S8). They formed a distinct branch from 

the DP schemes, including glog, log, auto, level, range, and vast. Meanwhile, the VIPs from 
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the CONC and the ccmn-normalized data were distinguished from those of the other 

methods. The VIP scores from the unprocessed peak areas were 55.53%, identical to the 

CONC data (Table S7). The VIP scores of the ccmn-normalized data were the closest to those 

of the quantified data (Figure S9A, similarity = 62.36%). In contrast, the ccmn+level DP led to 

the least similar VIPs (similarity = 41.62%). Tryptophan was the discriminant metabolite (VIP 

 1.2) observed in the CONC data, raw areas, and ccmn processed data. Kynurenic acid was 

identified as an important metabolite in both the CONC and the ccmn-normalized data. 

Picolinic acid (VIP >1.6) was the discriminative metabolite observed in the data sets that 

applied the DP glog, log, auto, level, range, or vast methods (Figure S8). From the CONC data, 

this metabolite possessed a low VIP weight (VIP = 0.03). In contrast, 3−hydroxykynurenine 

was only reported from the CONC data (VIP = 1.52) and was absent in the other data sets.  

 The urine samples from healthy subjects and LN patients mainly overlapped (Figure S9B) 

and showed high within-group variation (Figure S9C). However, theHowever, the clustering 

of different subject groups was largely due to tryptophan (Figure S9A), This metabolite was 

reported as a potential biomarker for chronic kidney diseases [17]. The ccmn method 

improved the explained variance in the 1st PC (PC1 = 81.02%) compared to the raw area data 

(PC1 = 74.78%). In contrast, when using the ccmn+level method, we observed large influences 

on the sample distribution, metabolite variation, and fold differences between tryptophan 

and the other metabolites (Figure S9C–E). When using this method, the PC1 and cumulative 

variance were 41.77% and 61.56%, respectively. 

 

IS-based normalization performance is dependent on the type of biological factors 

 Two commonly used IS-based normalization methods, ccmn and nomis, were further 

evaluated using milk and urine data sets. The milk data set has a definitive biological effect, 
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whereas the urine samples comprise many unknown individual variations. In this assent, the 

informative variation of milk samples was retained by the ccmn method, unlike the nomis 

method (Figure 4A). The variances explained by the 1st and 2nd PCs were 95.97% and 92.20% 

for the ccmn- and nomis-normalized data, respectively. The 1st PC presented the differences 

between almond milk and soymilk for the ccmn-processed data. This aspect was invisible in 

the nomis-normalized data. In the case of the urine data set, we observed that the ccmn 

method performed similarly to the nomis method (Figure 4B). The groups of healthy and LN 

samples were slightly separated. Within the LN group, variation was slightly reduced after 

normalization. Subject-specific variations and the presence of outliers are common in clinical 

metabolomics. Moreover, the ccmn method only assumes linear relationships between 

measured metabolites and experimental factors, which is not always the case in 

metabolomics [22]. Therefore, the metabolite and IS interferences in the urine matrix may 

not be thoroughly corrected by the ccmn method. 

 

Metabox 2.0: enhancing metabolomic data analysis, integration, and interpretation 

 Metabox 2.0 is executedimplemented as a standard R package. The current version has 

undergone significant redesign and updates since Metabox 1.0 [16], highlighting the analysis 

of metabolomic data from DP steps to biomarker identification and allowing the joint analysis 

of multiple data types, such as LC- and GC-MS metabolomes, metabolomic and transcriptomic 

data sets, or metabolomic and clinical data. Three analysis pipelines are organized as separate 

modules (Figure 5 and Figure S1). A series of scripts for a particular task is encoded in a ready-

to-use R function, allowing the implementation of customized workflows. The key features of 

this version include: 1) a collection of state-of-the-art methods for end-to-end metabolomic 

data analysis; 2) normalization methods for cohort- and laboratory-scale metabolomic 
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studies; 3) univariate analysis for one or multiple factors; 4) multivariate modeling for both 

classification and regression; 5) machine learning (ML)-based biomarker analysis with 

minimizing model overfitting and false-positive rates; 6) cross-domain data integration; 7) 

data interpretation in the context of metabolic pathways and chemical classes; 8) various 

kinds of plots for data exploration; and 9) an intuitive GUI for bench biologists (Figure 5). This 

GUI version supports typical analysis and allows broader usability as a hosted web application 

on the server. The integrative exploration of multi-omic levels in biological networks is 

excluded in this version because it requires the pre-installation of a specific graph database 

system. 

 For metabolomic analysis, this tool serves as an alternative to closely related software such 

as MetaboAnalyst [42], iMAP [43], NOREVA [28], and OUKSXCMS Online [4344]., MZmine 3 

[45], and OUKS [46]. Comparison of the main features with other tools are summarized in 

Table S8. Metabox 2.0 covers more DP methods, and theis equipped with a tool for integrative 

analysis of omic and non-omic data is equipped. Metabox 2.0. It is an open-source R package 

freely accessible at https://github.com/kwanjeeraw/metabox2 under the GPL-3 license. 

Furthermore, an online web version is publicly available at http://metsysbio.com/metabox. 

 

Discussion 

 In the field of metabolomics, quantitative analysis is important for understanding cellular 

metabolism because the abundances of metabolites affect both free energy and metabolic 

reactions [47]. Nonetheless, a number of obstacles, including the absence of standardized 

methods and the accessibility of reference standards, lead the majority of metabolomics 

research to be conducted using a semi-quantitative analysis. Although semi-quantitative 
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analysis does not provide the true value of a metabolite’s concentration, it is still useful for 

the discovery of important metabolites in many studies [3]. Often, the potential bias or 

technical errors introduced by this approach can be removed or minimized through 

techniques in analytical chemistry and bioinformatics [2, 7]. The major limitation of semi-

quantitative compared to quantitative analysis is that it is challenging to compare results 

across different studies, leading to difficulty translating the potential metabolites into 

practice, especially in clinical research [48]. 

 Quantitative analysis is ideal in metabolomics research; however, the absolute 

quantification of all metabolites can be challenging. A good DP scheme for raw data 

processing is essential to resembleimprove semi-quantitative todata such that it resembles  

quantitative data. In this study, we characterized and compared the semi-quantified 

metabolites after different DP treatments to their quantified counterparts. We covered three 

common scenarios in metabolomics, including a data set with apparent markers, a data set 

with a known biological effect, and a data set with obscure variations.  

 The results consistently indicated that normalization and transformation had an impact on 

the data distribution, skewness, and CV, while scaling only influenced the CV of the data. 

Apart from one exception, power scaling behaved like the sqrt+scale scheme. This is because 

the method relies on the square root of metabolite intensity along with a mean subtraction 

[28]. However, these data properties could not directly reflect the final results of statistical 

analyses, e.g., how many significant metabolites are identified or how much class 

discrimination is improved by a specific DP method. An understanding of data distribution 

could guide the choice of subsequent statistical analysis. The change in the CV is an indicator 

of DP performance in reducing group variation [4449]. Field Code Changed
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 The use of milk and urine sample data sets represented two sides of the story. As a food 

product, the milk samples were produced in well-controlled environments, while the urine 

study data was not. Even though there were strict inclusion and exclusion criteria in the study 

cohort. Inter-individual variations, e.g., dietary, genetic, and demographic background, were 

the key unwanted variations in clinical metabolomics [7]. Accordingly, we observed that the 

PLS-DA result from the milk area data resembled its CONC data more than that of the urine 

study data. The raw peak areas, excluding the two plant UFAs, resulted in the most similar 

result to the CONC data without any processing task. Due to the numerous unknown sample 

matrices, the ccmn method performed similarly to nomis normalization in the urine data set. 

Overall, ccmn normalization improved the quality of semi-quantitative data in every case in 

our study and is our recommendation.therefore recommended. Furthermore, the ccmn 

method can segregate IS interference because of the correlation with the factors under study 

[22, 31]. As such, it can avoid the risk of losing informative variations in the nomis.  

 The normalization process aims to remove systematic errors and unrelated biological 

variations (if applicable). However, it cannot scale for magnitude differences among 

metabolites. When considering the milk sample data set, which included plant UFAs, the 

ccmn+sqrt method was suggested. This was because the data set had a distinct biological 

factor, and the sqrt transformation had the least effect on the variance structure compared 

to the other transformation methods. In descending order, the effect size ranged from the 

log family, cube transformation, and sqrt method. The performance of the scaling methods, 

power, and pareto, was relatively comparable and had a smaller effect on the data variance 

than the other methods. The vast-scaled milk and level-scaled urine produced the most 

divergence among VIP results from the CONC data. This is due to the fact that vast scaling is 

more suitable for data sets with small induced fluctuations [11, 24], which is not the case in 
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this study. The FAs with a large variation were considered less important, while a low-deviated 

metabolite became more significant after vast scaling. In contrast to level scaling, this 

approach is suggested for a study that involves large relative responses of a biological factor 

[11, 24]. This method failed when using the urine sample data because the signal-to-noise 

ratio was low. Transformation by log family is a commonly used approach in omic data 

analysis. Its transformation is stronger than cube and sqrt methods (i.e., transformed data is 

more divergent from the original). The log transformation performs well for data with 

constant relative standard deviation [24]. However, it is not always the case in metabolomics, 

where variance gets larger with an increasing intensity level. The log transformation tends to 

reduce the large variance for large values, but it rather inflates the variance of metabolites 

close to zero [50]. In this study, its performance was modest for both milk and urine sample 

data sets (VIP similarity = 35-45%). By using the log transformation, one needs to balance the 

trade-off between obtaining more discriminant metabolites and gaining more false positives. 

 Class separation in multivariate models such as PCA, and PLS-DA is attributed to 

metabolites with high loadings, which are usually proportional to the concentration or 

magnitude of fold change [24, 50, 51]. These dominant sources of variation could be 

informative markers or obscure dominators. We showed that, with the presence of very high 

concentrations of plant UFAs (C18:1 cis-9 and C18:2), they were always the main 

discriminants between almond milk, soymilk, and plant-based and bovine milk. Without both 

plant UFAs, the second most abundant FAs (C16:0, C4:0, and C14:0) became the key source 

of variation between plant-based and bovine milk types. However, vast, range, and auto 

greatly minimized the importance of plant UFAs and resulted in a higher loading for 

metabolites with low measured levels. Different transformation and scaling methods adjust 

scale-size effects to a certain degree, allowing low-concentration metabolites to be more 
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important [24]. If a low-abundant metabolite could reflect the variation of interest, it is worth 

considering the separation of very high-abundant metabolites to enable exploration of low-

concentration regions. 

 In summary, our study showed that the ccmn or the ccmn+sqrt method could 

attributeyielded the most similar PLS-DA results between the quantified and the semi-

quantified equivalents. Given that the ccmn outperformed the other methods in this study, 

various research projects are underway to improve the normalization strategy, i.e., the use of 

quality control metabolites [31], quality control samples [8], subject-specific characteristics 

[7], and nonlinear modeling [8, 9, 22]. The transform+scale and normalize+transform+scale 

schemes could not enhance the quality of the semi-quantitative data in many cases. This may 

be because of an excessive alteration in the data variance by both transformation and scaling.  

 Many studies have compared different strategies for metabolomics data processing [11-

15]. However, this is the first study to use quantitative data as a reference point for DP 

evaluation. Our findings are based on the closest representation of genuine metabolite 

patterns, which could be a valuable guide for the DP procedure. In practice, the CONC data is 

not always available for comparison. Therefore, method evaluations, such as those performed 

in this and the other studies, are highly advised prior to any statistical analysis, e.g., the 

changes in CV, the fold difference trends, the unsupervised patterns of the PCA score plot, 

and the clustering of multivariate analysis outputs. Most bioinformatics tools, such as 

Metabox 2.0, MetaboAnalyst [42], NOREVA [28], and OUKS , NOREVA [28, 49], and OUKS 

[4346], provide various features to facilitate DP evaluations and comparisons.  

 

Conclusion 
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 This study reported the effects of DP schemes on data properties and variance structure. 

Normalization and transformations altered the data normality, skewness, and CV, whereas 

data scaling only changed the CV. The PCA and the final results of PLS-DA were compared 

between the absolute abundances and the processed peak areas. This was to observe the 

outcome of different DP schemes on the data variance. The ccmn+sqrt outperformed for the 

data sets with apparent markers and a known biological effect. Furthermore, the raw area 

may be used if the samples are from a well-defined experiment and have a known matrix 

effect. Though,Although the resulting VIPs from the raw peak of urine metabolites were 

slightly over 50% identical to the absolute levels, the IS-based normalization, such as ccmn, 

was the best option to improve this clinical metabolomics data. Choosing a strong DP method, 

e.g., log transformation, auto, range, vast, and level scaling, needs careful consideration. 

These methods have less tolerance for outliers and tend to pick upamplify noise. Our study 

used another aspect of the DP criteria. The best DP choice allowed the semi-quantitative data 

to mimic the quantitative data. Additionally, we discussed the bioinformatics toolbox, 

Metabox 2.0, which contains significant updates on the DP tasks, biomarker identification, 

and integrative analysis. This was an underlying, and served as a tool for all analyses in this 

study. 

 

Availability of Source Code 
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