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Supplementary Methods 
 

 

 

Genome sequencing and annotation 

Genomic DNA was extracted from 100 million sorted protists using the MagAttract HMW DNA Kit 

(QIAGEN, Hilden, Germany). Sequencing libraries were prepared and sequenced using Sequel technology 

(PacBio, Menlo Park, CA, USA) on two SMRT cells at the McMaster University Farncombe Metagenomics 

Facility (Hamilton, Canada). Reads were error corrected using CANU v1.81 and assembled into contigs 

with Flye v.2.4.12. The contigs were subsequently polished with eight million 300 bp paired-end reads 

generated on a MiSeq System (Illumina, San Diego, CA, USA), sequenced at the National Institute of 

Allergy and Infectious Diseases (Bethesda, Maryland), using BWA3 and Pilon v.1.234. Annotation was 

carried out with Maker v2.315 as follows. Repetitive regions were identified de novo and masked using 

RepeatModeler v.1.0.116 and RepeatMasker v.4.0.77. Transfer RNA genes were predicted with tRNAscan-

SE v2.0.68. Gene models were predicted ab initio using two rounds of training with SNAP v.2013-11-299, 

followed by Augustus v.3.3.110 with BUSCO v.2.0.111. Reference sequences included related trichomonad 

T. foetus expressed sequence tag (EST) library (CX159216.1), T. foetus strain K (3AUP000179807) and 

Trichomonas vaginalis G3 (3AUP000001542) proteomes, and Pentatrichomonas hominis and 

Dientamoeba fragilis protein sequences available in the NCBI nr database (accessed August 21, 2019). 

Functional annotation was performed with InterProScan v.5.30-69.012, the HmmerWeb v.2.41.213 hmmscan 

algorithm (E-value ≤1e-05) and Architect14 (confidence ≥0.5). Genes encoding adhesins, meiosis, and cell 

cycle-related proteins were identified based on sequence homology with T. vaginalis proteins15,16 retrieved 

from the TrichDB database17 using BLAST18 (E-value 1e-5, 30% sequence identity and 40% query coverage 

cut-offs). The genome assembly is available at: https://github.com/ParkinsonLab/Tritrichomonas-murine-

microbiome-interactions/. 

 

 

Phylogenetic analysis 

 

Accessions to parabasalid ribosomal ITS sequences used in the analysis of phylogeny. 

Organism Genbank ID 

Monocercomonas colubrorum AY319266  

Trichomonas gallinae JQ755289  

Trichomonas tenax HM579936  

Trichomonas vaginalis AY871046  

Pentatrichomonas hominis AY349187 

Honigbergiella sp. AY319274 

Tritrichomonas musculus KX000922 

Tritrichomonas rainier MH370486 

Tritrichomonas muris AY886843 

Tritrichomonas foetus KX425890 

Tritrichomonas suis U85967 

Tritrichomonas sp. isolate GZH MF375342 

Histomonas meleagridis HM229782 

Dientamoeba fragilis DQ233449 

Trichomitus sp. KP012660 

Trichomitus batrachorum AY349193 

https://github.com/ParkinsonLab/Tritrichomonas-murine-microbiome-interactions/
https://github.com/ParkinsonLab/Tritrichomonas-murine-microbiome-interactions/


 

scRNA-Seq 

Single cell profiling was carried out for protists isolated from a GF and conventionalized mouse four weeks 

post colonization. Protists were purified from caecal contents and immediately transferred on ice to the 

Princess Margaret Genomics Centre (Toronto, Canada) for STAMP library preparation using Drop-seq 

technology, and sequenced on a NextSeq 500 System (Illumina, San Diego, CA, USA)19. Reads were 

processed using Drop-seq Tools v.1.13 and aligned to the protist genome assembly using STAR v. 

2.5.3a20,21. Three thousand protists per mouse (minimum 200 genes, 500 transcripts) were analyzed using 

Seurat v422,23. Cells were grouped using graph-based clustering (0.8 resolution, 18 principal components) 

and visualized via UMAP24. Differentially expressed (DE) genes were identified using the FindAllMarkers 

function, and functional enrichments were determined based on overrepresentation of pathway enzymes as 

defined by KEGG using the hypergeometric test or GO terms using the topGO package and the Fisher’s 

Exact test25,26. Enrichments of custom-defined gene sets (meiosis, G1/S, and G2 phase genes) were scored 

with the AddModuleScore function and evaluated using two-sided Wilcoxon rank-sum tests. Benjamini-

Hochberg correction was applied for multiple testing27. Heatmaps were generated using pheatmap 1.0.12 

and Ward.D2 clustering28. 

 

 

qPCR 

DNA primers used for quantitative PCR of bacterial taxa29 

 

Target primer sequence (5'-3') 

Bacterial taxa   

Firmicutes_934F GGAGYATGTGGTTTAATTCGAAGCA 

Firmicutes_1060R AGCTGACGACAACCATGCAC 

Actinobacteriota_920F TACGGCC GCAAGGCTA 

Actinobacteriota_1200R TCRTCCCCACCTTCCTCCG 

Gammaproteobacteria_1080F TCGTCAGCTCGTGTYGTGA 

Gammaproteobacteria_1202R    CGTAAGGGCCATGATG 

Bacteroidota_798F CRAACAGGATTAGATACCCT 

Bacteroidota_967R GGTAAGGTTCCTCGCGTAT 

 

 

 

RNAScope 

RNAScope was performed as per the RNAScope Multiplex Fluorescent Reagent Kit v2 (Advanced Cell 

Diagnostics, Newark, CA, USA) protocol. Approximately 0.5 cm caecum sections were excised from Tmu-

colonized mice, placed in 10% neutral buffered formalin, and fixed overnight at room temperature (RT) 

with gentle agitation. The following day, samples were washed with PBS, placed in 70% ethanol, embedded 

in paraffin, and sliced to 7 μm sections at the Toronto Centre for Phenogenomics. Paraffin sections were 

baked at 40°C for 30 min in a HybEZ Oven (Advanced Cell Diagnostics, Newark, CA, USA), and treated 

with hydrogen peroxide at RT for 10 min. Antigen target retrieval was conducted at 99°C under the 15 min 

standard procedure. A barrier was created around sections using an ImmEdge pen (Vector Laboratories, 

Burlingame, CA, USA) and allowed to dry for 15 min. Samples were treated with protease at 40°C for 30 

min and stored in saline sodium citrate solution overnight (175.3 g NaCl, 88.2 g sodium citrate, 800 mL 

ddH2O, pH 7). TSA Plus Fluorophores Fluorescein and Cyanine 3 were hybridized against protist probes 

TMU_00005724 and TMU_00016742 respectively, and samples were visualized using a Zeiss AXIO 

Observer microscope (Carl Zeiss AG, Jena, Germany). 

 

 



 

Transmission Electron Microscopy 

Protist pellets were prepared using the standard methods for the Embed 812 resin kit (Electron Microscopy 

Sciences (EMS), Hatfield, PA, USA)30. Briefly, samples were fixed with 4% paraformaldehyde, 1% 

glutaraldehyde in phosphate buffer (PB; 0.1 M, pH 7.2) for 1 hour at room temperature and overnight at 

4°C, and washed 3x with PB. They were subjected to a second fixation step with 1% OsO4 in PB for 1 hour 

in the dark, and washed 3x with PB for 10 min at RT. Samples were dehydrated in a gradient ethanol series: 

30% ethanol for 15 min, 50% ethanol for 20 min, 70% ethanol for 30 min, 90% ethanol for 45 min, and 

100% ethanol for 60 min. Dehydrated samples were then infiltrated with the Embed 812 resin kit (EMS) 

diluted with propylene oxide: 100% propylene oxide for 20 min, 33% (v/v) Embed 812 resin mixture in 

propylene oxide for 2 hours, 67% (v/v) Embed 812 resin mixture in propylene oxide for 3 hours, 100% 

Embed 812 resin mixture overnight, and fresh 100% Embed 812 resin mixture for 2 hours. After infiltration, 

samples in resin were placed in molds and cured at 65°C for 48 hours. 

  

Resin blocks were sectioned to 80 nm thickness with a Reichert Ultracut E microtome (Leica, Wetzlar, 

Germany), collected on 300 mesh copper grids (EMS), and counter stained for 10 min using saturated 5% 

uranyl acetate followed by Reynold’s lead citrate (EMS). Prepared grids were placed on a filter paper mat 

in labelled Petri dishes and stored in a desiccator until imaging. The sections were imaged using a Talos 

L120C transmission electron microscope (Thermo Scientific, Waltham, MA, USA) equipped with a BM-

Ceta scientific CMOS camera at an accelerating voltage of 120 KV. 
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Supplementary Tables 

 

 

 

Supplementary Table 1. Genome assembly characteristics. 

Genome assembly   

Assembly length (bp) 225,109,209 

Scaffolds 1,780 

Scaffold N50 (bp) 295,434 

G+C content (%) 28.7 

Portion of genome with repetitive sequences (%) 52.1 

    

Genes   

Portion of genome covered by genes (%) 22.3 

Genes 26,723 

Genes with introns 10,295 

CDS 18,405 

Exons per mRNA (mean) 2 

Mean gene length (bp) 1,878 

Mean exon length (bp) 637 

Mean intron length (bp) 803 

tRNA transcripts (unique) 848 

 

 

 

  



 

Supplementary Table 2. Tmu single cell RNA sequencing statistics. 

  GF mouse 
Conventionalized 

mouse 

Input reads 232,006,542 224,595,499 

Quality filtered reads 231,917,602 224,510,480 

Average input read length 59 60 

Read mappinga     

Uniquely mapped reads 162,949,846 (70.3%) 171,330,511 (76.3%) 

     Reads mapped to no feature 65,802,686 (28.4%) 62,552,460 (27.9%) 

     Reads ambiguously mapped 1,330,948 (0.6%) 1,191,630 (0.5%) 

     Average mapped length 60.21 60.58 

     Mismatch rate per base (%) 2.7% 2.5% 

Reads mapped to multiple loci 24,904,419 (10.7%) 21,968,885 (9.8%) 

Reads mapped to too many loci 4,119,855 (1.8%) 4,002,291 (1.8%) 

Unmapped reads 44,063,337 (19.0%) 31,211,084 (13.9%) 

     Too short 36,411,064 (15.7%) 23,887,915 (10.6%) 

     Other 3,525,148 (1.5%) 3,322,755 (1.5%) 

Chimeric reads 0 (0%) 0 (0%) 

DropSeq cell statistics     

Cells selected 3,000 2,999b 

Reads 69,299,617 70,897,116 

     Reads per cell (minimum; median; maximum) 3,999; 18,752; 171,812 7; 19,958; 137,383 

Transcripts 95,816,212 107,586,421 

     Transcripts per cell (minimum; median; maximum) 838; 3,776; 28,849 768; 3,140; 20,547 

Transcripts mapped to rRNA genes 4163 458 

Genes (protein-coding) 20,338 19,436 

     Genes per cell (minimum; median; maximum) 248; 823; 3,751 201; 589; 1,970 

aRead mapping percentages were calculated as a proportion of quality filtered reads. 

bOne cell removed due to low gene and transcript detection. 
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Supplementary Figure 1. Microbial interaction networks depicting interbacterial and Tmu-bacterial correlations over time. 
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Supplementary Figure 2. Caecal metatranscriptomics of Tmu-colonized and naïve (control) WT and muMt-/- 

mice. a, Breakdown of caecal RNA reads from filtering and annotation steps. Columns represent samples from 
individual mice. Outset graph to the right shows percentages of putative mRNA reads mapped to the Tmu   
genome assembly. b, Taxonomic classification of putative bacterial transcripts.
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Supplementary Figure 3. Upregulation of bacterial metabolism in response to protist colonization. Depicted are glycolysis/gluconeogenesis 
(ec00010), tricarboxylic acid (TCA) cycle (ec00020) and the pentose phosphate (PP) (ec00030) pathways in gut microbiota after 2 or 28 days of infection 
in WT or B cell-deficient (muMt -/-) hosts. Genes significantly up- and downregulated (p <0.05 in DESeq2 analysis) are indicated with blue and red 
borders, respectively. Sizes of nodes represent log2 fold- changes between Tmu-colonized  and uninfected control mice (n=4 per group). Pie charts depict 
the phylogenetic source of the gene expression as follows: yellows represent Proteobacteria or Desulfobacterota; orange is Campilobacterota 
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Supplementary Figure 4. Upregulation of Valine-Leucine-Isoleucine biosynthesis in mouse caecal microbiota in response to 
four weeks of protist colonization. Depicted are the KEGG-based metabolic pathways (ec00290). Genes significantly up-       

 and downregulated (p <0.05 in DESeq2 analysis) are indicated with blue and red borders respectively. Sizes of nodes       
represent log2 fold- changes between Tmu-colonized and uninfected control mice at day 28 of the experiment. Pie charts 
depict the phylogenetic source of the gene expression as follows: yellows represent Proteobacteria or Desulfobacterota;  

 
pinks and purples are Firmicutes (dominated by Lachnospiraceae and Clostridium); black represents unclassified bacteria.
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orange is Campilobacterota (Helicobacter); shades of green are Bacteroidota (dominated by Bacteroides and Parabacteroides);  
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Supplementary Figure 5. Putative virulence-related Tmu genes differentially expressed over the course of coloni-
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WT or muMt-/- mice as indicated. c, BspA-like genes with significant changes in expression over colonization time 
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Supplementary Figure 6. Expression of cell cycle marker genes. a, Dotplot and b, heatmap depicting scaled read 
counts of genes known to be expressed during G1/S and G2 phases across each Tmu cluster. Colour blocks in b  
(left) indicate assigned gene function. Counts are separated by the host mouse. c, Expression of meiosis-specific 
genes.
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Supplementary Figure 7. WGA-staining of Tmu cells freshly isolated from mouse caeca or
colons, or in vitro cultured for 1 to 3 days. a, Representative contour plots from FACS analysis of 
WGA-FITC stained protists. Events are gated on live single protists. n=3 animals or culture 
plates per group from four independent experiments. b, Cytospins of WGA-FITC (green) and
DAPI (blue) stained protists. Representative images are shown at 63x magnification. Scale bars, 
10 μm.
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Supplementary Figure 8. Functional enrichment of bacterial gene expression due to protist colonization and host 
genotype. a, Metabolic pathway enrichment in caecal bacteria due to host genotype. b, RPKM of iron-related 
genes attributed to particular bacterial taxa at day 28 in WT or muMt-/- naïve and colonized mice. Colours reprsent 

taxa as indicated: black represents unclassified bacteria, greens are members of the Bacteroidota phylum, pinks
and purples are Firmicutes, orange are Campilobacterota, blues are Deferribacterota. c, Enrichment of bacterial
iron-related gene families due to protist colonization (left) and host genotype (right).
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