
SUPPLEMENTARY INFORMATION

Fig S1. Whole genome sequencing analysis of FLC-evolved and engineered strains.
A. De novo point mutations in ERG251 often occur together with other aneuploidies.
Representative whole genome sequencing (WGS) data of the FLC-evolved strains from Table 1:
Evolved 3.2, AMS5615, AMS5617, AMS5618, AMS5622, AMS5623, AMS5624, AMS5625,
AMS5626 and AMS4130 which acquired point mutations on ERG251 during FLC evolution. B.
The engineered ERG251 mutants remain euploid. WGS data for all ERG251 mutations
engineered into the euploid SC5314 genetic background: the ERG251 heterozygous point
mutants (L113*, W265G, E273*, and *321Y), both heterozygous deletion strains of ERG251,
two strains with complementation of the heterozygous deletion, and two independent
homozygous deletions of ERG251 (d51 and d70). A&B WGS data are plotted as the log2 ratio
and converted to chromosome copy number (y-axis, 1-4 copies) as a function of chromosome
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position (x-axis, Chr1-ChrR). Haplotypes are indicated by color: gray is heterozygous (AB),
magenta is homozygous B, and cyan is homozygous A. The baseline ploidy was determined by
propidium iodide staining (S1 Table).
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Fig S2. Radicicol, an Hsp90 inhibitor, blocks Erg251-driven tolerance and makes
fluconazole fungicidal. Cells from the MIC assay at 48 hr in Fig 1D, with or without radicicol,
were plated for viability on YPAD agar plates and imaged after 24 hr incubation. Wildtype
SC5314 (ERG251/ERG251), a positive control strain known to be resistant to fluconazole
(FLC), and both heterozygous deletion mutants of ERG251 were tested. At least three biological
replicates were performed.
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Fig S3. Heterozygous deletion of ERG251-A leads to a transcriptional response in
filamentation regulation. Volcano plots for differentially expressed genes (log2 fold
change ≥ 0.5 or ≤ -0.5 and adjusted p-value < 0.1) in the heterozygous mutants (A)
erg251∆/ERG251 and (B) ERG251/erg251∆ in YPAD compared to the wildtype
ERG251/ERG251 in YPAD. Both the fold change and p-value are indicated. C&D. Gene
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Ontology (GO) terms for genes differentially expressed in (C, S7 Table) erg251∆/ERG251 in
YPAD and (D, S8 Table) ERG251/erg251∆ in YPAD compared to ERG251/ERG251 in YPAD. E.
Relative expression of ERG251-A and ERG251-B in the SC5314 background in YPAD. Relative
expression was estimated using allelic RNA reads compared to overall reads at the two loci with
polymorphisms in the ERG251 gene (indicated as SNP1 and SNP2 above). Values are mean ±
SEM calculated from three biological replicates. F. Subcellular localization of Erg251-A-GFP and
Erg251-B-GFP in yeast and hyphal inducing conditions in SC5314 background. Yeast: scale
bar, 5 μm; hyphae: scale bar, 10 μm.
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Fig S4. Erg251 is the major methyl sterol oxidase controlling drug susceptibility
compared to its paralog Erg25. (A) Multiple sequence alignment for ERG251-A, ERG251-B,
and ERG25-A/-B (no SNPs between A and B) from C. albicans and ERG25 from S. cerevisiae,
with yellow highlighting similarity among all four proteins. Colored blocks on the top indicate the
sequence conservation. Asterisks (*) and red boxes indicate the locus of non-synonymous
variation between ERG251-A and ERG251-B in C. albicans. B. FLC susceptibility determined
by liquid microbroth dilution at 24hr MIC (left, µg/ml) and 48hr SMG (right, tolerance) in FLC for
three ERG25 heterozygous deletion mutants (ERG25/erg25Δ-2, -8 and -10) in the SC5314
background with SC5314 (ERG25/ERG25) as the control. C. 48hr growth curve analysis of
erg25 heterozygous deletion strain in erg251∆/∆ background (erg251∆/∆: ERG25/erg25∆) in
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YPAD (left) and YPAD+1µg/ml FLC (right) with SC5314 (ERG25/ERG25) and erg251∆/∆ as the
controls. The initial cell densities were OD600 of 0.001. MIC and SMG are not measurable for
erg251∆/∆ or erg251∆/∆: ERG25/erg25∆ given growth defects in YPAD. B&C: Minimum of three
biological replicates were performed. D. RNA abundance of ERG251 and ERG25 in SC5314
(ERG251/ERG251), and ERG25 in erg251∆/∆. RNA reads were normalised to transcript length
and total RNA reads. Values are mean ± SEM calculated from three biology replicates. E.
Predicted model for how FLC and farnesol impact the expression of ERG genes. In the wildtype,
low concentrations of FLC promote the expression of most ERG genes, including ERG6,
ERG251, ERG25, ERG11 and ERG27, leading to the upregulation of ergosterol or/and alternate
sterol biosynthesis. However, both low concentrations of FLC and Erg251 pose a negative
regulation on Erg12, which may be achieved via farnesol which we predict inhibits ERG12 [107].
Dashed lines indicate predicted relationships. Figure created in BioRender.com.
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