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Supplementary Figures

Supplementary Fig. 1: Analysis of tumor purity as a biomarker predictor and its relationship to
prediction performance

We assessed the relationship between biomarker predictability and tumor purity by (a) devising a
classification task to directly predict biomarker status using tumor purity and (b) performing a
correlation analysis between tumor purity and predictability from hematoxylin and eosin (H&E)-stained
slides with deep learning (DL), which is measured by the area under the curve (AUC). For the
classification task in (a), we adopted a similar experimental setup. Still, instead of image-based
features, we used tumor purity as a predictor and a random forest as a binary classifier (Methods:
Tumor purity experiment). Violin plots in (a) show the AUC distribution across all tested biomarker
categories (with SNVs referring to single nucleotide variants), where the left half of each violin
represents the AUC values obtained from the DL models as previously given in Fig. 2b, and the right
half corresponds to the AUC distribution of tumor purity-driven random forest classifiers, with
asterisks indicating the statistical significance of the difference between the two, where p < 1e-05 for
all subgroups. Overall, performance was no better than random across any of the biomarker
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categories when tumor purity was used as a predictor. This may indicate that tumor purity alone is
not a strong variable for predicting biomarker status. After observing a random performance in (a), we
further measured the degree of a potential relationship between tumor purity and the performance of
the DL-based predictive models. The percentage of tumor cells used in (a) was averaged across
samples for each biomarker. Scatter plots in (b) show how the average tumor purity is correlated with
the AUC of the DL models for each biomarker category as measured by the Pearson correlation
coefficient (PCC). The dotted line marks the AUC at 0.5 and the solid lines correspond to regression
estimates for tumor purity and AUC, with the shaded area showing the size of their confidence
interval. Overall, we found a statistically significant positive correlation (p < 0.05) for (A) standard
clinical biomarkers (PCC=0.232), (D) gene signatures and molecular subtypes (PCC=0.132), and (E)
the under-/over-expression of transcriptomes (PCC=0.066). For other biomarker groups, there was no
statistical significance (p > 0.05). This might indicate that tumor purity can positively impact the
predictability to some extent for certain biomarker types.
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Supplementary Fig. 2: Average performance for each cancer across all biomarker types

Average area under the curve (AUC) across all cancers confounded by biomarker type is shown in a
heatmap. Empty cells correspond to having no data for those cancer-biomarker groups. Asterisks
within heatmap cells indicate the statistical significance of the performance difference between AUC
values of a subgroup against randomly sampled values of the same underlying distribution (no
asterisk: not significant (n.s.), *: p < 0.05, **: p < 0.01, ***: p < 1e-05). Cancer abbreviations are
defined in Supplementary Table 1. Lymphoid neoplasm diffuse large B-cell Lymphoma (DLBC), uveal
melanoma (UVM), and thymoma (THYM) were excluded from the analysis due to constituting only a
few targets. The following coding was used to abbreviate the biomarker types: A for standard clinical
biomarkers; B for clinical outcomes and treatment responses; C for under-/over-expression of
proteins; D for gene signatures and molecular subtypes; E for under-/over-expression of driver
genes; and F for the presence of single nucleotide variants (SNVs) in driver genes. Overall, we
obtained a better-than-random average performance across all biomarker types (i.e. mean AUC >
0.5). Among the cancer types targeting standard clinical features (A), kidney renal papillary cell
carcinoma (KIRP, AUC: 0.805 ±0.132, p < 0.01) and stomach cancer (STAD, AUC: 0.805 ±0.084, p <
1e-05) had the top average performance, followed by clear cell renal cell carcinoma (KIRC), breast
adenocarcinoma (BRCA), and colon cancer (COAD), each with a mean AUC over 0.7. Multiple cancer
types showed a relatively good performance with average AUCs above 0.7 especially when
considering the predictability of the clinical outcomes and treatment responses (B), where the
performances of such predictions were among the highest across studies. Among them, the most
notable studies were kidney renal papillary cell carcinoma (KIRP), adrenocortical carcinoma (ACC),
glioblastoma multiforme (GBM), and kidney chromophobe (KICH) with average AUCs reaching as
high as 0.777. For genomic, transcriptomic, and proteomic biomarkers (C, E, F), the performances
within individual cancer types were primarily consistent with their corresponding general trend. The
highest performances were observed in thyroid carcinoma (THCA) and sarcoma (SARC) for the
prediction of proteomic expression status with average AUCs around 0.78; in lower-grade glioma
(LGG) and testicular germ cell tumors (TGCT) for the predictability of transcriptomic biomarkers with
AUCs slightly above 0.7; and in kidney renal clear cell carcinoma (KIRC),
pheochromocytoma/paraganglioma (PCPG), and thyroid carcinoma (THCA) for the detection of
genetic alterations in driver genes with average AUCs ranging from 0.705 to 0.779. Top-performing
cancers from the gene signatures and molecular subtypes (D) were breast cancer (BRCA), gastric
cancer (STAD), and kidney renal papillary cell carcinoma (KIRP), each having an average AUC of 0.7.
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Supplementary Fig. 3: Biomarkers that were predictable across multiple cancers

Presence of single nucleotide variants (SNVs) and under-/over-expression of transcriptomes and
proteins can be predicted in at least three and seven cancer types with an average area under the
curve (AUC) of 0.7 or 0.65, respectively. The size of a marker represents the frequency of a
biomarker. Error bars show the standard deviation of AUC across cancers. The number of
appearances (n) of a biomarker across cancers is shown in the secondary x-axis. (a) Alterations in
TP53 were detectable in almost all cancers, with 7 of them having an AUC of at least 0.7 and 14 of
them showing AUCs greater than 0.65. Other genes with a cross-cancer AUC of at least 0.7 were
BAP1 (predictable in 8 cancers), PRDM16 and JAK1 (predictable in seven cancers), and CDH1
(predictable in five cancers). CDK12, RB1, MTOR, NOTCH2, UBR5, and KMT2A, are also worth
mentioning with their mutations being detectable in at least 10 different cancers with a mean AUC of
0.65. (b) Over-expression of KMT2C had a consistently high prediction rate with AUCs ranging from
0.733-0.837 in kidney renal papillary cell carcinoma, ovarian serous cystadenocarcinoma, and testis
cancer. Other notable genes that were detectable across multiple cancer types at over-expression
levels were ERC1, CRTC3, LASP1, CDK4, SOX2, ERCC5, BCL6, and the under-expression status of
RABEP1, each being predicted in three or more different cancers. (c) Over-expression of MYH11 was
detected in 7 out of 11 cancer types with AUCs ranging from 0.705 to 0.809. Other notable genes
associated with protein over-expression were TFRC, TP53, MSH2, MSH6, ARID1A, RAF1, and
NRG1, showing a high predictability in at least five malignancies, with AUCs reaching 0.942.
Under-expression of proteins encoded by MYH1, NF2, VHL, and AR were also predictable in at least
four cancers, with AUCs reaching 0.856. (d) Scatter plot showing the AUCs of genetic alterations, as
well as transcriptome and protein expression status predictable in multiple cancer types. Areas
outlined with red, blue, and green lines mark the zones with high predictability and frequency of
appearance. Red points are the biomarkers with an AUC of at least 0.7 and a frequency of eight and
above. Green points correspond to the biomarkers with an AUC of at least 0.65 and a frequency of
six and above. For blue, AUC and frequency are limited to 0.6 and four, respectively.
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Supplementary Fig. 4: Cross-correlation of the detectability of molecular alterations across
genomic, transcriptomic, and proteomic biomarkers

For this analysis, driver genes with a valid genomic, proteomic, and transcriptomic profile across all
cancer types were identified and their area under the curve (AUC) values are cross-correlated with
the Pearson correlation coefficient (PCC). Since there existed three models per biomarker, each
model in a given omic type was compared to all the three models in the other omic type, yielding
nine comparisons per gene. Scatter plots show the relationship between AUCs of different omics.
The dotted red lines in each plot mark the AUC at 0.5. The solid lines correspond to regression
estimates, with the shaded area showing the size of their confidence interval. (a-b) Both at the
transcriptomic and proteomic expression levels there was no correlation between the predictability of
genetic alterations and over-expression status associated with them. Under-expressed
transcriptomes and proteins showed a low, but statistically significant positive correlation with
genetic alterations, with a PCC of 0.131 (p < 0.01) and 0.069 (p < 0.01), respectively. (c) We
measured a positive correlation of 0.227 (p < 1e-05) between the transcriptomic and proteomic
biomarkers with regard to their over-expression status.
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Supplementary Fig. 5: Reproducibility of pan-cancer predictability on external dataset

We repeated our experiments using the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data,
to show that a comparable performance can be achieved on a different dataset. This data is only
available for evaluating the predictability of single nucleotide variants (SNVs) due to both the Cancer
Genome Atlas (TCGA) and CPTAC cohorts relying on the same set of driver genes, hence exhibiting a
relatively large overlap. A total of 176 driver genes (corresponding to 528 models) across seven
cancer types had qualified mutation data in both datasets. The number of models validated per
cancer type is shown under each violin plot for each cohort. The investigated cancers were uterine
corpus endometrial carcinoma (UCEC), pancreatic ductal adenocarcinoma (PAAD), lung squamous
cell carcinoma (LUSC), lung adenocarcinoma (LUAD), head and neck cancer (HNSC), glioblastoma
multiforme (GBM), and colon adenocarcinoma (COAD). An asterisk atop a violin plot indicates the
difference between the area under the curve (AUC) values of two cohorts being statistically
significant (i.e. p < 0.05). Here, all biomarkers but those from COAD had comparable AUC
distributions in TCGA and CPTAC cohorts. It is important to note that, this experiment was not
designed to assess the reproducibility of models trained on one set (e.g. TCGA) and independently
tested on another (e.g. CPTAC). It is to show the feasibility of predictability for certain biomarkers
regardless of the source of the underlying data.
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Supplementary Fig. 6: Impact of sample size and positive class ratio on the prediction
performance

We evaluated the potential influence of the number of samples and the class proportions on the
prediction performance, by correlating population sizes and class ratios with (a) the biomarker area
under the curve (AUC) values and (b) the variability in biomarker performance as measured by the
standard deviation across the AUCs of cross-validation folds. Population size corresponds to the
number of total samples per biomarker and the class ratio is computed as the size of the
underrepresented class over the size of other class (i.e. a ratio close to 1 denotes a perfectly
balanced class distribution, whereas a ratio close to 0 means a severely unbalanced dataset). We
used Pearson's correlation coefficient (PCC) to assess the linear relationship between these
numerical variables. Considering the number of steps involved in biomarker acquisition for each omic
type and the diverse number of diagnostic slides available for each cancer (Supplementary Table 1),
the population size and class distributions per biomarker varied quite significantly across different
malignancies (Supplementary Fig. 7). The solid lines in the plots correspond to regression estimates
of the x and y variables, with the shaded area showing the size of their confidence interval. (a) The
Pearson correlation coefficient (PCC) between the population size and the AUC values was 0.029 (p
> 0.05), indicating no relationship between the two variables. Similarly, a statistically insignificant
PCC of -0.018 (p > 0.05) was obtained between the class ratio and performance. (b) A negative
relationship was observed for the AUC variability when it was correlated with population size (PCC:
-0.200, p < 1e-05) and class ratios (PCC: -0.161, p < 1e-05). The consistent decrease in variability
suggests a more stable and robust performance trend, potentially indicating improved performance
with an increasing number of samples and a more balanced dataset.
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Supplementary Fig. 7: Average population size and class ratio across all cancer and biomarker
types.

(a) Average population size and (b) average class ratio across all cancer and biomarker types are
shown in a heatmap. Population size corresponds to the number of total samples per biomarker and
the class ratio is computed as the size of the underrepresented class over the size of the other class
(i.e. a ratio close to 1 denotes a perfectly balanced class distribution, whereas a ratio close to 0 means
a severely unbalanced dataset). Empty cells indicate no data for those cancer-biomarker groups. The
following coding was used to abbreviate the biomarker types: A for standard clinical biomarkers; B for
clinical outcomes and treatment responses; C for under-/over-expression of proteins; D for gene
signatures and molecular subtypes; E for under-/over-expression of driver genes; and F for the
presence of single nucleotide variants in driver genes. Cancer abbreviations are defined in
Supplementary Table 1.
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Supplementary Fig. 8: Highest scoring tiles from selected biomarkers in colon, gastric, thyroid,
and breast cancers.

(a) The top-ranking tiles from the consensus molecular subtypes (CMS) of colon cancer (i.e. CMS1,
CMS2, CMS3, and CMS4) show distinct morphological features. One can see lymphocytic infiltration
patterns in CMS1, well-differentiated glandular structures for CMS2-3, and high stromal content in
CMS4 tiles. (b-c) Highly predicted tiles from colon and gastric cancer patients showing
morphological traits associated with microsatellite instability. (d-e). The highest ranking tiles for the
prediction of BRAF mutation in thyroid carcinoma (d) and TP53 mutation in breast cancer (e)
compared to their wild-type counterparts. Scale bar for slides: 5 mm. Scale bar for tiles: 512 µm.
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Supplementary Fig. 9: Performance of individual biomarkers across selected cancer types

Scatter plots showing the performance of each model trained to predict biomarkers across different
categories, namely, (a) the presence of single nucleotide variants in driver genes, (b) protein
under-/over-expression status, (c) under-/over-expression of driver genes at the transcript level, (d)
standard clinical biomarkers, (e) gene signatures, and subtypes, and finally, (f) clinical outcomes and
treatment responses. Only the cancer types excluded from the main figures due to space limitations
are shown here. Please refer to the caption of Fig. 3 for a detailed explanation of the visualization.
Cancer abbreviations are defined in Supplementary Table 1.
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Supplementary Tables

Supplementary Table 1: Number of images and patients included in the study.

Abbr. Cancer type # images # patients

LUSC Lung squamous cell carcinoma 453 419

PRAD Prostate adenocarcinoma 449 403

COAD Colon adenocarcinoma 442 434

SKCM Skin cutaneous melanoma 418 377

THCA Thyroid carcinoma 504 492

OV Ovarian serous cystadenocarcinoma 105 104

BRCA Breast cancer 1061 992

STAD Stomach adenocarcinoma 358 333

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma 38 38

BLCA Bladder urothelial carcinoma 450 379

CHOL Cholangiocarcinoma 38 38

PAAD Pancreatic adenocarcinoma 204 180

UCEC Uterine corpus endometrial carcinoma 509 448

KIRP Kidney renal papillary cell carcinoma 269 245

LUAD Lung adenocarcinoma 512 449

CESC Cervical squamous cell carcinoma 265 255

KIRC Clear cell renal cell carcinoma 499 493

THYM Thymoma 179 120

LIHC Liver hepatocellular carcinoma 369 361

SARC Sarcoma 582 239

HNSC Head and neck squamous cell carcinoma 434 414

READ Rectum adenocarcinoma 158 157

ESCA Esophageal carcinoma 157 155

LGG Brain lower grade glioma 823 472

KICH Kidney chromophobe 120 108

GBM Glioblastoma multiforme 666 233

MESO Mesothelioma 81 70

PCPG Pheochromocytoma and paraganglioma 193 174

TGCT Testicular germ cell tumors 253 148

UCS Uterine carcinosarcoma 87 53

UVM Uveal melanoma 53 53

ACC Adrenocortical carcinoma 225 54

Total: 10954 8890
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Supplementary Table 2: Number of images and patients included in the CPTAC dataset.

Abbr.
TCGA-like

abbr. Cancer type # images # patients

UCEC UCEC Uterine corpus endometrial carcinoma 591 247

PDA PAAD Pancreatic ductal adenocarcinoma 382 168

LSCC LUSC Lung squamous cell carcinoma 689 211

LUAD LUAD Lung adenocarcinoma 669 224

HNSCC HNSC Head-and-neck cancer 268 112

GBM GBM Glioblastoma multiforme 510 189

COAD COAD Colon adenocarcinoma 372 178

Total: 3481 1329

Only the cancers that have comparable biomarkers in the TCGA dataset were considered. The
abbreviations used in the CPTAC and TCGA resources for the same cancer type are provided in the
first two columns, respectively.
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Supplementary Table 3: Details of the binarization rules used to define actionable survival
outcomes.

Endpoint Description Binarization Rule

OS Overall survival Positive: Death from any cause. Negative: Alive.

DSS Disease-specific
survival

Positive: If vital_status is Dead and tumor_status is WITH
TUMOR. If a patient died from the disease shown in the field of
cause_of_death, the status of DSS would be Positive.
Negative: If vital_status is Alive or vital_status is Dead and
tumor_status is TUMOR FREE.

DFI Disease-free interval Positive: If a patient has a new tumor event whether it is a local
recurrence, distant metastasis, new primary tumor of the
cancer, including cases with a new tumor event whose type is
N/A. Negative: First, treatment_outcome_first_course is
"Complete Remission/Response"; if the tumor type doesn't
have "treatment_outcome_first_course" then it is defined by
the value "R0" in the field of "residual_tumor"; otherwise, it is
defined by the value "negative" in the field of "margin_status".

PFI Progression-free
interval

Positive: If a patient has a new tumor event whether it is a
progression of disease, local recurrence, distant metastasis,
new primary tumors at all sites, or died with cancer without a
new tumor event, including cases with a new tumor event
whose type is N/A. Negative: Otherwise.

The information in this table is originally provided in the Integrated TCGA Pan-Cancer Clinical Data
Resource1 and is summarized here.
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Supplementary Table 4: Average performance and standard deviation for all cancer types.

Abbr. Cancer type Mean AUC Std. of AUCs

THCA Thyroid carcinoma 0.768 0.091

TGCT Testicular Germ Cell tumors 0.711 0.122

GBM Glioblastoma multiforme 0.697 0.147

KIRP Kidney renal papillary cell carcinoma 0.697 0.116

MESO Mesothelioma 0.692 0.137

LGG Brain Lower Grade Glioma 0.684 0.118

KIRC Kidney renal clear cell carcinoma 0.679 0.111

ACC Adrenocortical carcinoma 0.676 0.151

PCPG Pheochromocytoma and Paraganglioma 0.670 0.086

STAD Stomach adenocarcinoma 0.663 0.114

KICH Kidney Chromophobe 0.661 0.143

BRCA Breast invasive carcinoma 0.658 0.100

LIHC Liver hepatocellular carcinoma 0.653 0.105

ESCA Esophageal carcinoma 0.653 0.114

COAD Colon adenocarcinoma 0.645 0.109

UCEC Uterine Corpus Endometrial Carcinoma 0.645 0.101

PRAD Prostate adenocarcinoma 0.644 0.092

SARC Sarcoma 0.640 0.108

OV Ovarian serous cystadenocarcinoma 0.636 0.137

HNSC Head and Neck squamous cell carcinoma 0.634 0.104

SKCM Skin Cutaneous Melanoma 0.632 0.115

BLCA Bladder Urothelial Carcinoma 0.628 0.104

LUAD Lung adenocarcinoma 0.627 0.111

PAAD Pancreatic adenocarcinoma 0.626 0.118

CESC Cervical squamous cell carcinoma 0.622 0.110

LUSC Lung squamous cell carcinoma 0.613 0.103

CHOL Cholangiocarcinoma 0.594 0.137

READ Rectum adenocarcinoma 0.593 0.133

UCS Uterine Carcinosarcoma 0.585 0.158

DLBC, UVM, and THYM were excluded from the table due to only constituting one to seven valid
targets across all biomarker types. The abbreviations used for each cancer type are given in the first
column.
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