

Fig. S1 Neutrophil NET formation affects GC cell proliferation, invasion, migration, and EMT in vitro.

Note: (A) Flow cytometry and Giemsa staining were used to verify the presence of neutrophils isolated from the ascites of non-PM group (n=12) and PM group (n=18) GC patients, with a scale bar of 50 μ m; (B) Immunofluorescence co-staining was performed to assess the formation of NETs, with Cit-H3 labeled in green and MPO labeled in red, while the cell nuclei were labeled in blue; (C) Transwell assay was used to evaluate the migration and invasion of GC cells after co-culture. Cell experiments should be repeated at least three times.

Fig. S2 The impact of NET-deficient neutrophils on the proliferation, invasion, and migration of GC cells.

Note: (A) ELISA detects the levels of MPO in the supernatant of neutrophil cultures from different sources;(B) CCK8 detects the proliferative ability of GC cells;(C) Transwell detects the migration and invasion of GC cells;(D) Transwell detects the migration and invasion ability of GC cells and presents the statistical data in a graph;(E) Immunofluorescence co-staining detects the levels of Cit-H3 and MPO in neutrophils and GC cells co-cultured, with nucleus labeled in blue, Cit-H3 labeled in green, and MPO labeled in red. Ns represents no significant difference, and the cell experiment should be repeated thrice.

Fig. S3 Differential gene analysis of GEO database chip GSE21328 and TCGA database GC immune-related differential genes.

Note: (A) The intersection of the Venn diagram of downregulated genes in the GEO database GSE21328 (two samples from the highly metastatic GC cell line MKN-45-P and its parental cell line MKN-45) and the TCGA database GC immune-related downregulated genes (Normal: n=32, Tumor: n=327); (B) The intersection Venn diagram of downregulated genes in the GEO database GSE21328 (two samples from the highly metastatic GC cell line MKN-45-P and its parental cell line MKN-45) and the TCGA database GC immune-related upregulated genes (Normal: n=32, Tumor: n=327); (C) Expression heatmap of the 13 intersecting upregulated genes in the TCGA database and the GSE21328 chip dataset.

Fig. S4 Functional enrichment analysis of candidate target genes. Note: (A) Bar chart of GO-BP functional analysis of 13 differentially upregulated intersection genes; (B) Circle diagram of KEGG functional enrichment analysis of 13 differentially upregulated intersection genes.

Fig. S5 Correlation analysis between candidate target genes and neutrophil infiltration. Note: We used CIBERSORT analysis to analyze the correlation between neutrophil infiltration and key genes in gastric cancer patients from the TCGA database.

Fig. S6. Clinical correlation analysis of neutrophil infiltration.

Fig. S7 Differential expression of LIF in GC cells.

Note: (A) RT-qPCR was used to detect the expression levels of LIF mRNA in GES-1 and GC cells;(B) RT-qPCR was used to detect the expression levels of LIF mRNA in GC cells after treatment with lentivirus;(C) ELISA was used to detect the levels of LIF in the culture medium of GC cells after treatment with lentivirus.

*P<0.05, cell experiments were repeated at least three times.

Fig. S8 Predicted transcriptional regulation of LIF by the TGF-β/Smad signaling axis. Note: (A) Correlation analysis of LIF and TGF-β, Smad2, and Smad3 in GC tissue, N=30; (B) Transcription factor Smad2 and Smad3 transcription regulatory site logo; (C) JASPAR predicted binding sites of Smad2/3 in the LIF promoter region.

Fig. S9 The impact of the TGF-β/Smad/LIF signaling axis on GC cell proliferation, invasion, and migration.

Note: (A) After the knockdown of Smad2/3 by shRNA lentivirus for 3 h, GC cells were treated with 10 ng/mL TGF-β1, then co-cultured with neutrophils derived from peritoneal macrophages. The proliferation ability of GC cells was detected by CCK8 assay;(B) GC cells' migration and invasion ability were assessed using Transwell assay after co-culturing with neutrophils. *P<0.05, cell experiments were repeated at least three times.

Baseline characteristics	GC (n = 30)
Gender	
Male	17
Female	13
Age (years)	
< 65	14
≥65	16
Tumor size	
< 5 cm	16
≥5 cm	14
Tumor stage	
T1 + T2	12
T3 + T4	18
Histological grade	
Well/moderate	17
Poor/NS	13
Peritoneal metastasis	
Negative	12
Positive	18
Clinical stages	
I + II	13
III + IV	17

Table S1 The clinicopathological characteristics of patients with GC

Table S2 shRNA sequences

shRNA (sh-)	Sequence (5'-3')
sh-NC	CCTAAGGTTAAGTCGCCCTCG
sh-LIF#1	GCAGTGCCAATGCCCTCTTTA
sh-LIF#2	GAACCAGATCAGGAGCCAACT
sh-Smad2	GCACTTGCTCTGAAATTTG
sh-Smad3	AATGGTGCGAGAAGGCGGTCA

Table S3 Primer sequences of ChIP-qPCR

Gene	Sequence (5'-3')
LIF-P1	Forward: GAAAACTGCCGGCATCTGAG
	Reverse: GCCACACCCCTATATCTCACC
LIF-P2	Forward: TGGGATGCTGGGACGAAC
	Reverse: TAGACGCTTTTCCAGGGCTC
I IE D2	Forward: TGCGCTAGGTGAGATATAGGG
	Reverse: CCCTGACTCCATGCCTTCTC

Gene Sequence Forward: 5'-CCAACGTGACGGACTTCCC-3' LIF Reverse: 5'-TACACGACTATGCGGTACAGC-3' **E-cadherin** Forward: 5'-ATTTTTCCCTCGACACCCCGAT-3' **Reverse: 5'-TCCCAGGCGTAGACCAAGA-3'** Vimentin Forward: 5'-TGCCGTTGAAGCTGCTAACTA-3' Reverse: 5'-CCAGAGGGAGTGAATCCAGATTA-3' Forward:5'-TGCCCTCAAGATGCACATCCGA-3' Snail Reverse:5'-GGGACAGGAGAAGGGCTTCTC-3' Forward:5'-GCCAGGTACATCGACTTCCTCT-3' Twist Reverse:5'-TCCATCCTCCAGACCGAGAAGG-3' **N-cadherin** Forward:5'-CCTCCAGAGTTTACTGCCATGAC-3' Reverse:5'-GTAGGATCTCCGCCACTGATTC-3' Forward: 5'-CTGGGCTACACTGAGCACC-3' GAPDH Reverse: 5'-AAGTGGTCGTTGAGGGCAATG-3'

Table S4 The primer sequence for RT-qPCR

ID	Description	GeneRat	BgRatio	p value	p.adjust	q value	geneID	Cou
		io						nt
GO:00466	decidualization	13th	26/18723	0.000143	0.045648	0.028433034	LIF/STC2	2
97		Feb.						
GO:00018	maternal placenta development	13th	25/18772	19772 0 000261	0.045648	0.028433034	LIF/STC2	2
93		Feb.	55/10/25 0.00020	0.000201				
GO:00075	female pregnancy	13th	193/1872	0 000286 0 04	0 0/56/8	0.028433034	LIF/STC2/IDO1	3
65		Mar.	3	0.000200	0.043048			
GO:00025	muslaid laukaanta differentiation	13th	208/1872	0.000256	0.045648	0.028433034	LIF/TNFSF11/U	3
73		Mar.	3	0.000550			BD	
GO:00447	multi-multicellular organism process	13th	220/1872	0.00042	0.045648	0.028433034	LIF/STC2/IDO1	3
06		Mar.	3					
GO:00108	positive regulation of pathway-restricted	13th	10/18773	0.000514	0.045648	0.028433034	INHBE/LEFTY1	2
62	SMAD protein phosphorylation	Feb.	49/18/23					
GO:00075	ombryo implantation	13th	53/18723	0.000601	0.045648	0.028433034	LIF/STC2	2
66	emoryo implantation	Feb.						
GO:00027	positive regulation of myeloid leukocyte	13th	50/10772	0.00072	0.045648	0.028433034	LIF/TNFSF11	2
63	differentiation	Feb.	30/10/23					
GO:00601	maternal process involved in female	13th	()/107))	0.000822	0.045648	0.028433034	LIF/STC2	2
35	pregnancy	Feb.	02/10/23					
GO:00603	regulation of pathway-restricted SMAD	13th Feb.	62/18723 0.00082	0 000822	2 0.045648	0.028433034	INHBE/LEFTY1	2
93	protein phosphorylation			0.000022				
GO:00603	pathway-restricted SMAD protein	13th	65/18723	0.000903	0.045648	0.028433034	INHBE/LEFTY1	2
89	phosphorylation	Feb.						
GO:00603	SMAD protoin signal transduction	13th	82/18723	0.001432	0.066367	0.041338001	INHBE/LEFTY1	2
95	SMAD protein signal transduction	Feb.						

 Table S5 KEGG and GO enrichment analysis of the 13 candidate target genes

GO:00510	regulation of binding	13th	363/1872	0.001789	0.076513	0.047657946	LIF/TNFSF11/T	3
98		Mar.	3				RIB3	

Original western blots

Figure5C-1-1

Figure5C-2-2

