Supplementary

A. Determination of transformation

We randomly applied the four augmentations to our images to train the model trained with augmentation, and the procedures of the augmentations were shown in Table A1.

Methods	Procedures
Rotating transformation (light)	Rotate images by a random amount ranging from -20° to 20° , -45° to 45° , or -90° to 90° . We then zoom out the images so that no information
(medium)	library, and the scaling function is provided by OpenCV library ^{1,2} .
(heavy)	
Shear transformation (light)	Apply shear transformation to images with a random radian ranging from $-\pi/6$ to $\pi/6$, from $-\pi/5$ to $\pi/5$, and from $-\pi/4$ to $\pi/4$. We then zoom
(medium)	function is provided by scikit-image library and the scaling function is provided by OpenCV library ^{1,2} .
(heavy)	
Scaling transformation (light)	Scale the side length of images to a randomly selected size ranging from 0.8 to 1, 0.6 to 1, or 0.4 to 1. The scaling function is provided by
(medium)	OpenCV library ² .
(heavy)	
Fisheye distortion (light)	Apply fisheye effect with distortion coefficient set to 0.2 , 0.3 , or 0.4 . We reference the fisheye transform function at this site
(medium)	(<u>https://github.com/Gil-Mor/iFish</u>).
(heavy)	

Table A1. Augmentation example.

Methods	Exam	ple														
Rotating transformation (Angle: -10°)																
Shear transformation (Radian: π/8)		19 19 19 19 19 19 19 19 19 19 19 19 19	, 19 19 19 19 19) () () () () () () () () () () () () ()	9 10 10 10 10 10 10 10 10 10 10 10 10 10	9 10 10 10 10 10 10 10 10 10 10 10 10 10)]]]]]]	0 97 69 2)]]]] 2	9 97 87 89 20	0 97 69 2 2	0) 1) 1) 1) 1) 1) 1) 1) 1) 1)	6) 6) 6) 6) 6) 7	6) 6) 6) 6) 6) 6) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7)	() () () () () () () () () () () () () (
Scaling transformation (Size: 0.95)																
Fisheye distortion																

 Table A2 shows Examples of the four image distortion methods used in this study (one distortion per image) for brain

 MRI.

(Central point:		9	ø	-	1	1	Ð	Ð	1	(B)	(19)			
(94, 70, 170))														
				() ()	@	<u></u>	((۲	0	ē.	\$ 6	*	

Table A3, Table A4, and Table A5 list the results for race, age, and sex prediction, respectively. Note that the rate of declination on the two tasks are calculated in the last two columns as *Declination rate* = $\frac{(AUC - AUC)}{AUC}$, where \overline{AUC} is the average AUC score of the proposed methods and \underline{AUC} is the average AUC score of the original model. All methods performed well in the detection of radiological features. The use of heavily rotated images for training had the most pronounced effect on mitigating the effects of race-related features, and the narrow CI for the detection of radiological features was stable. The heavy extent for four augmentations could lower the performance of demographic attributes classification the most while maintaining the performance of radiological label detection. Hence, we randomly apply all four augmentations to a heavy extent to train and test our model trained with augmentation.

Method		AUC [±CI]		Declination rate (%)					
	Asian	White	Black						
w/o augmentation	0.943 [0.930-0.956]	0.946 [0.936-0.956]	0.954 [0.946-0.962]	N/A					
Rotating transform	mation								
-light	0.915 [0.892-0.938]	0.932 [0.924-0.940]	0.940 [0.934-0.946]	-2.0					
-medium	0.823 [0.710-0.936]	0.844 [0.714-0.974]	0.856 [0.728-0.985]	-11.2					
-heavy	0.781 [0.682-0.881]	0.816 [0.708-0.924]	0.825 [0.714-0.935]	-14.8					
Shear transforma	tion								
-light	0.860 [0.736-0.983]	0.871 [0.738-1.004]	0.881 [0.744-1.018]	-8.1					
-medium	0.841 [0.704-0.978]	0.862 [0.708-1.016]	0.869 [0.715-1.024]	-9.5					
-heavy	0.730 [0.556-0.904]	0.771 [0.592-0.949]	0.783 [0.601-0.966]	-19.7					
Scaling transform	Scaling transformation								

Table A3. Model performance in the race prediction.

-light	0.934 [0.911-0.956]	0.938 [0.923-0.954]	0.948 [0.934-0.961]	-0.8				
-medium	0.865 [0.717-1.014]	0.879 [0.752-1.006]	0.915 [0.854-0.975]	-6.5				
-heavy	0.770 [0.555-0.984]	0.806 [0.595-1.016]	0.817 [0.606-1.029]	-15.8				
Fisheye distortion								
-light	0.919 [0.904-0.934]	0.926 [0.918-0.935]	0.939 [0.934-0.044]	-2.1				
-medium	0.909 [0.902-0.916]	0.916 [0.907-0.926]	0.926 [0.916-0.936]	-3.2				
-heavy	0.890 [0.859-0.920]	0.907 [0.895-0.919]	0.919 [0.911-0.928]	-4.5				
Proposed augmentation	0·761 [0·624-0·898]	0·779 [0·631-0·927]	0·789 [0·635-0·943]	-18·1				

Table A4. Model performance in the age prediction.

Method		AUC	[±CI]		Declinatio n rate (%)						
	0-40	40-60	60-80	80-							
w/o augmentation	$\begin{array}{c} 0.964 \\ 0.971 \end{array} \begin{bmatrix} 0.957 \\ 0.971 \end{bmatrix}$	0·800 [0·723- 0·877]	0·753 [0·704-0·802]	0·906 [0·900- 0·912]	N/A						
Rotating transformation	Rotating transformation										
-light	0·954 [0·941- 0·967]	0·807 [0·770- 844]	0·764 [0·749- 0·779]	0·883 [0·859- 0·907]	-0.4%						
-medium	0·949 [0·940- 0·958]	0·773 [0·693- 0·853]	0·751 [0·717- 0·785]	0·880 [0·870- 0·890]	-2%						
-heavy	0·888 [0·738- 1·038]	0·767 [0·707- 0·827]	0·721 [0·682- 0·760]	0·821 [0·687- 0·995]	-6.6%						
Shear transformation											
-light	0·954 [0·941- 0·967]	0·794 [0·759- 0·829]	0·742 [0·729- 0·755]	0·888 [0·872- 0·904]	-1.3%						
-medium	0·941 [0·908- 0·974]	0·743 [0·638- 0·848]	0·735 [0·692- 0·777]	0·880 [0·858- 0·901]	-3.6%						
-heavy	0·819 [0·489- 1·149]	0·765 [0·704- 0·826]	0·731 [0·691- 0·772]	0·859 [0·823- 0·896]	-7.3%						
Scaling transformation	n										
-light	0·961 [0·956- 0·966]	0·814 [0·785- 0·842]	0·765 [0·731- 0·798]	0·900 [0·894- 0·906]	+0.4%						
-medium	0·943 [0·914- 0·972]	0·776 [0·690- 0·863]	0·725 [0·646- 0·804]	0·880 [0·859- 0·901]	-2.9%						

-heavy	0·855 [0·620- 0·904]	0·737 [0·561- 0·913]	0.690 [0.564- 0.817]	0·802 [0·603- 1·001]	-9.7%				
Fisheye distortion									
-light	0·962 [0·959- 0·965]	0·774 [0·663- 0·886]	0·749 [0·708- 0·789]	0·871 [0·787- 0·955]	-2%				
-medium	0·961 [0·959- 0·963]	0·813 [0·780- 0·846]	0·756 [0·730- 0·781]	0·895 [0·892- 0·899]	+0.1%				
-heavy	0·951 [0·937- 0·965]	0·737 [0·606- 0·867]	0·739 [0·703- 0·775]	0·883 [0·862- 0·904]	-3·3%				
Proposed augmentation	0.884 [0.790- 0.978]	0.725 [0.617-0.833]	0.693 [0.616- 0.770]	0.815 [0.716-0.914]	-8.9%				

Table A5. Model performance in the sex prediction.

Method		AUC	[±CI]		Declination rate $\binom{9}{2}$	
	Female		Male		rate (%)	
w/o augmentation	0·995 0·997]	[0.993-	0·995 0·997]	[0.993-	N/A	
Rotating transformation						
-light	0·992 0·994]	[0.990-	0·992 0·994]	[0.990-	-0.3%	
-medium	0·976 0·982]	[0.970-	0·976 0·982]	[0.970-	-1.9%	
-heavy	0·956 0·994]	[0.918-	0·956 0·994]	[0.918-	-3.9%	
Shear transformation						
-light	0·993 0·996]	[0.990-	0·993 0·996]	[0.990-	-0.2%	
-medium	0·988 0·996]	[0.980-	0·988 0·996]	[0.980-	-0.7%	
-heavy	0·959 1·035]	[0.883-	0·959 1·035]	[0.883-	-3.6%	
Scaling transformation						
-light	0·994 0-·998]	[0.990-	0·994 0-·998]	[0.990-	-0.1%	
-medium	0·986 0·992]	[0.980-	0·986 0·992]	[0.980-	-0.9%	

-heavy	0·884 1·110]	[0.642-	0·884 1·110]	[0.642-	-11.6%				
Fisheye distortion									
-light	0·994 0·996]	[0.992-	0·994 0·996]	[0.992-	-0.1%				
-medium	0·991 0·996]	[0.986-	0·991 0·996]	[0.986-	-0.4%				
-heavy	0·989 0·991]	[0.987-	0·989 0·992]	[0.986-	-0.6%				
Proposed augmentation	0·960 0·989]	[0.931-	0·960 0·989]	[0.931-	-2.8%				

Tables A6, A7, and A8 showed the disparities in race, age, and sex using only rotation, shear, scaling, and fisheye as augmentation, respectively.

Table A6. Disparities in race using only a single augmentation method.

Method	AUC	BCE	ECE	Error rate	Precision
Rotation	0.033 [-0.017	0.067 [-0.015	0.017 [-0.005	0.045 [0.006	0.043 [-0.022
	- 0.084]	- 0.148]	- 0.040]	- 0.084]	- 0.109]
Shear	0.032 [-0.003	0.045 [0.006 -	0.022 [-0.014	0.034 [0.006 -	0.059 [-0.024
	- 0.068]	0.084]	- 0.059]	0.062]	- 0.141]
Scaling	0.033 [-0.009	0.058 [-0.012	0.016 [0.002	0.057 [0.017	0.043 [-0.018
	- 0.074]	- 0.128]	- 0.030]	- 0.097]	- 0.104]
Fisheye	0.034 [-0.003	0.058 [0.000 -	0.015 [0.000 -	0.049 [0.009 -	0.048 [-0.022
	- 0.071]	0.116]	0.031]	0.090]	- 0.118]

Table A7. Disparities in age using only single augmentation method.

.

Method	AUC	BCE	ECE	Error rate	Precision
Rotation	0.098 [0.010	0.172 [-0.119	0.034 [-0.023	0.168 [-0.011	0.098 [-0.095
	- 0.185]	- 0.464]	- 0.091]	- 0.347]	- 0.292]
Shear	0.130 [0.035 -	0.168 [-0.103	0.032 [-0.041	0.180 [-0.062	0.109 [-0.084
	0.226]	- 0.440]	- 0.105]	- 0.422]	- 0.302]
Scaling	0.121 [0.037	0.190 [-0.091	0.030 [-0.035	0.192 [-0.020	0.094 [-0.087
	- 0.205]	- 0.472]	- 0.095]	- 0.403]	- 0.275]
Fisheye	0.132 [0.032 -	0.157 [-0.080	0.042 [-0.030	0.189 [-0.013	0.102 [-0.128
	0.233]	- 0.394]	- 0.113]	- 0.390]	- 0.332]

Method	AUC	BCE	ECE	Error rate	Precision
Rotation	0.015 [-0.011	0.028 [-0.015	0.008 [-0.005	0.018 [-0.010	0.015 [-0.019
	- 0.042]	- 0.070]	- 0.022]	- 0.047]	- 0.049]
Shear	0.008 [-0.005	0.016 [-0.019	0.011 [-0.016	0.020 [0.002 -	0.024 [-0.023
	- 0.021]	- 0.051]	- 0.038]	0.038]	- 0.071]
Scaling	0.010 [-0.008	0.021 [-0.010	0.006 [-0.005	0.022 [-0.006	0.016 [-0.021
	- 0.028]	- 0.052]	- 0.018]	- 0.049]	- 0.054]
Fisheye	0.014 [-0.017	0.022 [-0.012	0.005 [-0.005	0.027 [-0.017	0.017 [-0.022
	- 0.045]	- 0.055]	- 0.016]	- 0.070]	- 0.056]

Table A8. Disparities in sex using only a single augmentation method.

B. Chi-Square test results

Tables B1, B2, and B3 show the Chi-square test results of the demographic attributes and the image labels for MIMIC-CXR, CheXpert, and ADNI datasets, respectively.

	Race	Age	sex			
Atelectasis	2·22e-147	2·56e-263	8e-45			
Cardiomegaly	1·92e-11	0	0.10			
Consolidation	2·18e-17	2·95e-10	1·07e-12			
Edema	4·06e-17	0	0.10			
Enlarged Cardiomediastinum	3·47e-17	4·33e-15	4e-17			
Lung Opacity	4·26e-46	6·35e-212	1·53e-25			
No Finding	6·27e-273	0	2·53e-74			
Pleural Effusion	0	0	3·24e-10			
Pneumonia	7·56e-5	4·67e-15	1·84e-9			
Pneumothorax	7·36e-93	7·64e-23	1·09e-35			

Table B2. CheXpert dataset.

	Race	Age	sex
Atelectasis	1·42e-14	6·62e-43	4·83e-6
Cardiomegaly	3·13e-117	2·51e-225	3·59e-19

Consolidation	8·43e-5	5·71e-5	0.89
Edema	8·33e-18	1.01e-308	0.006
Enlarged Cardiomediastinum	0.54	0.28	5·59e-10
Lung Opacity	1·09e-7	1·13e-196	0.65
No Finding	2·48e-18	0	0.003
Pleural Effusion	8·94e-51	1·82e-294	0.20
Pneumonia	0.32	1·39e-13	1
Pneumothorax	2·05e-29	3·37e-197	0.012

	Age	sex
AD	0.417	0.062

C. ROC curve for each radiological labels

Tables C1 and C2 show the ROC curves for each demographic group in all image labels for CXR and brain MRI images, respectively.

Table C1.	ROC c	urve for	CXR	model.

Train- time	Test- time	Radiological label
aug.	aug.	Atelectasis
w/o	w/o	Race Age Sex Sex Sex Sex Sex Sex Sex Se

Train-Test-AD time time aug. aug. Age Sex w/o w/o False Positive Rate False Positive Rat Age Sex w/o $\mathbf{w}/$ 9 * False Positive Rate False Positive Rat w/o $\mathbf{w}/$ Age Sex False Positive Rate False Positive Rat Aq w/ Se $\mathbf{W}/$ 0.4 False Positive Rate 0.4 False Positive Rate

Table C2. ROC curve for MRI model

D. Comparison of disparities using different methods and data

We benchmarked several existing debiasing methods using our proposed augmented images to evaluate if our method could further improve the efficacy of the existing methods. We applied our proposed augmentation to training and testing separately and compared them to using only original data. Table D1, D2, and D3 showed the disparities

results in race, age, and sex groups using MIMIC-CXR and DenseNet121 architecture. Table D4 and D5 showed the disparities results in age and sex groups using ADNI brain MRI dataset and ResNet18 architecture.

We quantified the gap of the performance between demographic groups by using the calculation in the prior work.³ The disparity metrics considers the difference between favour and unfavored groups. For the binary demographic attribute (sex), the disparity for i-th image label was calculated by the difference of performances between male and female:

 $disparity_{i,sex} = ABS(performance_{i,female} - performance_{i,male})$. (Equation 1)

For the non-binary demographic attribute (race or age), we calculated the difference between the performance of a certain demographic group and the median of the performance of all demographic groups:

 $disparity_{i,race \ or \ age} = \sum_{j \ in \ subgroup} ABS(performance_{i,j} - Median(performance_{i,all})).$ (Equation 2)

We then averaged the disparities across all image labels.

Method	Train- time aug.	Test- time aug.	AUC	BCE	ECE	Error rate	Precision
Baseline (No	w/o	w/o	0.040 [-0.020 - 0.099]	0.063 [-0.018 - 0.144]	0.015 [-0.012 - 0.042]	0.055 [0.010 - 0.100]	0.044 [-0.033 - 0.120]
debias methods	w/o	w/	0.037 [-0.009 - 0.084]	0.057 [-0.013 - 0.128]	0.013 [-0.007 - 0.032]	0.047 [-0.002 - 0.096]	0.060 [-0.020 - 0.140]
applied)	w/	w/o	0.035 [-0.016 - 0.086]	0.058 [-0.019 - 0.134]	0.018 [-0.003 - 0.039]	0.052 [0.007 - 0.097]	0.040 [-0.018 - 0.099]
	w/	w/	0.037 [-0.016 - 0.090]	0.056 [-0.014 - 0.126]	0.014 [-0.001 - 0.028]	0.052 [0.003 - 0.101]	0.045 [0.004 - 0.087]
Balanced	w/o	w/o	0.051 [-0.001 - 0.103]	0.091 [-0.036 - 0.218]	0.028 [-0.018 - 0.073]	0.059 [0.002 - 0.117]	0.051 [-0.031 - 0.133]
	w/o	w/	0.046 [-0.013 - 0.105]	0.079 [-0.027 - 0.185]	0.033 [-0.023 - 0.089]	0.037 [-0.009 - 0.082]	0.081 [-0.127 - 0.289]
	w/	w/o	0.031 [-0.018 - 0.080]	0.086 [-0.112 - 0.285]	0.025 [-0.036 - 0.085]	0.046 [-0.012 - 0.104]	0.046 [-0.012 - 0.104]
	w/	w/	0.034 [-0.006 - 0.073]	0.075 [-0.081 - 0.231]	0.029 [-0.035 - 0.093]	0.041 [-0.037 - 0.118]	0.056 [-0.026 - 0.138]
Stratified	w/o	w/	0.083 [0.024 - 0.141]	0.167 [-0.106 - 0.440]	0.085 [-0.105 - 0.275]	0.119 [-0.044 - 0.281]	0.105 [0.014 - 0.196]
	w/o	w/	0.112 [0.021 - 0.203]	0.098 [-0.018 - 0.215]	0.043 [-0.033 - 0.118]	0.367 [-0.002 - 0.736]	0.195 [-0.038 - 0.428]
	w/	w/o	0.059 [0.006 - 0.113]	0.134 [-0.050 - 0.318]	0.063 [-0.013 - 0.139]	0.141 [-0.124 - 0.406]	0.070 [-0.017 - 0.157]
	w/	w/	0.059 [-0.008	0.076 [-0.040	0.041 [-0.014	0.209 [-0.292	0.076 [-0.030

Table D1. Dist	parities in	race of De	enseNet121	using MI	MIC-CXR.
----------------	-------------	------------	------------	----------	----------

			- 0.126]	- 0.192]	- 0.096]	- 0.710]	- 0.182]
Adversarial learning	w/o	w/o	0.037 [-0.028 - 0.102]	0.060 [-0.027 - 0.147]	0.021 [-0.014 - 0.056]	0.049 [0.006 - 0.091]	0.047 [-0.005 - 0.098]
	w/o	w/	0.036 [-0.021 - 0.093]	0.065 [-0.030 - 0.160]	0.020 [-0.019 - 0.060]	0.039 [-0.003 - 0.081]	0.059 [-0.001 - 0.119]
	w/	w/o	0.036 [-0.002 - 0.074]	0.053 [-0.003 - 0.108]	0.016 [0.000 - 0.032]	0.052 [0.005 - 0.100]	0.042 [-0.011 - 0.096]
	w/	w/	0.035 [0.001 - 0.068]	0.050 [-0.003 - 0.102]	0.017 [-0.006 - 0.040]	0.052 [-0.002 - 0.107]	0.036 [-0.008 - 0.081]
DistMatchM MD	w/o	w/o	0.042 [-0.050 - 0.134]	0.093 [-0.068 - 0.255]	0.038 [-0.042 - 0.118]	0.042 [-0.027 - 0.110]	0.045 [-0.047 - 0.136]
	w/o	w/	0.018 [-0.009 - 0.046]	0.091 [-0.055 - 0.236]	0.039 [-0.044 - 0.122]	0.026 [-0.019 - 0.072]	0.040 [-0.046 - 0.126]
	w/	w/o	0.020 [-0.007 - 0.047]	0.084 [-0.039 - 0.207]	0.038 [-0.039 - 0.116]	0.042 [-0.040 - 0.124]	0.042 [-0.040 - 0.124]
	w/	w/	0.024 [-0.002 - 0.049]	0.084 [-0.039 - 0.207]	0.036 [-0.038 - 0.109]	0.042 [-0.039 - 0.123]	0.042 [-0.040 - 0.124]
DistMatchM ean	w/o	w/o	0.034 [-0.007 - 0.075]	0.060 [-0.040 - 0.160]	0.018 [-0.023 - 0.060]	0.050 [0.009 - 0.091]	0.041 [-0.040 - 0.122]
	w/o	w/	0.031 [0.006 - 0.056]	0.065 [-0.060 - 0.190]	0.023 [-0.025 - 0.072]	0.036 [-0.002 - 0.073]	0.046 [-0.026 - 0.118]
	w/	w/o	0.029 [-0.002 - 0.060]	0.064 [-0.059 - 0.188]	0.026 [-0.017 - 0.069]	0.039 [-0.001 - 0.078]	0.046 [-0.039 - 0.131]
	w/	w/	0.039 [-0.010 - 0.089]	0.064 [-0.065 - 0.193]	0.026 [-0.017 - 0.069]	0.030 [-0.010 - 0.071]	0.053 [-0.028 - 0.134]
FairALM	w/o	w/o	0.027 [-0.006 - 0.060]	0.102 [-0.040 - 0.245]	0.026 [-0.018 - 0.070]	0.057 [0.003 - 0.112]	0.044 [-0.017 - 0.104]
	w/o	w/	0.033 [-0.017 - 0.082]	0.080 [-0.037 - 0.197]	0.028 [-0.024 - 0.079]	0.044 [-0.004 - 0.092]	0.049 [-0.011 - 0.108]
	w/	w/o	0.037 [-0.022 - 0.097]	0.083 [-0.035 - 0.202]	0.032 [-0.029 - 0.093]	0.052 [0.020 - 0.084]	0.043 [-0.030 - 0.117]
	w/	w/	0.036 [-0.017 - 0.089]	0.079 [-0.034 - 0.192]	0.028 [-0.030 - 0.086]	0.048 [0.001 - 0.095]	0.041 [-0.038 - 0.121]

Table D2. Dis	parities in a	age of D	DenseNet121	using MIMI	C-CXR

Method	Train- time aug.	Test- time aug.	AUC	BCE	ECE	Error rate	Precision
Baseline (No previous	w/o	w/o	0.114 [0.012 - 0.215]	0.183 [-0.104 - 0.470]	0.031 [-0.019 - 0.081]	0.208 [-0.060 - 0.476]	0.093 [-0.060 - 0.246]

debias methods	w/o	w /	0.106 [0.013 - 0.200]	0.189 [-0.098 - 0.476]	0.036 [-0.021 - 0.093]	0.181 [-0.112 - 0.473]	0.120 [-0.062 - 0.302]
applied)	w/	w/o	0.125 [0.041 - 0.209]	0.197 [-0.108 - 0.502]	0.023 [-0.032 - 0.078]	0.179 [-0.040 - 0.397]	0.099 [-0.091 - 0.289]
	w/	w/	0.112 [0.012 - 0.212]	0.186 [-0.086 - 0.457]	0.026 [-0.026 - 0.077]	0.163 [-0.110 - 0.437]	0.104 [-0.066 - 0.274]
Balanced	w/o	w/o	0.133 [0.028 - 0.237]	0.267 [-0.193 - 0.728]	0.076 [-0.112 - 0.263]	0.220 [-0.088 - 0.528]	0.128 [-0.160 - 0.416]
	w/o	w/	0.112 [0.002 - 0.223]	0.242 [-0.142 - 0.626]	0.078 [-0.132 - 0.288]	0.172 [-0.065 - 0.409]	0.172 [-0.131 - 0.475]
	w/	w/o	0.121 [0.017 - 0.226]	0.265 [-0.292 - 0.823]	0.067 [-0.117 - 0.251]	0.157 [-0.093 - 0.407]	0.127 [-0.112 - 0.366]
	w/	w/	0.121 [0.033 - 0.210]	0.233 [-0.210 - 0.675]	0.066 [-0.132 - 0.264]	0.140 [-0.153 - 0.433]	0.134 [-0.114 - 0.382]
Stratified	w/o	w/o	0.137 [0.021 - 0.252]	0.191 [-0.064 - 0.446]	0.073 [-0.103 - 0.249]	0.277 [-0.001 - 0.555]	0.143 [-0.100 - 0.386]
	w/o	w/	0.129 [0.007 - 0.251]	0.178 [-0.049 - 0.404]	0.084 [-0.049 - 0.218]	0.376 [-0.162 - 0.914]	0.186 [-0.075 - 0.446]
	w/	w/o	0.137 [0.037 - 0.238]	0.187 [-0.116 - 0.490]	0.075 [-0.091 - 0.240]	0.342 [-0.084 - 0.769]	0.135 [-0.169 - 0.438]
	w/	w/	0.142 [0.044 - 0.241]	0.230 [-0.160 - 0.619]	0.126 [-0.155 - 0.407]	0.550 [-0.143 - 1.243]	0.134 [-0.093 - 0.361]
Adversarial learning	w/o	w/o	0.113 [0.026 - 0.200]	0.197 [-0.087 - 0.481]	0.050 [-0.043 - 0.143]	0.143 [-0.052 - 0.337]	0.114 [-0.071 - 0.300]
	w/o	w/	0.107 [0.011 - 0.202]	0.214 [-0.114 - 0.542]	0.062 [-0.087 - 0.211]	0.131 [-0.082 - 0.345]	0.127 [-0.098 - 0.351]
	w/	w/o	0.125 [0.052 - 0.199]	0.186 [-0.085 - 0.457]	0.030 [-0.021 - 0.081]	0.174 [-0.057 - 0.405]	0.093 [-0.096 - 0.282]
	w/	w/	0.116 [0.026 - 0.206]	0.180 [-0.073 - 0.433]	0.032 [-0.026 - 0.090]	0.181 [-0.079 - 0.441]	0.089 [-0.072 - 0.250]
DistMatchM MD	w/o	w/o	0.089 [-0.016 - 0.194]	0.300 [-0.259 - 0.858]	0.130 [-0.156 - 0.415]	0.098 [-0.020 - 0.217]	0.142 [-0.157 - 0.441]
	w/o	w/	0.023 [-0.007 - 0.052]	0.301 [-0.216 - 0.818]	0.135 [-0.160 - 0.431]	0.065 [-0.071 - 0.202]	0.151 [-0.144 - 0.446]
	w/	w/o	0.023 [-0.003 - 0.049]	0.285 [-0.194 - 0.764]	0.136 [-0.153 - 0.426]	0.150 [-0.149 - 0.448]	0.149 [-0.151 - 0.450]
	w/	w/	0.054 [0.010 - 0.098]	0.285 [-0.194 - 0.764]	0.133 [-0.152 - 0.418]	0.150 [-0.150 - 0.450]	0.149 [-0.152 - 0.451]
DistMatchM ean	w/o	w/o	0.109 [-0.011 - 0.230]	0.199 [-0.141 - 0.538]	0.050 [-0.070 - 0.171]	0.146 [-0.057 - 0.349]	0.113 [-0.101 - 0.327]

	w/o	w/	0.098 [-0.012 - 0.209]	0.208 [-0.181 - 0.597]	0.070 [-0.081 - 0.220]	0.123 [-0.068 - 0.315]	0.132 [-0.102 - 0.367]
	w /	w/o	0.122 [0.028 - 0.215]	0.210 [-0.186 - 0.605]	0.072 [-0.068 - 0.212]	0.168 [-0.009 - 0.345]	0.122 [-0.148 - 0.393]
	w/	w/	0.110 [0.000 - 0.220]	0.203 [-0.195 - 0.601]	0.072 [-0.086 - 0.230]	0.141 [-0.083 - 0.366]	0.127 [-0.154 - 0.408]
FairALM	w/o	w/o	0.098 [0.016 - 0.179]	0.240 [-0.213 - 0.693]	0.061 [-0.063 - 0.186]	0.180 [-0.088 - 0.449]	0.097 [-0.109 - 0.304]
	w/o	w/	0.108 [0.037 - 0.179]	0.254 [-0.134 - 0.642]	0.084 [-0.101 - 0.269]	0.170 [-0.139 - 0.480]	0.120 [-0.154 - 0.395]
	w/	w/o	0.124 [0.036 - 0.211]	0.269 [-0.160 - 0.699]	0.097 [-0.126 - 0.320]	0.197 [-0.029 - 0.423]	0.110 [-0.118 - 0.337]
	w/	w/	0.124 [0.031 - 0.217]	0.267 [-0.168 - 0.703]	0.089 [-0.130 - 0.308]	0.230 [-0.022 - 0.482]	0.101 [-0.084 - 0.286]

Table D3. Dispariti	es in sex of Densel	Net121 using MIMIC-CXR.
---------------------	---------------------	-------------------------

Method	Train- time aug.	Test- time aug.	AUC	BCE	ECE	Error rate	Precision
Baseline (No previous	w/o	w/o	0.010 [-0.009 - 0.030]	0.025 [-0.019 - 0.069]	0.013 [-0.014 - 0.039]	0.027 [-0.009 - 0.063]	0.020 [-0.017 - 0.057]
debias methods applied)	w/o	w/	0.010 [-0.008 - 0.029]	0.020 [-0.014 - 0.054]	0.009 [-0.006 - 0.023]	0.023 [-0.015 - 0.061]	0.035 [-0.041 - 0.110]
	w/	w/o	0.014 [-0.014 - 0.042]	0.021 [-0.009 - 0.051]	0.007 [-0.005 - 0.019]	0.021 [-0.014 - 0.055]	0.016 [-0.012 - 0.045]
	w/	w/	0.013 [-0.011 - 0.037]	0.021 [-0.012 - 0.054]	0.007 [-0.007 - 0.021]	0.015 [-0.014 - 0.044]	0.026 [-0.020 - 0.072]
Balanced	w/o	w/o	0.015 [-0.009 - 0.039]	0.038 [-0.024 - 0.100]	0.013 [-0.015 - 0.040]	0.031 [-0.032 - 0.094]	0.015 [-0.011 - 0.040]
	w/o	w/	0.015 [-0.005 - 0.035]	0.033 [-0.019 - 0.084]	0.013 [-0.013 - 0.040]	0.024 [-0.017 - 0.064]	0.017 [-0.019 - 0.054]
	w/	w/o	0.018 [-0.019 - 0.055]	0.032 [-0.006 - 0.071]	0.011 [-0.011 - 0.033]	0.021 [-0.014 - 0.055]	0.020 [-0.009 - 0.049]
	w/	w/	0.015 [-0.016 - 0.046]	0.025 [-0.008 - 0.057]	0.007 [-0.004 - 0.017]	0.010 [-0.010 - 0.030]	0.018 [-0.008 - 0.043]
Stratified	w/o	w/o	0.011 [-0.005 - 0.027]	0.022 [-0.037 - 0.081]	0.020 [-0.001 - 0.040]	0.028 [-0.018 - 0.074]	0.033 [-0.009 - 0.076]
	w/o	w/	0.014 [-0.005 - 0.032]	0.024 [-0.039 - 0.087]	0.018 [-0.014 - 0.050]	0.064 [-0.035 - 0.164]	0.052 [-0.027 - 0.132]
	w/	w/o	0.029 [-0.015	0.032 [-0.021	0.013 [-0.016	0.033 [-0.029	0.026 [-0.019

			- 0.072]	- 0.084]	- 0.043]	- 0.095]	- 0.071]
	w/	w/	0.026 [0.002 - 0.049]	0.029 [-0.011 - 0.070]	0.016 [-0.022 - 0.054]	0.057 [-0.001 - 0.115]	0.035 [-0.059 - 0.129]
Adversarial learning	w/o	w/o	0.011 [-0.004 - 0.026]	0.020 [-0.014 - 0.054]	0.008 [-0.014 - 0.030]	0.015 [-0.006 - 0.036]	0.020 [-0.026 - 0.066]
	w/o	w/	0.014 [-0.004 - 0.033]	0.023 [-0.011 - 0.058]	0.008 [-0.010 - 0.026]	0.015 [-0.006 - 0.036]	0.021 [-0.031 - 0.073]
	w/	w/o	0.013 [-0.009 - 0.034]	0.020 [-0.010 - 0.049]	0.012 [-0.015 - 0.039]	0.031 [-0.028 - 0.089]	0.022 [-0.007 - 0.051]
	w/	w/	0.011 [-0.004 - 0.027]	0.018 [-0.006 - 0.042]	0.014 [-0.019 - 0.048]	0.037 [-0.018 - 0.091]	0.024 [-0.020 - 0.068]
DistMatchM MD	w/o	w/o	0.020 [-0.004 - 0.043]	0.030 [-0.012 - 0.072]	0.011 [-0.008 - 0.030]	0.033 [-0.037 - 0.103]	0.015 [-0.006 - 0.035]
	w/o	w/	0.004 [-0.004 - 0.012]	0.029 [-0.008 - 0.067]	0.012 [-0.006 - 0.030]	0.015 [-0.011 - 0.041]	0.014 [-0.003 - 0.031]
	w/	w/o	0.008 [-0.001 - 0.017]	0.028 [-0.006 - 0.063]	0.012 [-0.005 - 0.029]	0.013 [-0.006 - 0.032]	0.012 [-0.005 - 0.030]
	w/	w/	0.016 [-0.013 - 0.045]	0.028 [-0.006 - 0.063]	0.012 [-0.005 - 0.029]	0.012 [-0.006 - 0.030]	0.013 [-0.005 - 0.030]
DistMatchMe an	w/o	w/o	0.011 [-0.004 - 0.026]	0.022 [-0.005 - 0.049]	0.008 [-0.004 - 0.020]	0.018 [-0.016 - 0.052]	0.020 [-0.007 - 0.047]
	w/o	w/	0.012 [-0.002 - 0.026]	0.022 [-0.009 - 0.053]	0.008 [-0.005 - 0.021]	0.020 [-0.004 - 0.044]	0.023 [-0.015 - 0.061]
	w/	w/o	0.014 [-0.012 - 0.039]	0.026 [-0.013 - 0.066]	0.010 [-0.009 - 0.029]	0.032 [-0.012 - 0.076]	0.019 [-0.027 - 0.065]
	w/	w/	0.015 [-0.006 - 0.035]	0.026 [-0.014 - 0.066]	0.010 [-0.013 - 0.032]	0.043 [-0.027 - 0.113]	0.022 [-0.030 - 0.074]
FairALM	w/o	w/o	0.014 [-0.021 - 0.049]	0.035 [-0.069 - 0.139]	0.008 [-0.005 - 0.021]	0.016 [-0.016 - 0.047]	0.020 [-0.013 - 0.054]
	w/o	w/	0.011 [-0.010 - 0.032]	0.028 [-0.011 - 0.067]	0.010 [-0.006 - 0.027]	0.014 [0.001 - 0.027]	0.026 [-0.035 - 0.087]
	w/	w/o	0.009 [-0.009 - 0.028]	0.028 [-0.005 - 0.061]	0.010 [-0.009 - 0.029]	0.022 [-0.019 - 0.063]	0.016 [-0.021 - 0.052]
	w/	w/	0.010 [-0.011 - 0.032]	0.028 [-0.008 - 0.063]	0.011 [-0.013 - 0.034]	0.033 [-0.008 - 0.074]	0.022 [-0.036 - 0.080]

Table D4. Disp	parities in a	ige of	ResNet18	using	ADNI	brair	n MRI.

Method	Train- time aug.	Test- time aug.	AUC	BCE	ECE	Error rate	Precision
--------	------------------------	-----------------------	-----	-----	-----	------------	-----------

Baseline (No previous	w/o	w/o	0.209	0.322	0.109	0.273	0.428
debias	w/o	w/	0.251	0·109	0.024	0.173	0.226
applied)	$\mathbf{w}/$	w/o	0·163	0.253	0.070	0·128	0.095
	w/	w/	0.170	0.038	0.012	0.151	0.107
Balanced	w/o	w/o	0.182	0.110	0.013	0.021	0.018
	w/o	w/	0.127	0.101	0.013	0.144	0.124
	w /	w/o	0.297	0.124	0.013	0.013	0.013
	w/	w/	0.215	0.103	0.013	0.013	0.013
Stratified	w/o	w/o	0.280	0.143	0.017	0.148	0.296
	w/o	w/	0.209	0.073	0.025	0.002	0.337
	w/	w/o	0.170	1.048	0.018	0.013	0.013
	w /	w/	0.136	0.974	0.019	0.013	0.013
Adversarial	w/o	w/o	0.120	0.084	0.016	0.031	0.022
learning	w/o	w/	0.110	0.072	0.016	0.013	0.013
	w/	w/o	0.175	0.087	0.015	0.013	0.013
	w/	w/	0.149	0.085	0.014	0.013	0.013
DistMatchM	w/o	w/o	0.159	0.042	0.049	0.032	0.039
MD	w/o	w/	0.055	0.056	0.018	0.097	0.092
	w /	w/o	0.090	0.200	0.002	0.122	0.117
	w /	w /	0.132	0.263	0.004	0.072	0.099
DistMatchMe	w/o	w/o	0.074	0.090	0.013	0.021	0.018
an	w/o	w/	0.054	0.080	0.013	0.045	0.047
	w/	w/o	0.221	0.095	0.013	0.078	0.050
	w/	w/	0.073	0.088	0.013	0.039	0.025
FairALM	w/o	w/o	0.216	0.316	0.114	0.162	0.241
	w/o	w/	0.190	0.160	0.001	0.030	0.139
	w/	w/o	0.086	0.004	0.004	0.102	0.067
	w/	w/	0.191	0.048	0.007	0.056	0.045

Table D5. Disparities in sex of ResNet18 using ADNI brain MRI.

Method	Train- time	Test- time	AUC	BCE	ECE	Error rate	Precision
--------	----------------	---------------	-----	-----	-----	------------	-----------

	aug.	aug.					
Baseline	w/o	w/o	0.247	0.369	0.033	0.258	0.373
(No previous debias	w/o	w/	0.138	0.038	0.062	0.124	0.182
methods applied)	w/	w/o	0.065	0.076	0.042	0.178	0.156
	w/	w/	0.064	0.055	0.1	0.168	0.144
Balanced	w/o	w/o	0.007	0.404	0.056	0.064	0.061
	w/o	w/	0.149	0.378	0.056	0.135	0.057
	w/	w/o	0	0.361	0.056	0.056	0.056
	w/	w/	0.069	0.353	0.056	0.056	0.056
Stratified	w/o	w/o	0.202	0.376	0.057	0.117	0.154
	w/o	w/	0.172	0.166	0.022	0.051	0.154
	w/	w/o	0.026	0.395	0.055	0.056	0.056
	w/	w/	0.017	0.495	0.058	0.056	0.056
Adversarial	w/o	w/o	0.074	0.281	0.057	0.025	0.043
learning	w/o	w/	0.04	0.279	0.056	0.056	0.056
	w/	w/o	0.057	0.296	0.057	0.056	0.056
	w/	w/	0.059	0.301	0.056	0.056	0.056
DistMatchM	w/o	w/o	0.059	0.034	0.029	0.209	0.153
MD	w/o	w/	0.067	0.165	0.024	0.059	0.1
	w/	w/o	0.099	0.313	0.044	0.138	0.152
	w/	w/	0.076	0.365	0.047	0.086	0.138
DistMatchMe	w/o	w/o	0.072	0.358	0.056	0.064	0.061
an	w/o	w/	0.07	0.351	0.056	0.001	0.038
	w/	w/o	0.216	0.376	0.056	0.104	0.085
	w/	w/	0.027	0.366	0.056	0.066	0.061
FairALM	w/o	w/o	0.254	0.269	0.093	0.211	0.283
	w/o	w/	0.13	0.098	0.007	0.005	0.114
	w/	w/o	0.002	0.087	0.041	0.011	0.04
	w/	w/	0.035	0.112	0.049	0.051	0.069

Table D6 showed the disparities results of using ResNet50 architecture on MIMIC-CXR, and Table D7 showed the disparities results of using DenseNet121 architecture on CheXpert dataset. Table D8 showed the

disparities results of the model without ImageNet pretrained weight. The disparities were similar between the model with pre-trained weights and the model without pre-trained weights. The comparison between the original models with and without pre-trained weights suggest that the pre-trained weights did not introduce bias.

Group	Train- time aug.	Test- time aug.	AUC	BCE	ECE	Error rate	Precision
Race	w/o	w/o	0.037 [-0.011 - 0.085]	0.071 [-0.049 - 0.191]	0.024 [-0.024 - 0.073]	0.060 [0.017 - 0.103]	0.042 [-0.019 - 0.104]
w/o w/ w/	w/o	w/	0.035 [-0.023 - 0.092]	0.064 [-0.048 - 0.175]	0.018 [-0.018 - 0.053]	0.040 [-0.004 - 0.085]	0.040 [-0.039 - 0.119]
	w/	w/o	0.030 [0.007 - 0.053]	0.075 [-0.048 - 0.198]	0.026 [-0.020 - 0.073]	0.049 [0.008 - 0.090]	0.044 [-0.039 - 0.126]
	w/	w/	0.037 [-0.006 - 0.079]	0.061 [-0.026 - 0.148]	0.019 [-0.009 - 0.048]	0.048 [0.002 - 0.093]	0.041 [-0.046 - 0.127]
Age	w/o	w/o	0.116 [0.026 - 0.206]	0.220 [-0.167 - 0.608]	0.059 [-0.079 - 0.198]	0.224 [0.017 - 0.431]	0.095 [-0.087 - 0.278]
	w/o	w/	0.093 [-0.009 - 0.195]	0.201 [-0.152 - 0.554]	0.052 [-0.072 - 0.176]	0.199 [-0.024 - 0.422]	0.103 [-0.069 - 0.274]
	w/	w/o	0.117 [0.015 - 0.220]	0.217 [-0.115 - 0.550]	0.063 [-0.072 - 0.199]	0.226 [0.015 - 0.437]	0.115 [-0.152 - 0.383]
	w/	w/	0.106 [0.000 - 0.211]	0.197 [-0.107 - 0.501]	0.053 [-0.050 - 0.156]	0.260 [-0.017 - 0.537]	0.110 [-0.130 - 0.350]
sex	w/o	w/o	0.011 [-0.016 - 0.037]	0.026 [-0.003 - 0.056]	0.011 [-0.003 - 0.024]	0.016 [-0.012 - 0.044]	0.019 [-0.013 - 0.051]
	w/o	w/	0.014 [-0.020 - 0.048]	0.023 [-0.011 - 0.056]	0.006 [-0.002 - 0.015]	0.018 [-0.006 - 0.042]	0.022 [-0.013 - 0.056]
	w/	w/o	0.016 [-0.033 - 0.064]	0.029 [-0.043 - 0.101]	0.008 [-0.006 - 0.021]	0.024 [-0.019 - 0.068]	0.011 [-0.023 - 0.045]
	w/	w/	0.016 [-0.029 - 0.061]	0.023 [-0.015 - 0.062]	0.008 [-0.009 - 0.025]	0.025 [-0.010 - 0.059]	0.013 [-0.022 - 0.048]

Table D6. Disparities of ResNet50 using MIMIC-CXR.

Table D7. Disparities of DenseNet121 using CheXpert CXR.

Group	Train- time aug.	Test- time aug.	AUC	BCE	ECE	Error rate	Precision
-------	------------------------	-----------------------	-----	-----	-----	------------	-----------

Race	w/o	w/o	0.037 [-0.033 - 0.107]	0.050 [-0.037 - 0.136]	0.016 [-0.015 - 0.048]	0.025 [-0.010 - 0.060]	0.055 [-0.005 - 0.115]
	w/o	w/	0.027 [-0.006 - 0.061]	0.062 [-0.083 - 0.208]	0.021 [-0.027 - 0.070]	0.030 [-0.022 - 0.082]	0.086 [-0.094 - 0.266]
	w/	w/o	0.031 [-0.013 - 0.074]	0.049 [-0.031 - 0.128]	0.015 [-0.007 - 0.038]	0.032 [-0.012 - 0.076]	0.045 [-0.054 - 0.143]
	w/	w/	0.033 [-0.037 - 0.103]	0.052 [-0.033 - 0.136]	0.017 [-0.014 - 0.048]	0.032 [-0.012 - 0.076]	0.049 [-0.058 - 0.156]
Age	w/o	w/o	0.080 [0.013 - 0.146]	0.142 [-0.067 - 0.350]	0.029 [-0.027 - 0.085]	0.094 [-0.015 - 0.203]	0.078 [-0.063 - 0.219]
	w/o	w/	0.082 [0.013 - 0.151]	0.160 [-0.126 - 0.446]	0.044 [-0.060 - 0.147]	0.094 [-0.024 - 0.212]	0.112 [-0.152 - 0.377]
	w/	w/o	0.077 [-0.023 - 0.176]	0.142 [-0.073 - 0.357]	0.036 [-0.035 - 0.107]	0.117 [-0.043 - 0.276]	0.098 [-0.105 - 0.301]
	w/	w/	0.076 [-0.017 - 0.170]	0.141 [-0.078 - 0.359]	0.045 [-0.034 - 0.124]	0.099 [-0.052 - 0.250]	0.101 [-0.146 - 0.348]
sex	w/o	w/o	0.011 [-0.016 - 0.037]	0.026 [-0.003 - 0.056]	0.011 [-0.003 - 0.024]	0.016 [-0.012 - 0.044]	0.019 [-0.013 - 0.051]
	w/o	w/	0.014 [-0.020 - 0.048]	0.023 [-0.011 - 0.056]	0.006 [-0.002 - 0.015]	0.018 [-0.006 - 0.042]	0.022 [-0.013 - 0.056]
	w/	w/o	0.016 [-0.033 - 0.064]	0.029 [-0.043 - 0.101]	0.008 [-0.006 - 0.021]	0.024 [-0.019 - 0.068]	0.011 [-0.023 - 0.045]
	w/	w/	0.016 [-0.029 - 0.061]	0.023 [-0.015 - 0.062]	0.008 [-0.009 - 0.025]	0.025 [-0.010 - 0.059]	0.013 [-0.022 - 0.048]

Table D8. Disparities of DenseNet121 usin	g MIMIC CXR (without ImageNet	pretrain weig	ht)
---	---------------	------------------	---------------	-----

Method	Train- time aug.	Test- time aug.	AUC	BCE	ECE	Error rate	Precision
No pretrained weight (Race)	w/o	w/o	0.036 [-0.003 - 0.074]	0.052 [-0.004 - 0.107]	0.018 [-0.010 - 0.046]	0.047 [0.003 - 0.091]	0.045 [-0.022 - 0.113]
	w/o	w/	0.034 [- 0.006 - 0.074]	0.050 [- 0.002 - 0.103]	0.018 [- 0.007 - 0.043]	0.037 [0.002 - 0.072]	0.062 [- 0.022 - 0.146]
	w/	w/o	0.031 [-0.021 - 0.083]	0.071 [-0.037 - 0.179]	0.025 [-0.012 - 0.062]	0.053 [0.017 - 0.088]	0.045 [-0.033 - 0.123]

	w/	w/	0.038 [-0.018 - 0.095]	0.076 [-0.064 - 0.217]	0.031 [-0.027 - 0.088]	0.048 [-0.009 - 0.106]	0.050 [-0.020 - 0.120]
No pretrained weight (Age)	w/o	w/o	0.127 [0.039 - 0.215]	0.188 [- 0.080 - 0.456]	0.039 [- 0.014 - 0.091]	0.173 [- 0.039 - 0.384]	0.092 [- 0.099 - 0.283]
	w/o	w/	0.120 [0.039 - 0.202]	0.182 [- 0.080 - 0.443]	0.046 [- 0.061 - 0.153]	0.144 [- 0.077 - 0.364]	0.131 [- 0.127 - 0.389]
	w/	w/o	0.134 [0.048 - 0.220]	0.229 [-0.164 - 0.622]	0.063 [-0.046 - 0.171]	0.218 [0.003 - 0.432]	0.104 [-0.149 - 0.356]
	w/	w/	0.106 [-0.001 - 0.213]	0.230 [-0.182 - 0.641]	0.080 [-0.075 - 0.236]	0.208 [-0.076 - 0.491]	0.113 [-0.115 - 0.341]
No pretrained weight (sex)	w/o	w/o	0.011 [- 0.008 - 0.029]	0.017 [- 0.009 - 0.044]	0.006 [- 0.005 - 0.016]	0.030 [- 0.010 - 0.070]	0.019 [- 0.010 - 0.048]
	w/o	w/	0.011 [- 0.005 - 0.026]	0.016 [- 0.010 - 0.043]	0.007 [- 0.006 - 0.020]	0.024 [- 0.016 - 0.063]	0.029 [- 0.023 - 0.081]
	w/	w/o	0.011 [-0.019 - 0.040]	0.024 [-0.012 - 0.060]	0.009 [-0.005 - 0.022]	0.025 [-0.004 - 0.053]	0.013 [-0.020 - 0.047]
	w/	w/	0.016 [-0.018 - 0.050]	0.028 [-0.010 - 0.065]	0.010 [-0.007 - 0.026]	0.024 [-0.001 - 0.049]	0.019 [-0.019 - 0.057]

E. Performance and disparities in the detection of CXR labels

The subsequent figures depict the performance and fairness gap of the 2D Chest X-Ray (CXR) model proposed in this study, juxtaposed with other debiasing methods. This section presents the outcomes for nine other pulmonary conditions, with the figure for Edema detailed in the main body of the text. The configuration of these figures is consistent with Figure 2 as described in the main document.

Atelectasis

Figure E1. The model performance and fairness gap for identifying Atelectasis from CXR images in different race, age, and sex groups.

Cardiomegaly

Figure E2. The model performance and fairness gap for identifying Cardiomegaly from CXR images in different race, age, and sex groups.

Consolidation

Figure E3. The model performance and fairness gap for identifying Consolidation from CXR images in different race, age, and sex groups.

Enlarged Cardiomediastinum

Figure E4. The model performance and fairness gap for identifying Enlarged Cardiomediastinum from CXR images in different race, age, and sex groups.

Lung Opacity

Figure E5. The model performance and fairness gap for identifying Lung Opacity from CXR images in different race, age, and sex groups.

No Finding

Figure E6. The model performance and fairness gap for identifying No finding from CXR images in different race, age, and sex groups.

Pleural Effusion

Figure E7. The model performance and fairness gap for identifying Pleural Effusion from CXR images in different race, age, and sex groups.

Pneumonia

Figure E8. The model performance and fairness gap for identifying Pneumonia from CXR images in different race, age, and sex groups.

Pneumothorax

Figure E9. The model performance and fairness gap for identifying Pneumothorax from CXR images in different race, age, and sex groups.

F. Comparison of task transfer using different model architecture and external data

The table shows the AUCs of demographic attribute prediction using the hidden features of the image label detection model. The lower values indicate that the model trained for radiological label detection used less demographic information.

	ruore r ri comparison in a	asit transfer experiment.			
Train- and test-time augmentation	Race	Age	Sex		
DenseNet121 architecture and the MIMIC CXR dataset					
w/o	0.692 [0.686-0.698]	0.670 [0.666-0.674]	0.880 [0.876-0.883]		
w/	0.662 [0.656-0.668]	0.665 [0.661-0.668]	0.777 [0.772-0.781]		
ResNet50 architecture an	d the MIMIC CXR dataset	:			
w/o	0.697 [0.691-0.703]	0.726 [0.723-0.730]	0.831 [0.827-0.835]		
w/	0.632 [0.626-0.639]	0.645 [0.641-0.648]	0.728 [0.724-0.733]		
DenseNet121 architecture and the CheXpert CXR dataset					
w/o	0.722 [0.915-0.729]	0.583 [0.579-0.587]	0.895 [0.891-0.900]		
w/	0.577 [0.568-0.585]	0.554 [0.549-0.0.559]	0.715 [0.708-0.722]		
ResNet18 architecture and the ADNI brain MRI dataset					
w/o	N/A	0.566 [0.478-0.653]	0.560 [0.475-0.644]		
w/	N/A	0.480 [0.389-0.570]	0.508 [0.420-0.596]		

Table F1. Comparison in task transfer experiment.

G. Model interpretation

We presented saliency maps and histograms of gradients for each radiological finding to demonstrate that the proposed augmented data does not impact the model's ability to predict radiological findings.

Figure G1. Atelectasis (Original model vs. Proposed model)

Figure G2. Cardiomegaly (Original model vs. Proposed model)

Figure G3. Consolidation (Original model vs. Proposed model)

Figure G4. Edema (Original model vs. Proposed model)

Figure G5. Enlarged Cardiomediastinum (Original model vs. Proposed model)

Figure G6. Lung Opacity (Original model vs. Proposed model)

Figure G7. No Finding (Original model vs. Proposed model)

Figure G8. Pleural Effusion (Original model vs. Proposed model)

Figure G9. Pneumonia (Original model vs. Proposed model)

Figure G10. Pneumothorax (Original model vs. Proposed model)

Figure G11. Comparison of different feature attribution methods.

H. Data distribution of train/validation/test

The following two tables show the data distribution of the train/validation/test splits of the MIMIC-CXR and ADNI brain MRI data.

Attributes	MIMIC-CXR training	MIMIC-CXR validation	MIMIC-CXR test
# Images	116,405	19,339	58,615
# Patients	26,962	4,511	13,480
Race			
Asian	1127 (4.2%)	200 (4.4%)	614 (4.6%)
Black	5374 (19.9%)	921 (20.4%)	2650 (19.7%)
White	20461 (75.9%)	3390 (75.1%)	10216 (75.8%)
sex			
Female	12897 (47.8%)	2139 (47.4%)	6418 (47.6%)
Male	14065 (52.2%)	2372 (52.6%)	7062 (52.4%)
Age			
0-40	3837 (14.2%)	609 (13.5%)	1944 (14.4%)
40-60	8210 (30.5%)	1339 (29.7%)	4131 (30.6%)
60-80	10226 (37.9%)	1763 (39.1%)	5106 (37.9%)
80+	4689 (17.4%)	800 (17.7%)	2299 (17.1%)

Table H1. Data distribution for MIMIC-CXR.

Table H2. Data distribution for ADNI MRI.

Attributes	ADNI training	ADNI validation	ADNI testing
# Images	765	187	243
# Patients	173	44	55
Race			
Asian	1 (0.6%)	0 (0%)	0 (0%)
Black	14 (8.1%)	2 (4.5%)	5 (9.1%)
White	158 (91.3%)	41 (93.2%)	49 (89.1%)
Others	0 (0%)	1 (2.3%)	1 (1.8%)
sex			
Female	84 (48.6%)	17 (38.6%)	26 (47.3%)
Male	89 (51.4%)	27 (61.4%)	29 (52.7%)

Age			
0-75	60 (34.7%)	14 (31.8%)	16 (29.1%)
75+	113 (65.3%)	30 (68.2%)	39 (70.9%)

I. Evaluation metrics

Table I1. The evaluation metrics used in this study.

AUC	Area under the curve, which is plotted with true positive rate against false positive rate.
BCE	The binary cross entropy loss is to calculate the entropy of the prediction and view each class separately.
ECE	The expected calibration error is to calculate the weighted average error of the estimated probability.
Error rate	Error rate is to calculate the percentage of correctly classified cases.
Precision	Precision is to calculate how many cases that are predicted to be positive are positive.

Reference

1. scikit-image: image processing in Python [PeerJ].

https://peerj.com/articles/453/?report=reader&utm_source=TrendMD&utm_campaign=PeerJ_TrendMD_1&utm_med

ium=TrendMD.

- 2. Home. *OpenCV* https://opencv.org/.
- 3. Seyyed-Kalantari, L., Liu, G., McDermott, M., Chen, I. Y. & Ghassemi, M. CheXclusion: Fairness gaps in deep chest

X-ray classifiers. Preprint at http://arxiv.org/abs/2003.00827 (2020).