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1. Captions for supplementary movies28

Movie S1. Development of a waving pattern for a simulated root with α = 40o, local gravisensing, β = 0.2, and γ = 0.1. The movie presents both a side view and a top view
normal to the tilted plane. Next to the movie we present the development of geometric and elastic parameters of the growth zone, as described in Fig. 2b,d,e.

Movie S2. Development of a coiling pattern for a simulated root with α = 60o, local gravisensing, β = 0.1, and γ = 0.1 (as in Fig. 2a). The movie presents both a side view
and a top view normal to the tilted plane.

Movie S3. Development of a waving patterns for simulated roots with α = 30o, local gravisensing, β = 0.2, and γ = 0.1. Here ωT0 = 0, while supplementary movies 4 and
5 present skewing with ωT0 = 1 and ωT0 = 8.3 correspondingly (as in Fig. 4a and Fig. S10). The movie presents both a side view and a top view normal to the tilted plane.
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Movie S4. Development of a skewing patterns for simulated roots with α = 30o, local gravisensing, β = 0.2, and γ = 0.1. Here ωT0 = 1, while supplementary movies 3
and 5 present skewing with ωT0 = 0 and ωT0 = 8.3 correspondingly (as in Fig. 4a and Fig. S10). The movie presents both a side view and a top view normal to the tilted
plane.

Movie S5. Development of a skewing patterns for simulated roots with α = 30o, local gravisensing, β = 0.2, and γ = 0.1. Here ωT0 = 8.3, while supplementary movies 3
and 4 present skewing with ωT0 = 0 and ωT0 = 1 correspondingly (as in Fig. 4a and Fig. S10). The movie presents both a side view and a top view normal to the tilted plane.

2. Growth model29

We here develop Eq. 4 from the main article. We assume for simplicity that no external forces act on the rod such that s = S30

and κ = κ0. The curvature vector of a center-line that has an intrinsic twist profile can be described in the local material31

frame as (2):32

κ0 = κ0
1d1 + κ0

2d2 + κ0
3d3 = κ sin (φ)d1 + κ cos (φ)d2 +

(
τ + ∂φ

∂s

)
d3, [S1]33

where κ =
√

(κ0
1)2 + (κ0

2)2 is the bending curvature, τ is the torsion and φ is the register angle between the normal director of
the local Frenet-Serret frame N̂ and the material frame’s director d1 (see Fig. 1c), all functions of arc-length and time. We
note that the torsion can be described using a register angle ϕ between N̂ and a director from the normal development of the
center-line m̂1, such that ∂ϕ

∂s
= τ .

To describe an intrinsic twist profile independently from the normal director N̂, we use the register angle between m̂1 and d1,
and mark it as ξ = ϕ + φ. We assume that an arbitrary twist profile doesn’t vary the shape of the center-line in space, only the
orientation of the material frame along it via φ.
The time derivative of the components of the intrinsic curvature vector from Eq.S1 gives:

κ̇0
1 = κ̇ sin (φ) + κ cos (φ)φ̇ [S2]

κ̇0
2 = κ̇ cos (φ) − κ sin (φ)φ̇ [S3]

κ̇0
3 = τ̇ + ∂φ̇

∂s
= ∂ϕ̇

∂s
+ ∂φ̇

∂s
= ∂ξ̇

∂s
[S4]
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Movie S6. Time-lapse of a developing waving pattern from (1), reproduced here for reference.

where ẋ = ∂x
∂t

+ vg
∂x
∂s

≡ Dx
Dt

is a material derivative which accounts for the growth of the centerline, and is calculated with
respect to the rotating material frame.
To continue, we quote the growth driven dynamics of the centerline’s intrinsic curvature as was derived in (3) and in (4) for a
cylindrical organ with a circular cross-section of radius R:

κ̇ = ε̇g

R
∆ · N̂ [S5]

ϕ̇ = ε̇g

Rκ
∆ · B̂ [S6]

here ∆ is the differential growth vector, which in the case of gravitropic roots defined by Eq. 3 in the main text. Plugging
Eqs. S5-S6 in Eqs. S2-S3 and using φ̇ = ξ̇ − ϕ̇ gives:

κ̇0
1 = ε̇g

R
∆ ·
(
N̂ sin (φ) − B̂ cos (φ)

)
+ κ cos (φ)ξ̇ [S7]

κ̇0
2 = ε̇g

R
∆ ·
(
N̂ cos (φ) + B̂ sin (φ)

)
− κ sin (φ)ξ̇ [S8]

Noticing that d2 = −N̂ sin (φ) + B̂ cos (φ) = d3 × d1 and that d1 = N̂ cos (φ) + B̂ sin (φ) = d2 × d3 then gives:

κ̇0
1 = ε̇g

R
(d3 × ∆) · d1 + κ0

2ξ̇ [S9]

κ̇0
2 = ε̇g

R
(d3 × ∆) · d2 − κ0

1ξ̇ [S10]

κ̇0
3 = ∂ξ̇

∂s
[S11]

These dynamics can be written in the vector form using a material time derivative, written in the material frame:34

κ̇0 = κ̇0
1d1 + κ̇0

2d2 + κ̇0
3d3 = ε̇g

R
(d3 × ∆) − ξ̇d3 × κ0 + ∂ξ̇

∂s
d3 [S12]35

The dynamics of an organ with no intrinsic twist (ξ = 0, κ0
3 = 0) can thus be written using:36

κ̇0 = κ̇0
1d1 + κ̇0

2d2 = ε̇g

R
(d3 × ∆) [S13]37
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which gives the Eq. 4 in the main article. Moreover, following Eq. S12, a constant center-line in space (ε̇g = 0) with a time38

varying register angle ξ which is unifrom in arc-length ∂ξ
∂s

= 0 changes the curvature vector according to:39

κ̇0 = −ξ̇d3 × κ0 [S14]40

Eq. S14 shows that the bending curvature performs a contravariant rotation which keeps it directed to a constant direction in41

space as the register angle ξ varies in time. To rotate the bending curvature with the rotation of the material frame as occurs42

in plants, we now assume that temporal variations in ξ do affect the shape of the centerline by omitting the contravariant43

rotation from Eq. S12:44

κ̇0 = ε̇g

R
(d3 × ∆) + ∂ξ̇

∂s
d3 [S15]45

which gives Eq. 21 from the methods section. This relation can also be derived by changing Eq. S6 to:46

ϕ̇ = ε̇g

Rκ
∆ · B̂ + ξ̇ [S16]47

and repeating the derivation. Equation S16 treats the variations of intrinsic twist ξ̇ as a source of torsion which is added to the48

torsion caused by differential growth, and substituting it in φ̇ = ξ̇ − ϕ̇ shows that φ varies only due to differential growth.49

3. Discretization and validation of the numerical solver50

A. Growth discretization. Our solver is based on Elastica, which is presented in (5). The solver discretizes a Cosserat rod51

using a chain of n + 1 point masses located on vertices. The arc-length of the rod is then discretized to n straight edges52

connecting the masses with lengths ℓi, where i ∈ {1, .., n}. The full state of the rod is described using variables located on53

the vertices (i ∈ {1, .., n + 1}), variables of the edges between them (i ∈ {1, .., n}), and variable located only on the interior54

vertices (i ∈ {1, .., n − 1}), which are the average of the integrated values over Voronoi domains. The length of a Voronoi55

domain surrounding mass i + 1 is defined by:56

Di = ℓi + ℓi+1

2 [S17]57

Here, we illustrate how we input the growth dynamics described in (4) into the discretized rod. We use variable symbols58

directly from (5), and keep the convention of putting a hat over variables in the reference stress-free configuration.59

Given a growth law by the smooth functions ε̇g and ∆, we begin by discretizing the relative growth rate for each reference60

edge ℓ̂i using an average over its length:61

ε̇g,i(t) = 1
ℓ̂i

∫ Si+1

Si

ε̇g(S, t)dS [S18]62

where S is the arc-length of the reference configuration and ℓ̂i = Si+1 − Si is the length of edge i. By definition, the incremental63

elongation of edge i is related to the relative growth rate according to:64

ε̇g = 1
ℓ̂

dℓ̂

dt
[S19]65

Assuming a growth time-step ∆t then gives a discretized elongation accroding to:66

ℓ̂i(t + ∆t) = (1 + ε̇g,i(t)∆t)ℓ̂i(t), [S20]67

where ε̇g,i(t)∆t is an incremental growth strain. Similar to the rest length ℓ̂i, many other properties of the rod must be updated,68

such as an edge’s volume V̂i and the mass second moment of inertia Ĵi, both proportional to the edge’s reference length ℓ̂i.69

Growth processes also increase the mass of the grown edge, which is divided between the adjacent vertices. This mass increase70

can be performed using the operator Ah presented in (5):71

mi(t + ∆t) = mi(t) + Ah (mi(t)ε̇g,i) ∆t. [S21]72

Having discretized the relative growth rate, we turn to discretize the dynamics of intrinsic curvature from Eqs. S9-S10. Since73

each discretized edge flows with growth, the discretization index i refers to the Lagrangian coordinate, and we can use74

Eqs. S9-S10 directly. In (5), the discretization of the smooth curvature vector is done by assigning each interior vertex with the75

average of the curvature vector over its Voronoi domain:76

κ0
i (t) = 1

D̂i

∫ Si+ℓ̂i+1/2

Si−ℓ̂i/2
κ0(S, t)dS ≡

〈
κ0(t)

〉
i

[S22]77

where we marked the i-th average using < · >i. Taking a time derivative of Eq. S22 gives:78

κ̇0
i (t) = −

˙̂Di

D̂i

κ0
i (t) + 1

2D̂i

( ˙̂
ℓiκ̂

0(Si − ℓ̂i/2, t) + ˙̂
ℓi+1κ̂0(Si + ℓ̂i+1/2, t)

)
+
〈
κ̇0(t)

〉
i

[S23]79
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where the first term is the time derivative of the Voronoi domain, the second term are the derivatives of the limits of the80

integral, and the last term is the derivative of the integrand. We assume that the discretization is fine, such that the curvature81

changes slowly from one edge to another (i.e., κ0
i (t) ≈ κ̂0(Si ± ℓ̂i/2, t)). Then, the first two terms cancel each other, and the82

main contribution comes from the last term. In the material frame, inserting Eq. S13 into Eq. S23 while omitting the time83

dependence for brevity gives (where µ ∈ {1, 2}):84

κ̇0
µ,i ≈

〈
κ̇0

µ

〉
i

=
〈

ε̇g

R
(d3 × ∆) · dµ

〉
i

[S24]85

The average in the last term in Eq. S24 depends on several non-trivial continuous fields, and is difficult to solve for any arbitrary86

growth rate or differential growth vector. We therefore approximate it by using it’s value on the interior vertex, which we mark87

using the notation int:88

κ̇0,int
µ,i = 1

R

ε̇g,iℓ̂i + ε̇g,i+1ℓ̂i+1

ℓ̂i + ℓ̂i+1
(dint

3,i × ∆int
i ) · dint

µ,i. [S25]89

In (5), the discretized coordinate frame Qi = {d1,i, d2,i, d3,i}−1 describes the frame at the center of edge i. To find the frame90

on the interior vertex which is used in Eq. S25, Qi is propagated to the location of vertex i + 1 using a rotation matrix expressed91

by the exponential map (4):92

Qint
i = Qi exp

(
− ℓ̂i

2

( 0 −κ0
i,3 κ0

i,2
κ0

i,3 0 −κ0
i,1

−κ0
i,2 κ0

i,1 0

))
[S26]93

Lastly, iterating many growth steps may lead to very large edge lengths. To allow for long simulations while keeping the94

validity of the discretization, we implemented a procedure that divides an edge to two distinct edges of equal lengths when its95

length has grown above a given threshold. In our simulations we discretize the arc-length initially to ℓ̂i = R/4 and divide the96

edges when they surpassed R/3. In addition, to reduce numerical errors and obtain a smooth quasi-static integration, we make97

sure that the total growth induced extension in one growth time-step is smaller than the numerical discretization length of the98

arc-length of the root. In our simulations, where we use a uniform growth rate ε̇0
g and a growth zone of length Lgz, this is99

achieved by setting the incremetnal growth strain to be ∆ε̇0
gt = 0.01 (the total growth induced extension is δL = ε̇0

g∆tLgz such100

that δL/R = 0.1 for Lgz = 10R). We therefore present time in the main article in units of ∆t, such that it takes 100∆t to grow101

one growth zone length (ε̇0
g = 0.2h−1 gives ∆t = 3min, much longer than typical elastic relaxation times).102

103

B. Mechanical relaxation. Once the rest lengths and intrinsic curvatures of a rod have been updated according to a prescribed104

growth law after each growth timestep ∆t, the rod is relaxed mechanically using smaller timesteps δt. The relaxation is105

preformed according to a full Cosserat rod dynamics as described in detail in (5), where the numerical method is presented and106

validated extensively by comparing with analytical solutions of benchmark problems. There, a dissipation model is introduced107

by adding friction-like terms to the external body force and couple:108

fν = −νd
∂r

∂t
, cν = −νdω, [S27]109

where ω is the angular velocity of the local material frame such that for i ∈ {1, 2, 3}: ∂di/∂t = ω × di.110

In our simulations we use νd = 0.25kg/s and a mass density of 104kg/m3. Even though this density is higher than that of plant111

roots, it has no affect on the quasi-static configuration, and it reduces the elastic oscillations of the rod during the relaxation112

dynamics (gravitational body forces can be scaled accordingly). Moreover, we use a relaxation time step that is related to the113

elastic shear wave speed within the organ: δt ∝ ℓ/
√

E/ρ ∼ 0.5 µs.114

Since the dissipation dynamics described in Eq. S27 lead to an exponential decay of the energy, a criterion is required to115

determine if the system has reached mechanical equilibrium. In all of our simulations this criterion was chosen to be the116

stabilization of the elastic strain εe. Specifically, we assumed the system is in mechanical equilibrium if the axial elastic strain117

εe changes less than 10−5 in 12500 relaxation time-steps δt (∼ 6 ms).118

119

C. Validation. To validate the accuracy of our 2 step integration scheme, we compare results from simulations to two analytic120

results regarding morpho-elastic rods.121

C.1. Case 1: Growth induced buckling. In this first example, we place a cylindrical rod of length L0 and radius R0 which is clamped122

at its base and connected to a spherical joint at its apex. The joint allows the apex to change direction freely, but applies a123

restoring force on its displacements with a spring constant kspring. We let the rod grow with a uniform relative growth rate ε̇0
g124

and measure the force it exerts on the spherical hinge. After an initial growth and compression, the force the rod applies on125

the spring surpasses the Euler critical load and the rod buckles. However, until that time the dynamics are axis-symmetric,126

which allows us to describe the quasi-static dynamics analytically in one dimension.127

To begin, we describe the rest length L at each time using the uniform relative growth rate:128

dL

dt
= ε̇0

gL −→ L(t) = L0 exp (ε̇0
gt) [S28]129
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This is known as an exponential growth profile. Since the rod is uniform, the growth stretch is independent of arc-length and is130

given by:131

λg(t) = L(t)
L0

= exp (ε̇0
gt). [S29]132

In addition, since the dynamics are quasi-static, there exists a force balance between the rod and the hinge at all times. The133

restoring force is spring-like and depends on the displacement of the apex:134

F obstacle(t) = −kspring(l(t) − L0)T̂ = −kspringL0(λe(t)λg(t) − 1)T̂ [S30]135

where λe(t) = l(t)/L(t) is the elastic stretch and T̂ is the tangent to the rod. Assuming the rod has the same constitutive136

equation as in the main text allows us to write the force exerted on the hinge by the rod:137

F rod(t) = −n(t) = −π

(
R0√
λe(t)

)2

E(λe(t) − 1)T̂ = πR2
0E

(
1

λe(t) − 1
)

T̂ [S31]138

A force balance F obstacle(t) = −F rod(t) gives an equation that couples the elastic and growth stretches:139

πR2
0E

(
1

λe(t) − 1
)

= kspringL0(λe(t)λg(t) − 1) [S32]140

Solving Eq.S32 for λe(t) gives:141

λe(t) = 1
2λg(t)

(
1 − η +

√
(1 − η)2 + 4ηλg(t)

)
[S33]142

where η = πER2
0/(kspringL0). Plugging Eqs. S29 and S33 into Eq.S31 gives a force profile as a function of time. This profile is143

valid as long as the force is smaller than the Euler critical load:144

Fcr(t) = π2EI(t)
(Kl(t))2 == π3ER4(t)

(2Kl(t))2 = π3ER4
0

(2Kλ2
e(t)λg(t)L0)2 [S34]145

where I = πR4/4 is the second moment of area and K is a dimensionless constant which depends on the boundary conditions146

known as the effective length factor (6).147

We simulate these dynamics using a rod with the same parameters as in the main article, except all the lengths are multiplied148

by 10, and the following parameters are changed: ℓ0 = R0/6, ε̇0
g = 2.5 · 10−3/∆T , β = 0 and γ = 0. We take a hinge with a149

spring constant of kspring = 104kg/sec2 and add a gravitational forced with a gravity vector that is tilted by 1o degree from the150

initial tangent to break the symmetry. The theoretical and simulated force as a function of time are plotted in figure S1, as151

well as the buckling point, with an excellent agreement.

Fig. S1. Solver validation. Left: Growth induced buckling. Comparison between the theoretical force the rod exerts on the hinge as a function in time to the results from a
corresponding simulation, including the buckling of the growing rod. Right: The error in the simulated curvature of the growth zone during a tropic movement of an organ with
apical sensing and a sub-apical growth zone.

152
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C.2. Case 2: Tropic movement with apical sensing and a sub-apical growth zone. To validate the discretization of dynamics of the153

curvature vector, we compare our simulation to a 2-d analysis of growing organs presented in (7). There, gravitropic roots are154

modeled using a uniform sub-apical growth zone and apical gravisensing, in a similar fashion to the modeling used here. There,155

the curvature in the growth zone is uniform and obeys the following dynamics:156

− (y′′ + γy′)√
η2 − (y′ + γy)2

= y + y′ [S35]157

where y = Lgzκ0, y′ = dy
dx

, x = ε̇gt, η = βLgz/R and γ is the proprioceptive gain. We compare the analytical solution of158

Eq. S35 to the curvature from a simulation of an organ with the the same parameters in the main article and β = 0.1, γ = 0,159

and an initial tilt of 90o with respect to gravity. We quantify the error in the simulated intrinsic curvature by |(κ0
th − κ0

exp)/κ0
th|,160

where κ0
th is the solution of Eq. S35 and κ0

exp is the simulated intrinsic curvature at the apex. As shown in Fig. S1, for the first161

∼ 100 growth time-steps the error is below 1 percent.162

4. Writhe and twist163

Fig. S2. Writhe and Twist. (a) Writhe (Wr) equals the centerline’s average oriented self-crossing number computed in terms of the integral of the solid angle dΩ determined by
the infinitesimal centerline segments dx̄(s1) and dx̄(s2) (left-handed intersections are negative). (b) Twist (Tw) is the integral of the infinitesimal rotations dφ of the auxiliary
curve ā around x̄s. Here, the vector ā traced out by d̄

⊥
1 (i.e., the projection of d̄1 onto the normal-binormal plane) is shown in red. For a closed curve Lk = Tw + Wr, where

Lk (link) is the average oriented crossing number of x̄(s) with ā(s). (c) Illustration of the difference between writhe and twist: Writhe describes 3D rotations of the center-line
and is being used here as a measure of the torsion of the growth zone’s center-line, being 0 when the center-line can be embedded on a plane, positive when it resembles
a right-handed helix and negative when it resembles a left-handed helix. In contrast, twist describes how the local frame rotates around the center-line, being positive for
right-handed rotations, negative for left-handed rotations and zero for no rotations (the orange and pink lines mark ±d1(s, t)). (a) and (b) are taken from (8).

5. Scaling analysis of growth models164

We here investigate our model for the dynamics of growing organs that have similar properties to Arabidopsis thaliana roots165

as described in the methods section. We begin by focusing on the dynamics in the absence of mechanical interactions with166

the environment. We distinguish between apical sensing, which is theoretically tractable, and local sensing which we analyse167

numerically. In both cases we estimate the gravitropic turning time T0 and the maximal curvature. In addition, we investigate168

the scaling of waving patterns on inclined planes for both apical sensing and in the high proprioception regime.169

A. Apical sensing. The dynamics for roots that have a finite sub-apical growth zone and apical gravisensing are modeled in (7).170

There, due to the apical sensing the curvature in the growth zone is uniform and obeys the dynamics presented in Eq. S35.171

When the angle between the tangent at the apex and the direction of gravity is small the dynamics can be approximated by:172

y′′ + (η + γ)y′ + ηy = 0 [S36]173
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which is an ODE of a damped harmonic oscillator, where y = Lgzκ0, y′ = dy
dx

, x = ε̇gt, η = βLgz/R and γ is the proprioceptive174

gain. Damped oscillations then occur for weak damping where 2√
η − η > γ, which occurs within the parameter space explored175

here (e.g., for β = 0.1 and Lgz/R = 10 we have η = 1, giving damped oscillations for any γ < 1). In the case of damped176

oscillations the solution for y(x) is:177

y(x) = − η sin (θ0 − θg)√
η −

(
η+γ

2

)2
e− (η+γ)x

2 sin

(√
η −

(
η + γ

2

)2
x

)
[S37]178

where θ0 is the initial angle of the tangent of a straight organ and θg is the angle indicating the direction of the gravitational179

stimulus. This solution can be translated to the following form of the tip angle over time:180

θtip(t) − θ0 = − sin (θ0 − θg)

1 + e− η+γ
2 ε̇gt

 (η − γ) sin
(√

η −
(

η+γ
2

)2
ε̇gt

)
√

4η − (η + γ)2
− cos

(√
η −

(
η + γ

2

)2
ε̇gt

)
 [S38]181

We then define T0 as the time at which θtip(t) reaches to its first maximum:182

T0 = 1

ε̇g

√
η −

(
η+γ

2

)2
arctan

(√
4η − (η + γ)2

η + γ − 2

)
[S39]183

We compare this result to the full non-linear dynamics presented in Eq. S35. As shown in Fig. S3B, we find that the time-scale184

in Eq. S39 agrees well with numerical integration of the dynamics even for large initial angles. Moreover, for initial angles185

θ0 ≈ π/2 we approximate the maximal curvature using κ0
max ≈ T0 ·max{κ̇0}/3 = T0ε̇gβ/3R as shown in Fig. S3C. The resulting186

scaling of the maximal curvature, wavelength and amplitude of waving patterns simulated with apical sensing appears in187

Fig. S4.188

B. Local sensing. In the lack of analytical solutions for the shape of organs that present sub-apical growth with local sensing,189

we resort to numerical simulations of the dynamics. We use the algorithm presented in (4) and integrate the growth dynamics190

until the organs elongate by 10 growth zone lengths, while varying the parameters of the growth model between 0.1 ≤ β ≤ 0.4,191

0 ≤ γ ≤ 10.0 and Lgz/R ∈ {5, 10, 20}. We characterize the dynamics using the tip angle θtip(t) in a similar manner to apical192

sensing, and find that for γ < 0.5 the initial dynamics of θtip(t) can be fitted to damped oscillations with an excellent agreement193

(see examples in Fig. S3D). Moreover, we find that θtip(t) reaches its first maximum around T0 ∼ π
2ε̇g

η−3/5 (as in Eq. 7 in194

the main article), and that the maximal curvature scales like κ0
max ≈ T0 max{κ̇0} = ε̇gT0β/R (see Fig. S3E,F). The resulting195

scaling of the maximal curvature, wavelength and amplitude of waving patterns simulated with local sensing appears in Fig. S4.196

C. High proprioception. In Fig. S5, we present the wavelength, amplitude and maximal intrinsic curvature of the waving197

patterns obtained by simulated organs with proprioception coefficients 0.5 ≤ γ ≤ 5. We find that the scaling laws described198

in Eqs. 9-10 in the main text apply for high proprioception with a few alterations. In the case of apical sensing and high199

propriocpetion the expression for T0 in Eq. S39 isn’t valid as the oscillations become over-damped. We therefore estimate the200

typical turning time T0 for both apical and local gravisensing using ε̇gT0 = π
2 (Lgzβ/R)−3/5 as done for local gravisensing in201

the low proprioception regime. We find that the maximal curvature of a free organ in this regime scales like:202

max κ0
f ≈ β

γR
, [S40]203

similar to the maximal curvature described in (9). The maximal curvature of the waving pattern then scales roughly like204

0.5 max κ0
f (see Fig. S5A). Moreover, Since in Eq. S40 the maximal intrinsic curvature is inversely proportional to γ, for very205

high proprioception the threshold for the initial elastic instability (described later in Eq. S52) is never satisfied. For example,206

in our simulations the elastic instability didn’t take place for γ > 5 even after 3000 growth time-steps.207

208

6. Normal and parallel decomposition of the growth model209

Due to the complexity of the dynamics, which includes active growth processes and passive quasi-static interaction with a tilted
plane, we do not present a full analytical analysis of the formation of the waving pattern and skewing angles. Nevertheless, we
can gain intuition regarding various aspects of the dynamics by assuming the root remains planar on the tilted substrate. To
do so, we begin by describing the geometry of a straight root growing on a tilted plane with tilt angle α and skewing angle θ
(see Fig. S6). We place the origin on the base of the root such that the tilted plane is defined as the xy plane and the normal
to the plane is d⊥ = ẑ. In these coordinates, the tangent of the organ is: d3 = sin (θ)x̂ − cos (θ)ŷ, and the direction of gravity
is: ĝ = − cos (α)ŷ − sin (α)ẑ. Assuming that the center-line of the root is always planar and embedded in the plane z = R, we
can define a local coordinate frame on the center-line such that one of its unit vectors aligns with the normal to the plane. As
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Fig. S3. Growth dynamic without mechanics: A-C: Analysis of apical sensing, based on the analytical results presented in (7). A. Example trajectories of θtip(t) for apical
sensing with γ = 0. The squares represent the analytical estimation of ε̇gT0 from Eq. S39. B. For a large initial angle θ0 ≈ π/2 and γ = 0, we compare between the values
for the time T0 describing the first maximum of θtip(t) obtained by both the full non-linear dynamics in Eq. S35 and by the analytical estimation for small angles given by Eq. S39.
The values present good agreement despite the large initial angle. C. Comparison between the values of maximal curvature obtained by the full non-linear dynamics for
θ0 ≈ π/2 and γ = 0 vs. the estimate ε̇gT0β/3R, both multiplied by Lgz . We note that for lower values of initial angles a better approximation is ε̇gT0β/4R. D-F: Analysis
of local sensing based on numerical simulations. D. Example trajectories of θtip(t) for local sensing with γ = 0. The squares represent the estimation ε̇gT0 ≈ π

2 η−3/5. E.
Numerical estimation of ε̇gT0 describing the first maximum of θtip(t) for local sensing when γ < 0.5 vs. the scaling π

2 η−3/5. The dashed line is the identity function added
for comparison. F. Numerical estimation of κ0

max for local sensing when γ < 0.5 vs. the scaling T0 max{κ̇0} = ε̇gT0β/R. The dashed line is the identity function added for
comparison.

the normal direction is constant all along the organ, this frame is a normal development of the centerline, and we mark the
register angle between this coordinate system and the material frame by ξ (Fig. S6) such that:

d⊥ = sin (ξ)d1 + cos (ξ)d2 = ẑ [S41]
d∥ = cos (ξ)d1 − sin (ξ)d2 = cos (θ)x̂ + sin (θ)ŷ [S42]

With a slight abuse of notation, we define the planar component of intrinsic curvature as: κ0
∥ = κ0 · d⊥ = κ0

1 sin (ξ) + κ0
2 cos (ξ)210

and the normal component of intrinsic curvature as: κ0
⊥ = κ0 · d∥ = κ0

1 cos (ξ) − κ0
2 sin (ξ). These definition are set since211

according to the right-hand rule it is κ0
∥ that varies from differential growth parallel to the plane, and it is κ0

⊥ that varies from212

differential growth normal to the plane. If the shape of the organ is planar, κ0
⊥ nullifies and the local angle between the tangent213

and the projected direction of gravity on the plane θ(s, t) is the integral of the actual parallel curvature:214

θ(s, t) − θ(0, t) =
∫ s

0
κ∥(s′, t)ds′ [S43]215

The skewing angle of a waving pattern is defined to be the average of θ along the projection of the center-line on the xy plane216

marked by ⟨θ⟩. We now assume the root is gravitropic and that proprioception is negligible such that ∆ = βĝ, and focus on the217

dynamics of the bending components of the curvature, or the projection of the curvature vector on the local cross-section plane:218

κ0
B = κ0

1d1 + κ0
2d2 = κ0

∥d⊥ + κ0
⊥d∥. The time derivative of this curvature in the material frame can be written according to219

Eq. S13:220

κ̇0
B = ε̇g

R
(d3 × βĝ) = ε̇g

R
β(sin (α) cos (θ)x̂ + sin (α) sin (θ)ŷ − cos (α) sin (θ)ẑ) [S44]221

To relate between the dynamics in the frame that rotates with d⊥ and d∥ to the dynamics in the local material frame from222

Eq. S44 we must account for the relative rotation between the two frames:223

κ̇0
B
∣∣
∥,⊥

= κ̇0
B + ω × κ0

B, [S45]224
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Fig. S4. Scaling of waving patterns for apical sensing. Here, we validate our scaling relations (Eqs. 9,10) and compare simulations with apical sensing (with γ < 1)
and local sensing (with γ = 0.1), each one with its own definition of T0 and the maximal gravitropic curvature of a free organ. A. The maximal curvature of the projected
shape of simulated waving patterns on the plane max (κ) scales like the predicted maximal curvature of a free organ tilted at the same angle α, max (κ0

f ). B. Wavelength.
Values measured in simulations and experiments λobs agree with model predictions λmodel (Eq. 9), scaling like the gravitropic turning timescale of freely growing organ T0. C.
Amplitude. Values measured in simulations and experiments Aobs agree with model predictions Amodel (Eq. 10), proportional to the time it takes to make one turn in the
waving pattern 0.5cT0 tan (α) (local sensing c = 1, apical sensing c = 1/3).

Fig. S5. Scaling of waving patterns in the high proprioception regime fro local and apical gravisensing (0.5 < γ < 5). In this regime the scaling laws presented in Eqs.
9-10 in the main text approximately hold with minor alteration. A. The maximal curvature of the projected shape on the plane max (κ) scales like half the predicted maximal
curvature of a free organ max (κ0

f ) which now depends on γ as described in Eq. S40. B. The wavelength of the waving pattern does not depend on the proprioception
coefficient γ and scales like 2vtip

g T0 as described in Eq. 9. C. The amplitude of the waving pattern vs. 0.5cvtip
g T0 tan (α) as described in Eq. 10, where now c = 1/2 for

local sensing and c = 1/3 for apical sensing.

where ω is the relative rotation vector and κ̇0
B
∣∣
∥,⊥

= κ̇0
∥d⊥ + κ̇0

⊥d∥. The dynamics of the parallel and normal components of
curvature are then given by:

κ̇0
∥ = κ̇0

B
∣∣
∥,⊥

· d⊥ =
(
κ̇0

B + ω × κ0
B
)

· d⊥ = κ̇0
B · d⊥ + ω ·

(
κ0

B × d⊥
)

[S46]

κ̇0
⊥ = κ̇0

B
∣∣
∥,⊥

· d∥ =
(
κ̇0

B + ω × κ0
B
)

· d∥ = κ̇0
B · d∥ + ω ·

(
κ0

B × d∥
)

[S47]

where in the last equality we used the vector identity (a × b) · c = a · (b × c). Since the unit vectors d⊥ and d∥ and the
curvature vector κ0

B reside in the cross-section plane, only axial rotations such that ω ∥ d3 contribute to the second term in the
right-hand side of Eqs. S47-S46. These rotations can be expressed by a time dependent register angle ξ, and they occur if the
organ is twisted elastically or has a time-varying intrinsic twist profile. Marking ω = ξ̇d3 and using Eqs. S41,S42,S44,S47,S46
we finally obtain:

κ̇0
∥ = − ε̇g

R
β cos (α) sin (θ) + ξ̇κ0

⊥ [S48]

κ̇0
⊥ = ε̇g

R
β sin (α) − ξ̇κ0

∥ [S49]
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Fig. S6. The geometry of a straight root growing on a tilted plane with tilt angle α and skewing angle θ. The local frame {d∥, d⊥, d3} on the planar organ, where d⊥ is the
normal to the plane, is a normal development of the organ’s centerline. We therefore describe the relation between this local frame and the material frame using the register ξ

as presented in Fig. 1c.

The first term in the dynamics of the planar component of curvature in Eq. S48 is identical to the dynamics of a free root225

with an effective gravitropic sensitivity β∥ = β cos (α) and no proprioception, while the second term couples between the226

parallel curvature and the normal curvature due to twist induced rotations of the curvature vector. The first term in the227

dynamics of the normal curvature in Eq. S49 then acts as a constant source of curvature with an effective gravitropic sensitivity228

β⊥ = β sin (α). If we treat the dynamics of a free root as a damped harmonic oscillation (as shown analytically in the case of229

apical sensing (7) and numerically for local sensing in SI Appendix 5), these coupled differential equations depict an external230

drive to the damped oscillations on the plane. Here, a constant source of normal curvature is twisted into the plane due to the231

elastic interaction with the substrate, which in turn creates a waving or coiling pattern in the mature zone on the plane.232

7. Transitions between growth patterns233

A. Transition between straight and waving. In the lack of intrinsic twist, the initial breaking of symmetry in the development234

of the waving pattern emerges from an elastic instability that results in elastic twist. This instability takes place only if the235

elastic energy required for twisting is smaller than the total elastic energy that is gained. At the beginning of the dynamics,236

the organ grows towards gravity and is pushed back by a normal force from the plane, which keeps the shape of the center-line237

planar on the plane defined by the direction of gravity and the normal to the plane. In this plane, the organ deforms using 3238

degrees of freedom: bending, compression and shear, each with its own elastic energy. Our simulations suggest that the main239

part of the elastic energy is related to bending deformations. To estimate the maximal bending energy in the growth zone240

before the breaking of symmetry, we take the actual curvature to be zero (a straight rod) and the intrinsic curvature to be the241

maximal normal curvature in the low proprioception regime using max κ0
f ∼ ε̇gT0β sin (α)/R as described in the maix text and242

SI Appendix 5. This gives (5):243

Ebend ≈ 1
2

∫ L(t)

L(t)−Lgz

B11(κ − κ0)2ds ≈ π

8 LgzER4(max κ0
f )2, [S50]244

where the bending modulus fits a uniform rod of radius R and Young’s modulus E so that B11 = EπR4/4 (5). The elastic245

energy due to twist in a rod with no intrinsic twist (κ0
3 = 0) can be approximated in a similar manner:246

Etwist ≈ 1
2

∫ L(t)

L(t)−Lgz

B33(κ3 − κ0
3)2ds ≈ π

12LgzER4κ2
3 = π

12Lgz
ER4∆ξ2, [S51]247

where accordingly B33 = EπR4/6, and in the last equality we defined the register angle in the growth zone due to elastic twist248

by ∆ξ = Lgzκ3. Demanding Ebend > Etwist gives a threshold for the elastic instability that relates the maximal deflection249

angle of the growth zone Lgz max κ0
f to ∆ξ:250

Lgz max κ0
f >

√
2
3∆ξ [S52]251

Substituting max κ0
f ∼ ε̇gT0β sin (α)/R and T0 ∼ π

2ε̇g
(βLgz/R)−3/5 for local sensing gives the threshold in terms of the tilt252

angle α:253

sin(αs→w) =
√

2
3

2∆ξ

π

(
βLgz

R

)− 2
5

[S53]254
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In this model ∆ξ acts as a free fitting parameter, and in Fig. 3d we took ∆ξ = π/8. In our simulations the elastic instability is255

more complex than described here as the entire mature zone is free to twist elastically, and the shape of the growth zone prior256

to the first instability depends on the growth history. Nevertheless, as can be seen in Fig. 3d this model captures the transition257

well.258

B. Transition between waving and coiling. To gain intuition regarding the transition between waving and coiling patterns, we259

approximate the full dynamics using a planar organ as described in SI Appendix 6. Since the reaction force from the substrate260

is normal to the plane of the organ, the parallel curvature κ∥ is approximately identical to its intrinsic curvature κ0
∥ (as can be261

found by projecting Eq. 2 along with our constitutive model in Eq. 25 on the normal direction). After the first breaking of262

symmetry, the shape of the growth zone is roughly planar with the same curvature that has been accumulated by the normal263

differential growth max κ0
f (as described by Eq. 6). As growth continues, differential growth parallel to the plane attempts to264

realign the organ towards gravity. However, the turn isn’t immediate, and the growing organ keeps drifting uphill based on its265

existing curvature. These competing processes can be seen by writing the dynamics of the apical angle θtip(t) ≡ θ(s = L(t), t),266

as illustrated in Fig. 2a and Fig. S6. Following Eq. S43, in the planar model this angle satisfies:267

θtip(t) − θ0 =
∫ L(t)

0
κ∥(s, t)ds [S54]268

where we assumed the base is clamped at an angle θ0. Taking a time derivative of Eq. S54 and using Eq. S48 with no twist, we269

obtain two competing terms:270

dθtip

dt
= dL

dt
κtip

∥ +
∫ L(t)

0

dκ∥

dt
ds = ε̇gLgzκtip

∥ − ε̇g

R
β cos (α)

∫ L(t)

L(t)−Lgz

sin (θ(s, t))ds [S55]271

where we denote κtip
∥ = κ∥(L(t), t). The first term on the right hand side of Eq. S55 represents the passive orientation drift due272

to growth of a curved organ (9), while the second term is the differential growth parallel to the plane that has an effective273

gravitropic sensitivity β cos (α). Coiling occurs when the angular velocity of the root’s apex remains positive throughout the274

dynamics (dθtip/dt > 0), whereas waving occurs when this angular velocity becomes negative and the organ manages to reorient275

towards the projected direction of gravity on the plane. We express the competition between these two processes using their276

typical timescales: the turning time in a waving pattern can be expresses using the amplitude scaling in Eq. 10 as T0 tan(α),277

and from Eq. S55 we can estimate the typical time-scale for the passive orientation drift as Tdr = 1/ε̇gLgzκtip
∥ ≈ 1/ε̇gLgz max κ0

f .278

The transition between waving and coiling occurs when Tdrift ≈ CT0 tan(α), which gives an equation for the transition angle279

αw→c with a fitting parameter C:280

sin2(αw→c)
cos(αw→c) = 4

Cπ2

(
βLgz

R

) 1
5

[S56]281

In Fig. 3d we show that this model captures the transition between waving and coiling patterns well with C = 0.5.282

C. Additional configuration spaces. In Fig. S7 we present four configuration spaces for apical and local sensing and for low and283

high proprioception. The background color in the low proprioception spaces represents the pattern transitions predicted by our284

models with critical angles αs→w and αw→c (Eqs. S53,S56) in good agreement with simulations. For apical sensing we repeated285

the calculations according to the estimations of T0 and the maximal curvature shown in SI Appendix 5.A. One can see that as286

the proprioception gain γ rises, the transition angles between straight, waving and coiling roots increase.

Fig. S7. Configuration spaces describing the shape of simulated organs for apical and local sensing in the low and high proprioception regimes. Each Configuration space is
presented with respect to varying values of the gravitropic gain multiplied by the slenderness ratio η = Lgzβ/R and the tilt angle α. Points represent the final configuration in
simulations; straight, waving and coiling are represented by bars, diamonds and circles respectively. The background color in the low proprioception spaces represents the
pattern transitions predicted by our models with critical angles αs→w and αw→c (Eqs. S53,S56) in good agreement with simulations.

287
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8. Circumnutations288

Circumnutations are oscillatory motions of shoots and roots which are linked to differential growth with a direction that rotates289

around the centerline (3, 10). As described in the methods section (Eq. 19) we model this active process by an additive term290

in the differential growth vector (3, 4):291

∆CN = λ (cos (Ωt)m̂1 + sin (Ωt)m̂2) [S57]292

where λ is the circumnutation sensitivity and Ω is its temporal frequency. Substituting this model into the twits-less curvature293

dynamics in Eq. S13 gives:294

κ̇0 = ε̇g

R
λ (− sin (Ωt)m̂1 + cos (Ωt)m̂2) [S58]295

Equation S58 can be simplified by marking:296

κ0
CN(s, t) = ε̇gλ

ΩR
(cos (Ωt)m̂1(s, t) + sin (Ωt)m̂2(s, t)) [S59]297

which allows to rewrite the dynamics from Eq. S58 as:298

κ̇0 = Ωd3 × κ0
CN [S60]299

This expression resembles the dynamics of twist induced rotations shown in Eqs. S14,S15, which with respect to the normal
development frame can be expressed by κ̇0 = ξ̇d3 × κ0. This resemblance can also be seen by using the planar geometry
presented in SI Appendix 6 while setting ξ̇ = 0 and assuming a gravitropic and circumnutating root with ∆ = βĝ + ∆CN .
This differential growth model then gives the following dynamics in the material frame:

κ̇0
1 = ε̇g

R
β sin (α) − Ωκ0

CN sin (Ωt) [S61]

κ̇0
2 = − ε̇g

R
β cos (α) sin (θ) + Ωκ0

CN cos (Ωt) [S62]

These relations are similar in structure to those describing gravitropsim with a time varying intrinsic twist profile in Eqs. S49-300

S48. However, unlike intrinsic twist that rotates the existing curvature with frequency ξ̇, the resulting dynamics for twistless301

cirumnutations described in Eqs. S61-S62 create active curvature of the order of κ0
CN = ε̇gλ/(ΩR) that rotates with a frequency302

Ω. Therefore, for certain values of κ0
CN and Ω that resemble the curvature and period of the waving pattern we can expect303

that the root will present skewing angles in a similar fashion to an intrinsic twist profile. For simplicity, we take β/R as the304

order of magnitude of the gravitropic curvature (following the analysis in SI Appendix 5).305

To investigate the effect of our model for circumnutation on the waving patterns we simulated roots with gravitropism,306

proprioception and circumnuatations, such that ∆ = βĝ − γRκN̂ + ∆CN , and varied their related parameters between γ = 0.1,307

0 ≤ β ≤ 0.2, 0.05 ≤ Rκ0
CN ≤ 0.15 and 50∆t ≤ 2π/Ω ≤ 350∆t. We find that simulations of roots with circumnutation and no308

gravitropism (β = 0) do not present waving patterns, however the organs develop skewing angles that sometimes result in309

coiling regardless of the tilt angle. This result may explain why agravitropic mutants and roots grown on a clinostat create310

coils (11). Simulations with 0 < κ0
CN < β/R result in a waving patterns with low to very low skewing angles (| ⟨θ⟩ | < 10o, see311

Fig. S8) along with disordered shapes. Simulations with β/R < κ0
CN result mainly in disordered shapes. We conclude that the312

model for circumnutations in Eq. 19 may result in skewing angles and coiling, however it does not lead to waving patterns in313

the absence of gravitropism.

Fig. S8. Left: Circumnutations lead to low skewing angles (|θ| < 10o). Right: The percentage of waving patterns decreases as κ0
CN /(β/R) rises. The remaining patterns

present coiling and disordered shapes.

314

9. Skewing - additional figures315
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Fig. S9. Intrinsic twist vs. Skewing angle - data from experiments, taken from: (12–16).
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Fig. S10. Comparison between the development of skewing patterns for various ωT0, similar to Fig. 4(d)-(f) for three values of intrinsic twist: ωT0 = 0 (a)-(c), ωT0 = 1
(d)-(f), and ωT0 = 8.3 (h)-(g). Increasing ωT0 results in larger skewing angles (the average of the tip angle over time) and washes out the waving pattern. Here, ωT0 = 1
exhibits oscillatory behavior similar to that of regular waving patterns, while ωT0 = 8.3 transitions to a more monotonic behavior. Note that for a finite value of ωT0 the initial
symmetry is broken by twist without an elastic instability.
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