Chemistry–A European Journal

Supporting Information

Development of Bifunctional, Raman Active Diyne-Girder Stapled α -Helical Peptides

Danielle C. Morgan,* Laura McDougall, Astrid Knuhtsen, and Andrew G. Jamieson

Table of Contents

xperimental Procedures	7
General Information	7
Peptide synthesis - General methods	7
Solid Phase Peptide Synthesis (SPPS) and Peptide Modifications	
Resin Swelling	8
Amino Acid Coupling	8
Fmoc Deprotection	8
Coupling of Fluorescein Isothiocyanate (FITC)	8
N-Terminal Acetylation (capping)	9
Ring Closing Metathesis (RCM)	9
Glaser Reaction	9
Peptide Test Cleavages	9
Peptide Full Cleavage and Global Deprotection	10
Peptide Purification	10
Circular Dichroism (CD) Spectroscopy	11
Proteolytic Stability of Peptides	11
Cell Permeability Fluorescence Assay	12
Raman Spectroscopy of Native and Diyne Stapled T-STAR Peptide	12
nino Acid Synthesis - Experimental Methods	14
S1 ((2-Fluorobenzyl)-L-proline hydrochloride)	14
S2 ((2-Fluorobenzyl)-D-proline hydrochloride)	15
S3 ((S)-N-(2-Benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide)	16
S4 ((R)-N-(2-Benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide)	17
35 (7-Octyn-1-ol)	18
1 ((S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)- alaninato-N,N',N'',O)nickel(II))	19
2 ((R)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(R)-	
alaninato-N,N',N",O)nickel(II))	20
3 ((S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)-glyci N,N',N'',O)nickel(II))	nato- 21
4 (5-lodopent-1-yne)	22
5 (6-lodohex-1-yne)	23
6 (7-lodohept-1-vne)	24
7 (8-lodooct-1-vne)	25
9 ((C) ((2 [1 (2 Eluorobonzul))nyrroliding 2 carboyamida]nhanyl)nhanylmathylarg) (C)	
o ((ɔ)-((∠-[⊥-(∠-ruorobenzy))pyrrolidine-2-carboxamide]phenyi)phenyimethylehe]-(S)- pentynylalaninato- <i>N,N',N'',</i> O)nickel(II))	25
9 ((S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)- hexynylalaninato-N,N',N'',O)nickel(II))	27
• • • • • • • • • • •	

	10 ((S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)- heptynylalaninato- <i>N,N',N'',</i> O)nickel(II))	. 28
	11 ((S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)- octynylalaninato-N,N',N",O)nickel(II))	. 29
	12 ((S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)- heptynylglycinato- <i>N,N',N'',</i> O)nickel(II))	. 30
	13 ((R)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(R)- pentynylalaninato-N,N',N",O)nickel(II))	. 32
	14 ((R)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(R)- hexynylalaninato-N,N',N'',O)nickel(II))	. 33
	15 ((R)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(R)- heptynylalaninato-N,N',N'',O)nickel(II))	. 34
	16 ((R)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)- (R)- octynylalaninato-N,N',N",O)nickel(II))	. 35
	17 ((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid)	. 37
	18 ((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methyloct-7-ynoic acid)	. 38
	19 ((S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylnon-8-ynoic acid)	. 39
	20 ((S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methyldec-9-ynoic acid)	. 40
	21 ((S)-2-(((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-non-8-ynoic acid)	. 41
	22 ((R)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid)	. 42
	23 ((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methyloct-7-ynoic acid)	. 43
	24 ((R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylnon-8-ynoic acid)	. 44
	25 ((R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methyldec-9-ynoic acid)	. 45
N	MR Data	. 46
	S1 ((2-Fluorobenzyl)-L-proline hydrochloride)	. 46
	¹ H NMR	46
	¹³ C NMR	46
	²⁷ F NMR	47
	SZ ((Z-Fluorobenzyi)-D-proline nyarochloride)	. 47
	¹³ C NMR	48
	¹⁹ F NMR	48
	S3 ((S)-N-(2-Benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide)	. 49
	¹ H NMR	49
	¹³ C NMR ¹⁹ E NIMD	49
	S4 ((<i>R</i>)- <i>N</i> -(2-Benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide)	. 51
	п мик	51
	¹⁹ F NMR	52
	S5 (Oct-7-yn-1-ol)	. 52
	S5 (Oct-7-yn-1-ol) ¹ H NMR	. 52 52

1 ((S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)- alaninato-N N' N'' O)nickel(II))	54
¹ H NMR	
¹³ C NMR	54
¹⁹ F NMR	55
2 ((<i>R</i>)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(<i>R</i>)- alapinato- <i>N_N' N''</i> O)pickel(II))	55
¹ H NMB	
¹³ C NMR	
¹⁹ F NMR	56
3 ((<i>S</i>)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-glycin	ato-
п імік	
¹⁹ F NMR	
4 (5-lodopent-1-yne)	58
¹ H NMR	
¹³ C NMR	59
5 (6-lodohex-1-yne)	59
¹ H NMR	59
¹³ C NMR	60
6 (7-lodohept-1-yne)	60
¹ H NMR	60
¹³ C NMR	61
7 (8-lodooct-1-vne)	61
¹ H NMR	61
¹³ C NMR	62
8 (C5 S Alkylated Complex - (S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-	
carboxamide]phenyl)phenylmethylene)-(S)-pentynylalaninato-N,N',N'',O)nickel(II))	63
¹ H NMR	63
¹³ C NMR	63
¹⁹ F NMR	64
9 (C6 S Alkylated Complex - (S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2- carboxamide]nbenyl)nbenylmethylene}-(S)-beyynylalaninato-N N' N'' O)nickel(II))	64
¹ H NMB	
¹³ C NMR	65
¹⁹ F NMR	65
10/C7 S Alleylated Compley (S) //2 [1 /2 Elyerobenzyl)pyrroliding 2	
10 (C/ 5 Aikylated Complex - (5)-((2-[1-(2-Fluorobenzyl)pyrronume-2-	66
¹³ C NMR	
¹⁹ F NMR	67
11 (C8 S Alkylated Complex - (S)-(/2-[1-(2-Elyorobenzyl)pyrrolidine-2-	
rathoyamide]nhenvl]nhenvlmethylene].(S).octynylalaninato.N/N//M//O)nickal(11))	67
¹³ C NMR	
¹⁹ F NMR	68
12 (S7 Gly Alkylated Complex - (S)-(12-[1-(2-Elyorobonzyl)pyrroliding 2	
carboxamide]phenyl)phenylmethylene)-(S)-heptynylglycinato-N,N',N'',O)nickel(II))	69

¹ H NMR ¹³ C NMR ¹⁹ F NMR	69 69 70
13 (C5 <i>R</i> Alkylated Complex - (<i>R</i>)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2- carboxamide]phenyl)phenylmethylene)-(<i>R</i>)-pentynylalaninato- <i>N</i> , <i>N'</i> , <i>N''</i> ,O)nickel(II)) ¹ H NMR ¹³ C NMR ¹³ F NMR	. 70 70 71 71
14 (C6 <i>R</i> Alkylated Complex - (<i>R</i>)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2- carboxamide]phenyl)phenylmethylene)-(<i>R</i>)-hexynylalaninato- <i>N</i> , <i>N</i> ', <i>N</i> '',O)nickel(II)) ¹ H NMR ¹³ C NMR ¹³ F NMR	. 72 72 72 73
15 (C7 <i>R</i> Alkylated Complex - (<i>R</i>)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2- carboxamide]phenyl)phenylmethylene)-(<i>R</i>)-heptynylalaninato- <i>N,N',N'',</i> O)nickel(II)) ¹ H NMR ¹³ C NMR ¹³ F NMR	. 73 73 74 74
16 (C8 <i>R</i> Alkylated Complex - (<i>R</i>)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2- carboxamide]phenyl)phenylmethylene)- (<i>R</i>)-octynylalaninato- <i>N</i> , <i>N</i> ', <i>N</i> '',O)nickel(II)) ¹ H NMR ¹³ C NMR ¹⁹ F NMR	. 75 75 75 76
17 (C5 S AA - (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid) ¹ H NMR ¹³ C NMR	. 76 76 77
18 (C6 S AA - (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methyloct-7-ynoic acid) ¹ H NMR ¹³ C NMR	. 77 77 78
19 (C7 S AA - (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylnon-8-ynoic acid) ¹ H NMR ¹³ C NMR	. 78 78 79
20 (C8 S AA - (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methyldec-9-ynoic acid) ¹ H NMR ¹³ C NMR	. 79 79 80
21 (C7 S H AA - (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-non-8-ynoic acid) ¹ H NMR ¹³ C NMR	. 80 80 81
22 (C5 R AA - (R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid) . ¹ H NMR ¹³ C NMR	. 81 81 81
23 (C6 R AA - ((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methyloct-7-ynoic acid) ¹ H NMR	. 82 82 82
24 (C7 <i>R</i> AA - (<i>R</i>)-2-((((9 <i>H</i> -Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylnon-8-ynoic acid) ¹ H NMR	. 83 83
25 (C8 <i>R</i> AA - (<i>R</i>)-2-((((9 <i>H</i> -Fluoren-9-yl)methoxy)carbonyl)amino)-2-methyldec-9-ynoic acid) ¹ H NMR	. 84 84 85

26 (Native T-STAR)	
20 min HPI C	
50 min HPI C	
HB-MS	
27 (T-STAR-divne-S₅S₅)	
20 min HPI C	
50 min HPI C	
HR-MS	
28 (T-STAR-divne-SدSد)	
20 min HPLC	
50 min HPLC	
HR-MS	
29 (T-STAR-diyne- <i>S</i> ₇ <i>S</i> ₇)	
20 min HPLC	
50 min HPLC	
HR-MS	
30 (T-STAR-diyne- <i>R</i> ₇ <i>R</i> ₇)	
20 min HPLC	
50 min HPLC	
HR-MS	
31 (T-STAR-diyne- <i>R</i> ₇ <i>S</i> ₇)	
20 min HPLC	
50 min HPLC	
HR-MS	
32 (T-STAR-diyne- <i>S₇R₇</i>)	
20 min HPLC	
50 min HPLC	
HR-MS	
33 (T-STAR-diyne- <i>S</i> ₈ <i>S</i> ₈)	
20 min HPLC	
50 min HPLC	
HR-MS	
34 (T-STAR-diyne- <i>R</i> ₈ <i>R</i> ₈)	
20 min HPLC	
50 min HPLC	
HR-MS	
35 (T-STAR-diyne- <i>R</i> ₈ <i>S</i> ₈)	
20 min HPLC	
50 min HPLC	
HR-MS	
36 (T-STAR-diyne- <i>S</i> ₈ <i>R</i> ₈)	
20 min HPLC	
50 min HPLC	
HR-MS	
37 (T-STAR-HCS-2- <i>cis</i>)	
20 min HPLC	
50 min HPLC	
HR-MS	
38 (T-STAR-HCS-2- <i>trans</i>)	
20 min HPLC	
50 min HPLC	
HR-MS	

50 min HPLC	110
HR-MS	110
40 (Ac-Native T-STAR)	
20 min HPLC	111
50 min HPLC	
HR-MS	112
41 (Ac-T-STAR-divne- <i>S</i> ₇ <i>S</i> ₇)	
20 min HPLC	
50 min HPLC	113
HR-MS	
Supporting Information Tables and Figures	
Circular Dichroism Data for all T-STAR Peptide Analogues	114
Fluorescence Microscopy Images for all T-STAR Peptide Analogues	116

Experimental Procedures

General Information

All reagents were purchased from commercial sources and used without further purification. Dry solvents were purified using a PureSolv 500 MD solvent purification system. Thin-layer chromatography was performed on aluminium backed plates (0.25 µm) with silica gel 60 coated F₂₅₄ and visualised by staining with KMnO₄ or ninhydrin. Proton (¹H), carbon (¹³C) and fluorine (¹⁹F) NMR spectra were obtained using a Bruker Avance 400 MHz spectrometer and chemical shifts δ given in parts per million (ppm) relative to TMS (δ = 0 ppm). Proton and carbon chemical shifts were assigned using proton, carbon, Correlation Spectroscopy (COSY) and Heteronuclear Single Quantum Coherence (HSQC) experiments. LC-MS was performed on a Thermo Scientific Dionex Ultimate 3000 LC system coupled to a Thermo Scientific LCQ FleetTM Ion trap mass spectrometer using a Dr. Maisch Reprosil Gold 120 C₁₈ column (110 Å, $3 \mu m$, $150 \times 4 mm$) with a flow rate of 1 mL/min. A linear gradient of buffer A (95/5 H₂O/MeCN and 0.1% TFA) to buffer B (95/5 MeCN/H₂O and 0.1% TFA) was used over 10 or 20 mins. Normal phase column chromatography was performed on a Biotage Isolera One purification system using prepacked silica Biotage SNAP KP-SIL cartridges. High-resolution ESI mass spectrometry was performed on a Bruker micrOTOF-Q II in positive mode. HRMS data are reported as mass to charge ratio (m/z) = observed/MW. Optical rotation was determined using an Autopol V polarimeter.

Peptide synthesis - General methods

Solid Phase Peptide Synthesis (SPPS) and Peptide Modifications

Peptides were synthesised using an Automated Biotage Initiator+ Alstra microwave synthesiser on 0.1 mmol scale. The Sam68 peptides were synthesised using Rink Amide ChemMatrix resin (0.49 mmol/g). L-configured amino acids were used for peptide synthesis with *N*-Fmoc protecting groups. Analytical RP-HPLC was undertaken on a Shimadzu

instrument equipped with a dual wavelength UV detector and a Phenomenex Aeris 5 μ m C18 (150 × 4.6 mm) column at a flow rate of 1 mL/min. A linear gradient of buffer A (95/5 H₂O/MeCN and 0.1% TFA) to buffer B (95/5 MeCN/H₂O and 0.1% TFA) was used over 20 mins or 50 mins. UV measurements were recorded at 214 nm and 280 nm. Peptides were lyophilised using a Christ Alpha 2-4 LDplus freezedryer.

Resin Swelling

Resin was swollen in DMF at 70 °C for 20 min.

Amino Acid Coupling

Coupling reactions were performed using Fmoc-amino acid (4 equiv., 0.2 M in DMF), HCTU (4 equiv., 0.5 M in DMF) and DIPEA (8 equiv., 2 M in NMP). Proteinogenic Fmoc protected amino acids were coupled at 75 °C for 10 mins. Fmoc-Arg(Pbf)-OH was double coupled at rt for 60 mins followed by 5 mins at 75 °C. Non-proteinogenic amino acids (2 equiv.) were coupled using HCTU (2 equiv.) and DIPEA (4 equiv.) for 20 mins. Amino acids following unnatural amino acids were coupled twice. Resin was washed with DMF at rt (4 × 4.5 mL).

Fmoc Deprotection

Fmoc deprotections were carried out using 20% piperidine in DMF (4.5 mL) spiked with 5% formic acid at 75 °C for 30 s. A second deprotection (4.5 mL) was then undertaken at 75 °C for 3 mins. Resin was washed with DMF at rt (4×4.5 mL).

Coupling of Fluorescein Isothiocyanate (FITC)

Before addition to the resin, FITC (2 equiv.) and DIPEA (4 equiv.) in DMF were pre-activated for 2 mins. The solution was added to the resin and left to shake shielded from light. After draining, the resin was washed with DMF (3×5 mL), MeOH (3×5 mL) and DMF (3×5 mL).

N-Terminal Acetylation (capping)

Peptides requiring *N*-terminal acetylation were treated on-resin with acetic anhydride (3 equiv.), DIPEA (4.5 equiv.) and DMF (7 mL for 0.1 mmol of resin) for 20 min with agitation. The resin was then washed with DMF (3 x 5 mL) and DCM (3 x 5 mL) prior to peptide cleave and global deprotection.

Ring Closing Metathesis (RCM)

Peptides containing (*R*)-*N*-Fmoc- α -(7-Octenyl)alanine and (*S*)-*N*-Fmoc- α -(4-pentenyl)alanine were stapled by on-resin ring-closing metathesis (RCM). The resin was suspended in dry DCE before adding Grubbs 1st Catalyst (20 mol%) in DCE (4 mL for 0.1 mmol of resin), leaving for 2 h with agitation and excluding light. The resin was washed with DCE (3 mL) before repeating the RCM. The resin was then washed with DCM (2 x 5 mL) prior to peptide cleave and global deprotection.

Glaser Reaction

Peptides containing (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylnon-8-ynoic acid or (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-O-(pent-4-yn-yl)-L-serine were cyclised on resin. Peptide on resin (1 equiv., 0.1 mmol) was added to a microwave vial followed by a solution of CuCl (5 equiv.) and 4,4'-bis(hydroxymethyl)-2,2'-bipyridine (7.5 equiv.) in DMF (10 mL) and DIPEA (20 equiv.). The reaction was heated to 60 °C for 3 h in a microwave reactor and excess reagents filtered off. The resin was washed with 0.5% sodium diethyldithiocarbamate in 0.5% DIPEA/DMF (5 × 10 mL), DMF (3 × 10 mL), methanol (MeOH) (3 × 10 mL), DMF (3 × 10 mL) and DCM (3 × 10 mL).

Peptide Test Cleavages

Test cleavages were performed on ~5 mg of resin using a cocktail (1 mL) of TFA (95%), TIPS (2.5%) and H_2O (2.5%) for 1 h with agitation. The resin was subsequently filtered and the TFA

evaporated using a stream of N_2 , the peptide was precipitated with cold Et_2O and centrifuged (4,500 rpm for 5 min). Peptides were dissolved in a mixture of H_2O and ACN with 0.1% TFA and lyophilized on a Christ Alpha 2-4 LO plus freeze dryer.

Peptide Full Cleavage and Global Deprotection

Peptides were cleaved from the resin using a cocktail (10 mL) of TFA (95%), TIPS (2.5%) and H_2O (2.5%) for 4 h with agitation. The resin was subsequently filtered and the TFA evaporated using a stream of N_2 , the peptide was precipitated with cold Et_2O and centrifuged (4,500 rpm for 5 min). Peptides were dissolved in a mixture of H_2O and ACN with 0.1% TFA and lyophilized on a Christ Alpha 2-4 LO plus freeze dryer.

Peptide Purification

Crude peptides were purified by RP-HPLC using either an Agilent Technologies 1260 Infinity **RP-HPLC** or a Dionex RP-HPLC system with Dionex P680 pumps and system a Dionex UVD170U UV-vis detector (monitoring at 214 nm and 280 nm), each with a Phenomenex Gemini column (5 mm C18, 250 x 21.2 mm). Purified peptides were analysed on a Shimadzu RP-HPLC system with Shimadzu LC-20AT pumps, a Shimadzu SIL20A autosampler and a Shimadzu SPD-20A UV-vis detector using a Phenomenex Aeris column (5 mm C18, 100 Å, 150 x 10 mm). Peptides were eluted with linear gradients at columndependent flow rates (1 mL/min for the Aeris, 10 mL/min for the Gemini), where buffer A = 0.1% TFA in H_2O and buffer B = 0.1% TFA in ACN. LC-MS was performed on a Thermo Scientific LCQ Fleet Ion Trap Mass Spectrometer using positive mode electrospray ionisation (ESI⁺). Where buffer A = 0.1% TFA in H₂O and buffer B = 0.1% TFA in ACN, a linear gradient of 0-100 % B over 20 min with a flow rate of 1 mL/min was used with a Reprosil-Gold column (3 mm C18, 150 x 4 mm).

Circular Dichroism (CD) Spectroscopy

CD spectra were obtained at room temperature using a JASCO J-810 CD spectrometer. A range of 190-260 nm was scanned at a speed of 50 nm/min, with a 1 nm data pitch, a 1 nm bandwidth, and an 8 s response time. Samples were prepared (50 μ M) in phosphate buffered saline (PBS; pH 7.4), and CD spectra measured in a 1 mm or 0.2 mm quartz cuvette. Raw data (mdeg) were converted to mean residue ellipticity (MRE; deg cm² dmol⁻¹ res⁻¹) by normalizing for path length, peptide concentration, and number of amide bonds. Percentage helicities can be calculated for α -helical peptides. The raw CD data was converted to mean residue ellipticity (MRE) using Equation S1. and the value at 222 nm was used to calculate the % helicity of the peptides using Equation S2..^[30-32]

Equation S1. MRE calculation. Where θ = machine units in degrees, MRW (mean residue weight) = molecular mass of peptide/number of residues, I = path length (cm) and c = peptide concentration in mg/mL.

$$MRE = \theta \left(\frac{0.1 \times MRW}{l \times c}\right)$$

Equation S2. (1) % Helicity equation. (2) θ_c = random coil ellipticity calculation proposed by Luo and Baldwin.^[32] (3) $\theta_{222\infty} = \alpha$ -helix ellipticity calculation determined by Luo and Baldwin,^[32] reading observed at 222 nm. T is the temperature in degrees Celsius, Np is the number of amide bonds and k = the peptide length correction factor, 3.^[30]

(1) % Helicity = $\left(\frac{\theta_{222} - \theta_c}{\theta_{222\infty} - \theta_c}\right) \times 100$ (2) $\theta_c = 2220 - 53T$

(3)
$$\theta_{222\infty} = (-44000 + (250 \times T)) \times \left(1 - \frac{\kappa}{Np}\right)$$

Proteolytic Stability of Peptides

Solutions of peptides (300 nM) were prepared in 50 μ L DMSO + 950 μ L PBS buffer (pH 7.4). A standard solution of *m*-cresol (0.05 mg/mL) and a trypsin/chymotrypsin solution (0.01 mg/mL) were prepared in PBS buffer (pH 7.4). To 100 μ L of peptide solution was added 100

 μ L of trypsin solution and 100 μ L of the *m*-cresol standard solution and the solutions incubated at 37 °C. Aliquots were taken (40 μ L) at t = 0, 5 mins, 10 mins, 30 mins, 1 h and 2 h. Samples were quenched with 15 μ L MeCN and 25 μ L of 2% TFA/H₂O and centrifuged at 13,800 × g for 5 mins. The supernatant was analysed by analytical HPLC as previously described. The experiments were performed in triplicate with controls containing either peptide or enzyme alone in buffer. The percentage peptide remaining at each time point was calculated by peak integration relative to the percentage of the standard solution.

Cell Permeability Fluorescence Assay

HEK293 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM, high glucose with GlutaMAX, Gibco) supplemented with 10% (v/v) foetal bovine serum (Gibco) and 1% (v/v) penicillin/streptomycin (10,000 units/mL penicillin, 10,000 μ g/mL streptomycin, Gibco). Cultured cells were maintained in a humidified incubator at 37 °C, 5% CO₂ and passaged twice weekly in T-25 flasks (Corning). For cell counting, an aliquot (10 μ L) of cell solution in media was added to a haemocytometer slide which was viewed using a microscope for manual inspection and counting. For experiments, 300,000 cells were seeded into 6-well plates (CytoOne) on 30 mm cover glass slides pre-treated with 0.1 mg/mL poly-D-lysine and left to grow for two days to reach ca. 80% confluency before compound incubation. Media was removed and the cells were washed with PBS prior to treatment with compound in PBS (2 h, 20 μ M, 37 °C). Cells were then washed again with PBS twice, fixed with a 4% (w/v) solution of formaldehyde in PBS (10 min, 37 °C) and washed with PBS twice prior to analysis.

Fluorescence Imaging. Images were acquired on a MetaMorph/Metafluor fluorescence imaging microscope system equipped with a 40× Superfluor objective for an exposure time of 1000 ms. Excitation for fluorescein was conducted at 495 nm. Image analysis and processing was performed using MetaMorph microscopy software.

Raman Spectroscopy of Native and Diyne Stapled T-STAR Peptide

Raman spectroscopy was performed using the Horiba Jobin Yvon LabRAM HR system with a Ventus CD laser at 532.02 nm, 100 mW. The hole width was 200 μ M with a diffraction grating

of 600 g/mm using an Olympus x50LWD objective lens. The recorded spectral range was 600-4000 cm⁻¹ and data acquisition was performed during 5 seconds with 3 repeats and collected with the Synapse OCD detector. 100% power was used for peptide **40** and 50% power was used for stapled peptide **41**. Data was analysed using the Labspec 5 software.

Amino Acid Synthesis - Experimental Methods

S1 ((2-Fluorobenzyl)-L-proline hydrochloride)

Potassium hydroxide (7.31 g, 0.130 mol, 3 equiv.) was dissolved in isopropanol at 40 °C before addition of L-proline (5.00 g, 43.4 mmol, 1 equiv.). 2-Fluorobenzyl bromide (5.24 mL, 43.4 mmol, 1 equiv.) was added dropwise *via* an addition funnel. The reaction was left to stir at 50 °C for 24 h. HCl_(aq.) (37%) was added slowly until the pH of the mixture reached 5.5, as determined using a pH probe. After cooling in an ice bath, the suspension was filtered and concentrated *in vacuo*. The resulting oil was dissolved in DCM and left at 4 °C overnight. A white precipitate was removed by filtration and the filtrate was concentrated *in vacuo* to give **S1** as a viscous brown oil (7.77 g, 79%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.40 (td, J = 7.5, 1.5 Hz, 1H, 9-H), 7.37 – 7.34 (m, 1H, 8-H), 7.16 (td, J = 7.5, 1.2 Hz, 1H, 10-H), 7.13 – 7.09 (m, 1H, 11-H), 4.19 (d, J = 12.9 Hz, 1H, 6-H), 4.02 (d, J = 12.9 Hz, 1H, 6[′]-H), 3.62 (dd, J = 9.9, 4.5 Hz, 1H, 2-H), 3.38 (ddd, J = 9.9, 6.7, 3.0 Hz, 1H, 5-H), 2.76 – 2.71 (m, 1H, 5[′]-H), 2.31 – 2.17 (m, 2H, 3-H), 1.95 – 1.83 (m, 2H, 4-H).

¹³C NMR (101 MHz, CDCl₃) δ 171.9 (C=O), 161.4 (d, J = 248.1 Hz, Ar-C), 133.0 (d, J = 3.2 Hz, Ar-CH), 131.6 (d, J = 8.3 Hz, Ar-CH), 125.0 (d, J = 3.6 Hz, Ar-CH), 119.2 (d, J = 14.3 Hz, Ar-C), 116.0 (d, J = 21.8 Hz, Ar-CH), 67.5 (CH), 53.7 (CH₂), 51.0 (CH₂), 29.1 (CH₂), 23.2 (CH₂).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –116.9.

[α]_D²⁰ –26.0 (c 0.1 in MeOH) lit: –24.1.^[33]

IR (u_{max}/cm⁻¹, neat) 3407 (OH), 2978 (C-H), 1617 (C=O).

HRMS-EI (calcd for $C_{12}H_{14}FNO_2$ [M + Na]⁺) 246.0901, found 246.0892 (Δ = - 3.5 ppm).

The spectroscopic data is in good agreement with the literature.^[33]

S2 ((2-Fluorobenzyl)-D-proline hydrochloride)

Method as **S1** using D-proline yielding **S2** as a viscous brown oil (2.16 g, 95%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.40 (td, J = 7.5, 1.8 Hz, 1H, 9-H), 7.37 – 7.34 (m, 1H, 8-H), 7.16 (td, J = 7.5, 1.2 Hz, 1H, 10-H), 7.13 – 7.09 (m, 1H, 11-H), 4.19 (d, J = 12.9 Hz, 1H, 6-H), 4.02 (d, J = 12.9 Hz, 1H, 6[′]-H), 3.62 (dd, J = 9.9, 4.6 Hz, 1H, 2-H), 3.38 (ddd, J = 9.9, 6.7, 2.9 Hz, 1H, 5-H), 2.76 – 2.71 (m, 1H, 5[′]-H), 2.31 – 2.17 (m, 2H, 3-H), 1.95 – 1.83 (m, 2H, 4-H).

¹³C NMR (101 MHz, CDCl₃) δ 172.0 (C=O), 161.5 (d, *J* = 248.0 Hz, Ar-C), 132.9 (d, *J* = 3.2 Hz, Ar-CH), 131.4 (d, *J* = 8.4 Hz, Ar-CH), 124.9 (d, *J* = 3.7 Hz, Ar-CH), 119.5 (d, *J* = 14.3 Hz, Ar-C), 115.9 (d, *J* = 21.8 Hz, Ar-CH), 67.3 (CH), 53.7 (CH₂), 51.0 (CH₂), 29.2 (CH₂), 23.2 (CH₂).

 ^{19}F NMR (376 MHz, CDCl3) δ –116.9.

[α]_D²⁰ = +25.0 (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3410 (OH), 2977 (C-H) 1620 (C=O).

HRMS-EI (calcd for $C_{12}H_{14}FNO_2$ [M + Na]⁺) 246.0901, found 246.0892 ($\Delta = -3.7$ ppm).

16

S3 ((S)-N-(2-Benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide)

(*S*)-1-(2-Fluorobenzyl)pyrrolidine-2-carboxylic acid **S1** (0.100 g, 0.390 mmol, 1 equiv.) and *N*-methylimidazole (68.5 μ L, 0.860 mmol, 2.2 equiv.) were dissolved in dry DCM (2 mL) before the addition of MsCl (36.2 μ L, 0.470 mmol, 1.2 equiv.) at 0 °C. After 15 mins 2-aminobenzophenone (69.0 mg, 0.350 mmol, 0.9 equiv.) was added, the reaction mixture heated to 50 °C and left to stir for 18 h. The reaction was cooled and then quenched with aqueous sodium hydrogen carbonate solution (10 mL). The aqueous layer was extracted with DCM (3 × 10 mL) and subsequently washed with brine (3 × 10 mL). The organic layers were dried with MgSO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by normal phase flash column chromatography using petroleum ether and EtOAc in a 0-25% gradient to give **S3** as a yellow solid (85.0 mg, 60%).

¹**H NMR** (500 MHz, CDCl₃) δ 11.40 (s, 1H, NH), 8.54 (dd, *J* = 8.4, 1.0 Hz, 1H, Ar-H), 7.76 – 7.74 (m, 2H, 2 × Ar-H), 7.62 – 7.58 (m, 1H, Ar-H), 7.55 – 7.44 (m, 5H, 9-H + 4 × Ar-H), 7.14 – 7.07 (m, 2H, 8-H + Ar-H), 6.92 (td, *J* = 7.5, 1.2 Hz, 1H, 10-H), 6.81 – 6.76 (m, 1H, 11-H), 3.89 (d, *J* = 13.2 Hz, 1H, 6-H), 3.73 (d, *J* = 13.2 Hz, 1H, 6[′]-H), 3.35 (dd, *J* = 10.2, 4.6 Hz, 1H, 2-H), 3.25 – 3.21 (m, 1H, 5-H), 2.49 – 2.43 (m, 1H, 5[′]-H), 2.29 – 2.19 (m, 1H, 3-H), 1.98 – 1.91 (m, 1H, 3[′]-H), 1.85 – 1.73 (m, 2H, 4-H).

¹³C NMR (101 MHz, CDCl₃) δ 198.0 (C=O), 174.6 (C=O), 161.0 (d, *J* = 246.2 Hz, Ar-C), 139.2 (Ar-C), 138.8 (Ar-C), 133.4 (Ar-CH), 132.6 (Ar-CH), 131.8 (d, *J* = 4.3 Hz, Ar-CH), 130.2 (2 × Ar-CH), 128.9 (d, *J* = 8.2 Hz, Ar-CH), 128.4 (Ar-CH), 125.8 (Ar-C), 124.9 (d, *J* = 14.6 Hz, Ar-C), 124.0 (d, *J* =

J = 3.6 Hz, Ar-CH), 122.4 (Ar-CH), 121.6 (Ar-CH), 115.1 (d, *J* = 22.1 Hz, Ar-CH), 68.1 (CH), 53.9 (CH₂), 52.2 (CH₂), 31.2 (CH₂), 24.4 (CH₂).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –117.6.

Mp 85-87 °C.

 $[\alpha]_{D}^{25} = -129.0$ (c 0.1 in MeOH), lit: -125.1.^[33]

IR (u_{max}/cm⁻¹, neat) 3277 (N-H), 1682 (C=O), 1647 (C=O), 1578 (C=C).

HRMS-EI (calcd for $C_{25}H_{23}FN_2O_2$ [M + Na]⁺) 425.1636, found 425.1623 (Δ = -2.9 ppm).

The spectroscopic data is in good agreement with the literature.^[33]

S4 ((R)-N-(2-Benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide)

Method as **S3** using (*R*)-1-(2-Fluorobenzyl)pyrrolidine-2-carboxylic acid **S2**, yielding **S4** as a yellow solid (1.20 g, 63%).

¹**H NMR** (500 MHz, CDCl₃) δ 11.40 (s, 1H, NH), 8.54 (dd, *J* = 8.4, 1.1 Hz, 1H, Ar-H), 7.76 – 7.74 (m, 2H, Ar-H), 7.62 – 7.57 (m, 1H, Ar-H), 7.55 – 7.44 (m, 5H, 9-H + 4 × Ar-H), 7.14 – 7.07 (m, 2H, 8-H + Ar-H), 6.92 (td, *J* = 7.5, 1.2 Hz, 1H, 10-H), 6.81 – 6.76 (m, 1H, 11-H), 3.89 (d, *J* = 13.2 Hz, 1H, 6-H), 3.73 (d, *J* = 13.2 Hz, 1H, 6[′]-H), 3.35 (dd, *J* = 10.2, 4.6 Hz, 1H, 2-H), 3.25 – 3.20 (m, 1H, 5-H), 2.49 – 2.43 (m, 1H, 5[′]-H), 2.29 – 2.19 (m, 1H, 3-H), 1.98 – 1.91 (m, 1H, 3[′]-H), 1.85 – 1.73 (m, 2H, 4-H).

¹³**C NMR** (101 MHz, CDCl₃) δ 198.0 (C=O), 174.5 (C=O), 161.0 (d, *J* = 246.2 Hz, Ar-C), 139.2 (Ar-C), 138.8 (Ar-C), 133.4 (Ar-CH), 132.6 (Ar-CH), 131.8 (d, *J* = 4.3 Hz, Ar-CH), 130.2 (2 × Ar-CH), 129.0 (d, *J* = 8.3 Hz, Ar-CH), 128.4 (Ar-CH), 125.8 (Ar-C), 125.1 (d, *J* = 14.6 Hz, Ar-C), 124.0 (d, *J* = 3.6 Hz, Ar-CH), 122.4 (Ar-CH), 121.6 (Ar-CH), 115.2 (d, *J* = 22.2 Hz, Ar-CH), 68.1 (CH), 53.9 (CH₂), 52.1 (CH₂), 31.2 (CH₂), 24.4 (CH₂).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –117.6.

Mp 85-87 °C.

 $[\alpha]_{D}^{25} = 133.5$ (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3275 (N-H), 1682 (C=O), 1645 (C=O), 1576 (C=C).

HRMS-EI (calcd for $C_{25}H_{23}FN_2O_2$ [M + Na]⁺) 425.1636, found 425.1625 (Δ = - 2.5 ppm).

The spectroscopic data is in good agreement with the literature.^[34]

S5 (7-Octyn-1-ol)

Ethylene diamine (45 mL) was added to a two-necked flask under N₂ and cooled to 0 °C. NaH (60%, 2.00 g, 55.6 mmol, 4 equiv.) was added in two portions and stirred at 0 °C for 15 mins, rt for 1 h and 60 °C for 1 h. The reaction mixture was cooled to 45 °C and 3-octyn-1-ol (1.76 g, 13.9 mmol, 1 equiv.) was added dropwise and left to stir for 1 h before stirring at 60 °C for 1 h. After quenching with H₂O (50 mL) at 0 °C, the mixture was acidified with 1 M HCl_(aq.) (50 mL). The aqueous layer was extracted with EtOAc (3 × 200 mL) and Et₂O (3 × 200 mL) and combined organic layers washed with 1 M HCl_(aq.) (3 × 200 mL), brine (3 × 200 mL), dried over MgSO₄ and concentrated to afford **S5** as a pale yellow oil (1.50 g, 85%).

¹**H NMR** (400 MHz, CDCl₃) δ 3.64 (t, *J* = 6.6 Hz, 2H, 8-H), 2.19 (td, *J* = 7.0 Hz, 2.7, 2H, 3-H), 1.94 (t, *J* = 2.7 Hz, 1H, 1-H), 1.61 – 1.33 (m, 8H, 4-H, 5-H, 6-H + 7-H).

¹³C NMR (101 MHz, CDCl₃) δ 84.7 (C), 68.3 (CH), 63.0 (CH₂), 32.7 (CH₂), 28.6 (CH₂), 28.5 (CH₂), 25.4 (CH₂), 18.5 (CH₂).

IR (U_{max}/cm⁻¹, neat) 3315 (OH), 2931 (C-H), 2854 (C-H).

The spectroscopic data is in good agreement with the literature.^[35]

1 ((*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)alaninato-*N*,*N*′,*N*″,O)nickel(II))

(*S*)-*N*-(2-benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide **S3** (1.00 g, 2.48 mmol, 1 equiv.), Ni(NO₃)₂·6H₂O (1.45 g, 4.97 mmol, 2 equiv.) and L-Ala (443 mg, 4.97 mmol, 2 equiv.) were dissolved in MeOH (25 mL) with heating at 50 °C. KOH (974 mg, 17.4 mmol, 7 equiv.) was added, the reaction mixture heated to 70 °C and left to stir for 1 h. After cooling and concentration *in vacuo*, the residue was taken up in H₂O (50 mL) and EtOAc (50 mL). The aqueous layer was extracted with EtOAc (3 × 100 mL), organic phases recombined and subsequently washed with brine (3 × 100 mL), dried with MgSO₄ and concentrated *in vacuo* to produce **1** as a red solid (1.30 g, 99%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (td, *J* = 7.5, 1.9 Hz, 1H, 9-H), 8.11 (d, *J* = 8.6 Hz, 1H, Ar-H), 7.52 – 7.43 (m, 3H, 3 × Ar-H), 7.25 – 7.14 (m, 4H, 8-H, 10-H + 2 × Ar-H), 7.07 – 7.03 (m, 1H, 11-H), 6.95 (d, *J* = 7.5 Hz, 1H, Ar-H), 6.69 – 6.63 (m, 2H, 2 × Ar-H), 4.40 (d, *J* = 12.9 Hz, 1H, 6-H), 3.91 (quin, *J* = 7.0 Hz, 1H, 27-H), 3.82 (d, *J* = 13.0 Hz, 1H, 6'-H), 3.75 – 3.65 (m, 1H, 5-H), 3.57 - 3.47 (m, 2H, 2-H + 4-H), 2.85 - 2.78 (m, 1H, 3-H), 2.61 - 2.52 (m, 1H, 3'-H), 2.24 - 2.19 (m, 1H, 5'-H), 2.09 - 2.03 (m, 1H, 4'-H), 1.58 (d, *J* = 7.0 Hz, 3H, 28-H).

¹³**C NMR** (101 MHz, CDCl₃) δ 180.6 (C=O), 180.2 (C=O), 170.5 (C=N), 161.8 (d, *J* = 248.0 Hz, Ar-C), 142.2 (Ar-C), 134.3 (d, *J* = 3.4 Hz, Ar-CH), 133.6 (Ar-C), 133.3 (Ar-CH), 132.3 (Ar-CH), 131.4 (d, *J* = 8.5 Hz, Ar-CH), 129.8 (Ar-CH), 129.1 (2 × Ar-CH), 127.6 (Ar-CH), 127.4 (Ar-CH), 126.7 (Ar-C), 124.7 (d, *J* = 3.5 Hz, Ar-CH) 124.0 (Ar-CH), 121.0 (Ar-CH), 120.6 (d, *J* = 14.5 Hz, Ar-C), 116.3 (d, *J* = 22.4 Hz, Ar-CH), 70.5 (CH), 66.8 (C), 57.2 (CH₂), 55.7 (CH₂), 30.9 (CH₂), 24.3 (CH₂), 22.0 (CH₃).

¹⁹F NMR (376 MHz, CDCl₃) δ –114.0.

Mp 280–282 °C.

 $[\alpha]_D^{25}$ = +2904.3 (c 0.05 in CHCl₃) (lit: +3126.6).^[36]

IR (u_{max}/cm⁻¹, neat) 1680 (C=O), 1626 (C=N), 1549 (C=C), 1441 (C=C).

HRMS-EI (calcd for $C_{28}H_{26}FN_3NiO_3$ [M + Na]⁺) 552.1204, found 552.1192 (Δ = - 2.2 ppm).

The spectroscopic data is in good agreement with the literature.^[36]

2 ((*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*R*)alaninato-*N*,*N'*,*N''*,O)nickel(II))

Method as **1** using (*R*)-*N*-(2-benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide **S4**, yielding **2** as a red solid (0.130 g, 99%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (td, *J* = 7.4, 1.9 Hz, 1H, 9-H), 8.12 (d, *J* = 8.8 Hz, 1H, Ar-H), 7.51 – 7.43 (m, 3H, 22-H, 23-H + Ar-H), 7.25 – 7.13 (m, 4H, 8-H, 10-H + 2 × Ar-H), 7.07 – 7.03 (m, 1H, 11-H), 6.96 – 6.94 (m, 1H, Ar-H), 6.69 – 6.62 (m, 2H, 2 × Ar-H), 4.40 (d, *J* = 13.8 Hz, 1H, 6-H), 3.90 (quin., *J* = 7.0 Hz, 1H, 27-H), 3.82 (d, *J* = 13.1 Hz, 1H, 6'-H), 3.76 – 3.63 (m, 1H, 5-H), 3.52 – 3.46 (m, 2H, 2-H + 4-H), 2.85 – 2.78 (m, 1H, 3-H), 2.61 – 2.51 (m, 1H, 3'-H), 2.28 – 2.18 (m, 1H, 5'-H), 2.10 – 2.03 (m, 1H, 4'-H), 1.57 (d, *J* = 7.0 Hz, 3H, 28-H).

¹³**C** NMR (101 MHz, CDCl₃) δ 180.4 (C=O), 180.1 (C=O), 170.3 (C=N), 161.6 (d, *J* = 248.0 Hz, Ar-C), 142.1 (Ar-C), 134.2 (d, *J* = 3.4 Hz, Ar-CH), 133.5 (Ar-C), 133.2 (Ar-CH), 132.2 (Ar-CH), 131.2 (d, *J* = 8.5 Hz, Ar-CH), 129.7 (Ar-CH), 129.0 (2 × Ar-CH), 127.5 (Ar-CH), 127.2 (Ar-CH), 126.6 (Ar-C), 124.5 (d, *J* = 3.6 Hz, Ar-CH), 123.9 (Ar-CH), 120.8 (Ar-CH), 120.4 (d, *J* = 14.5 Hz, Ar-C), 116.1 (d, *J* = 22.3 Hz, Ar-CH), 70.4 (C), 66.6 (C), 57.1 (CH₂), 55.6 (CH₂), 30.7 (CH₂), 24.1 (CH₂), 21.8 (CH₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –114.0.

Mp 282–284 °C.

 $[\alpha]_D^{25} = -2909.3$ (c 0.05 in CHCl₃).

IR (u_{max}/cm⁻¹, neat) 1670 (C=O), 1635 (C=N), 1550 (C=C).

HRMS-EI (calcd for $C_{28}H_{26}FN_3NiO_3$ [M + Na]⁺) 552.1204, found 552.1180 (Δ = - 2.4 ppm).

3 ((*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)glycinato-*N*,*N*',*N*'',O)nickel(II))

21

Method as **1** using (*R*)-*N*-(2-benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide **S3** and L-Gly, yielding **3** as a red solid (0.130 g, 94%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (dd, *J* = 7.5, 1.8 Hz, 1H, Ar-H), 8.29 (d, *J* = 8.7 Hz, 1H, Ar-H), 7.58 – 7.45 (m, 3H, 3 x Ar-H), 7.32 (m, 1H, Ar-H), 7.23 (m, 2H, 2 x Ar-H), 7.15 – 7.06 (m, 2H, 2 x Ar-H), 6.98 (m, 1H, Ar-H), 6.81 (d, *J* = 8.2 Hz, 1H, Ar-H), 6.71 (t, *J* = 7.6 Hz, 1H, Ar-H), 4.47 (d, *J* = 12.9 Hz, 1H), 3.93 (d, *J* = 12.9 Hz, 1H), 3.77 (d, *J* = 20.1 Hz, 1H), 3.67 (d, *J* = 20.1 Hz, 1H), 3.62 (m, 1H), 3.45 (dd, *J* = 10.8, 5.7 Hz, 1H), 3.42 – 3.27 (m, 1H), 2.72 – 2.59 (m, 1H), 2.54 – 2.39 (m, 1H), 2.18 – 2.04 (m, 2H, 27-H).

¹³**C NMR** (101 MHz, CDCl₃) δ 181.1 (C=O), 177.4 (C=O), 171.8 (C=N), 161.9 (d, *J* = 248.0 Hz, Ar-CH), 142.6 (Ar-CH), 134.7 (Ar-CH), 134.3 (d, *J* = 3.3 Hz, (Ar-CH), 133.4 (Ar-CH), 132.4 (Ar-CH), 131.5 (d, *J* = 8.5 Hz, Ar-CH), 129.9 (Ar-CH), 129.8 (Ar-CH), 129.5 (Ar-CH), 126.4 (Ar-CH), 125.8 (Ar-CH), 125.4 (Ar-CH), 124.7 (d, *J* = 3.7 Hz, Ar-CH), 124.5 (Ar-CH), 121.1(Ar-CH), 120.6 (d, *J* = 14.5 Hz, Ar-CH), 116.3 (d, *J* = 22.4 Hz, Ar-CH), 70.2 (CH), 61.4 (C), 57.4 (CH₂), 55.9 (CH₂), 30.7 (CH₂), 23.8 (CH₂).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –113.7.

Mp 124-126 °C.

 $[\alpha]_{D}^{25} = +1897.9 (c \ 0.05 \text{ in CHCl}_{3}) (lit: +1300.0).^{[36]}$

IR (u_{max}/cm⁻¹, neat) 2935, 2354, 1672, 1634, 1588, 1490, 1471, 1440, 1362, 1334, 1256, 1165, 1111, 1063, 962, 754, 723, 704.

HRMS-EI (calcd for $C_{28}H_{26}FN_3NiO_3$ [M + H]⁺) 516.1228, found 516.1238 (Δ = - 2.0 ppm).

The spectroscopic data is in good agreement with the literature.^[33, 36]

4 (5-lodopent-1-yne)

5-Chloro-pent-1-yne (775 μ L, 7.31 mmol, 1 equiv.) was dissolved in acetone (15 mL) and NaI (5.49 g, 36.6 mmol, 5 equiv.) was added and left to stir for 16 h at 60 °C. After cooling and concentrating *in vacuo*, the residue was taken up in H₂O (50 mL) and EtOAc (50 mL). The aqueous layer was extracted with EtOAc (3 × 100 mL) and the organic layer was washed with Na₂S₂O_{3(aq.)} (2 × 100 mL), dried over MgSO₄ and concentrated yielding **4** as a yellow oil (1.00 g, 70%).

¹**H NMR:** (400 MHz, CDCl₃) δ 3.31 (t, *J* = 6.7 Hz, 2H, 5-H), 2.34 (td, *J* = 6.7, 2.7 Hz, 2H, 3-H), 2.04-1.97 (m, 3H, 1-H + 4-H).

¹³C NMR: (101 MHz, CDCl₃) δ 82.4 (C), 69.6 (CH), 32.0 (CH₂), 19.6 (CH₂), 5.1 (CH₂).

IR (u_{max}/cm⁻¹, neat) 3250 (C≡C-H), 2910 (C-H), 2837 (C-H).

The spectroscopic data is in good agreement with the literature.^[37]

5 (6-lodohex-1-yne)

5-Hexyn-1-ol (1.00 g, 10.2 mmol, 1 equiv.) was dissolved in dry DCM (10 mL) and Et₃N (2.84 mL, 20.4 mmol, 2 equiv.) added. MsCl (1.75 mL, 15.3 mmol, 1.5 equiv.) was added dropwise at 0 °C and left to stir for 4 h at rt. After concentration, the residue was dissolved in H₂O, extracted with EtOAc (3 × 100 mL). The organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The crude mixture was dissolved in acetone (20 mL), Nal (7.63 g, 50.1 mmol, 5 equiv.) added and left to stir for 16 h at 60 °C. After cooling and concentrating, the residue was taken up in H₂O (100 mL) and EtOAc (100 mL). The aqueous

layer was extracted with EtOAc (3 \times 100 mL) and the organic layer was washed with Na₂S₂O_{3(aq.)} (2 \times 100 mL), dried over MgSO₄ and concentrated yielding **5** as a yellow oil (1.82 g, 86%).

¹**H NMR:** (400 MHz, CDCl₃) δ 3.21 (t, *J* = 6.9 Hz, 2H, 6-H), 2.23 (td, *J* = 7.0, 2.7 Hz, 2H, 3-H), 1.99-1.92 (m, 3H, 1-H + 5-H), 1.68 – 1.61 (m, 2H, 4-H).

¹³C NMR: (101 MHz, CDCl₃) δ 83.7 (C), 69.0 (CH), 32.4 (CH₂), 29.3 (CH₂), 17.6 (CH₂), 6.1 (CH₂).

IR (u_{max}/cm⁻¹, neat) 3291 (C≡C-H), 2940 (C-H), 2860 (C-H).

The spectroscopic data is in good agreement with the literature.^[38]

6 (7-lodohept-1-yne)

Method as **5**, using 6-Heptyn-1-ol (4.00 g, 35.7 mmol, 1 equiv.) yielding **6** as an orange oil (7.80 g, 99%).

¹**H NMR:** (400 MHz, CDCl₃) δ 3.19 (t, *J* = 7.0 Hz, 2H, 7-H), 2.21 (td, *J* = 6.8, 2.6 Hz, 2H, 3-H), 1.95 (t, *J* = 2.7 Hz, 1H, 1-H), 1.85 (quin, *J* = 7.1 Hz, 2H, 6-H), 1.60 – 1.48 (m, 4H, 4-H + 5-H).

¹³C NMR: (101 MHz, CDCl₃) δ 84.3 (C), 68.7 (CH), 33.2 (CH₂), 29.7 (CH₂), 27.5 (CH₂), 18.4 (CH₂), 6.6 (CH₂).

IR (u_{max}/cm⁻¹, neat) 3299 (C≡C-H), 2930 (C-H), 2855 (C-H).

HRMS-EI (calcd for C₇H₁₁I [M + H]⁺) 221.9906, found 221.9902 (Δ = -1.6 ppm).

The spectroscopic data is in good agreement with the literature.^[39]

Method as **5** using 7-octyn-1-ol **S5** (1.32 g, 10.5 mmol, 1 equiv.), yielding **7** as a yellow oil (2.37 g, 96%).

¹**H NMR** (400 MHz, CDCl₃) δ 3.19 (t, *J* = 7.0 Hz, 2H, 8-H), 2.19 (td, *J* = 7.0 Hz, 2.7, 2H, 3-H), 1.94 (t, *J* = 2.6 Hz, 1H, 1-H), 1.87 – 1.80 (m, 2H, 4-H), 1.57 – 1.50 (m, 2H, 5-H), 1.47 – 1.38 (m, 4H, 4-H + 6-H).

¹³C NMR (101 MHz, CDCl₃) δ 84.5 (C), 68.5 (CH), 33.5 (CH₂), 30.1 (CH₂), 28.3 (CH₂), 27.7 (CH₂), 18.5 (CH₂), 7.1 (CH₂).

IR (u_{max}/cm⁻¹, neat) 3296 (C≡C-H), 2936 (C-H), 2860 (C-H).

The spectroscopic data is in good agreement with the literature.^[35]

8 ((*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)pentynylalaninato-*N*,*N*',*N*'',O)nickel(II))

Sodium *t*-butoxide (0.750 g, 7.83 mmol, 1.2 equiv.) and L-Ala-Ni-(*S*)-FBPB **1** (3.45 g, 6.52 mmol, 1 equiv.) were added to a dry flask under N₂. The flask was cooled to 0 °C and dry DMF added (30 mL) before dropwise addition of 5-iodopent-1-yne **4** (1.52 g, 7.83 mmol, 1.2 equiv.). After 5 mins the ice bath was removed and the flask warmed to rt and stirred for 1 h. The reaction mixture was quenched by pouring into cold 5% acetic acid (50 mL) and concentrated *in vacuo*. The residue was dissolved in DCM (50 mL) and H₂O (50 mL) and the layers separated. The aqueous layer was extracted with DCM (50 mL) and the combined organic layers washed with 5% w/v LiCl_(aq.) solution (3 × 50 mL), brine (3 × 50 mL), dried with MgSO₄ and concentrated *in vacuo*. Purification was carried out using normal phase flash column chromatography with a gradient of 50-100% EtOAc/Pet Ether to give **8** as a red solid (2.80 g, 72%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (td, *J* = 7.5, 1.8 Hz, 1H, 9-H), 8.03 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.48 – 7.42 (m, 2H, 2 × Ar-H), 7.38 – 7.28 (m, 3H, 8-H + 2 × Ar-H), 7.18 (td, *J* = 7.5, 1.1 Hz, 1H, 10-H), 7.15 – 7.10 (m, 1H, 11-H), 7.07 – 7.04 (m, 2H, 2 × Ar-H), 6.66 – 6.59 (m, 2H, 2 × Ar-H), 4.48 (d, *J* = 13.1 Hz, 1H, 6-H), 3.92 (d, *J* = 13.1 Hz, 1H, 6'-H), 3.59 – 3.55 (m, 1H, 5-H), 3.40 (dd, *J* = 10.7, 6.4 Hz, 1H, 2-H), 3.31 – 3.18 (m, 1H, 4-H), 2.82 – 2.74 (m, 1H, 3-H), 2.60 – 2.46 (m, 2H, 3'-H +31-H), 2.38 – 2.29 (m, 1H, 30-H), 2.26 – 2.13 (m, 2H, 30'-H, 31'-H), 2.09 – 1.98 (m, 3H, 4'-H, 5'-H + 33-H), 1.94 – 1.86 (m, 1H, 29-H), 1.79 – 1.71 (m, 1H, 29'-H), 1.19 (s, 3H, 28-H).

¹³**C** NMR (101 MHz, CDCl₃) δ 182.1 (C=O), 180.2 (C=O), 172.6 (C=N), 161.8 (d, *J*= 248.0 Hz, Ar-C), 141.6 (Ar-C), 136.5 (Ar-C), 134.2 (d, *J* = 3.4 Hz, Ar-CH), 133.6 (Ar-CH), 131.8 (Ar-CH), 131.3 (d, *J* = 8.5 Hz, Ar-CH), 130.4 (Ar-CH), 129.5 (Ar-CH), 128.6 (Ar-C), 128.1 (Ar-CH), 127.5 (Ar-CH), 127.0 (Ar-CH), 124.6 (d, *J* = 3.5 Hz, Ar-CH), 124.0 (Ar-CH), 120.8 (Ar-CH), 120.5 (d, *J* = 14.5 Hz, Ar-C), 116.2 (d, *J* = 22.3 Hz, Ar-CH), 83.6 (C), 77.8 (C), 70.3 (CH), 69.3 (CH), 56.8 (CH₂), 56.0 (CH₂), 39.8 (CH₂), 30.6 (CH₂), 29.4 (CH₃), 25.0 (CH₂), 23.4 (CH₂), 18.6 (CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃) δ –113.7.

Mp 170–172 °C.

 $[\alpha]_{D}^{25}$ = +2050 (c 0.05 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3287 (C≡C-H), 2933 (C-H), 1665 (C=O), 1634 (C=N).

HRMS-EI (calcd for $C_{33}H_{32}FN_3NiO_3$ [M + Na]⁺) 618.1673, found 618.1674 (Δ = 0.0 ppm).

9 ((*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)hexynylalaninato-*N*,*N*',*N*'',O)nickel(II))

Method as **8** using L-Ala-Ni-(*S*)-FBPB **1** (3.18 g, 6.01 mmol, 1 equiv.) and 6-iodohex-1-yne **5** (1.50 g, 7.21 mmol, 1.2 equiv.) yielding **9** as a red solid (2.80 g, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (td, *J* = 7.4, 1.8 Hz, 1H, 9-H), 8.00 (d, *J* = 8.7 Hz, 1H, Ar-H), 7.48 – 7.43 (m, 2H, 2 × Ar-H), 7.39 – 7.27 (m, 3H, 8-H + 2 × Ar-H), 7.21–7.05 (m, 3H, 10-H, 11-H + Ar-H), 7.01 – 6.98 (m, 1H, Ar-H), 6.66 – 6.60 (m, 2H, 2 × Ar-H), 4.49 (d, *J* = 13.0 Hz, 1H, 6-H), 3.93 (d, *J* = 13.0 Hz, 1H, 6'-H), 3.61 – 3.57 (m, 1H, 5-H), 3.39 (dd, *J* = 10.6, 6.4 Hz, 1H, 2-H), 3.34 – 3.21 (m, 1H, 4-H), 2.81 – 2.73 (m, 1H, 3-H), 2.57 – 2.45 (m, 2H, 3'-H + 30-H), 2.28 (td, *J* = 6.9, 2.6 Hz, 2H, 32-H), 2.13 – 1.99 (m, 3H, 4'-H, 5'-H, 30'-H), 1.96 (t, *J* = 2.6 Hz, 1H, 34-H), 1.68 (m, 1H, 29-H), 1.61 – 1.41 (m, 3H, 29'-H + 31-H), 1.25 (s, 3H, 28-H).

¹³**C** NMR (101 MHz, CDCl₃) δ 182.5 (C=O), 180.2 (C=O), 172.7 (C=N), 161.8 (d, *J*= 247.9 Hz, Ar-C), 141.6 (Ar-C), 136.7 (Ar-C), 134.3 (d, *J* = 3.4 Hz, Ar-CH), 133.4 (Ar-CH), 131.6 (Ar-CH), 131.3 (d, *J* = 8.5 Hz, Ar-CH), 130.3 (Ar-CH), 129.5 (Ar-CH), 128.9 (Ar-C), 128.1 (Ar-CH), 127.4 (Ar-CH), 127.0 (Ar-CH), 124.6 (d, *J* = 3.6 Hz, Ar-CH), 124.1 (Ar-CH), 120.8 (Ar-CH), 120.6 (d, *J* = 14.5 Hz, Ar-C), 116.2 (d, *J* = 22.4 Hz, Ar-CH), 84.0 (C), 78.1 (C), 70.3 (CH), 69.2 (CH), 56.9 (CH₂), 56.0 (CH₂), 39.5 (CH₂), 30.7 (CH₂), 29.9 (CH₃), 28.4 (CH₂), 25.0 (CH₂), 23.4 (CH₂), 18.5 (CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃) δ –113.7.

Mp 119–121 °C.

 $[\alpha]_{D}^{25} = -1940$ (c 0.05 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3294 (C≡C-H), 2934 (C-H), 1665 (C=O), 1638 (C=N).

HRMS-EI (calcd for $C_{34}H_{34}FN_3NiO_3$ [M + Na]⁺) 632.1830, found 632.1821 ($\Delta = -1.4$ ppm).

10 ((*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)heptynylalaninato-*N*,*N*',*N*'',O)nickel(II))

Method as **8** using L-Ala-Ni-(*S*)-FBPB **1** (4.76 g, 9.00 mmol, 1 equiv.) and 7-iodohept-1-yne **6** (3.00 g, 13.5 mmol, 1.2 equiv.) yielding **10** as a red solid (5.90 g, 72%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (td, *J* = 7.5, 1.8 Hz, 1H, 9-H), 8.02 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.50 – 7.44 (m, 2H, 2 × Ar-H), 7.40 – 7.27 (m, 3H, 8-H + 2 × Ar-H), 7.20 (td, *J* = 7.5, 1.2 Hz, 1H, 10-H), 7.16 – 7.06 (m, 2H, 11-H + Ar-H), 6.98 – 6.96 (m, 1H, Ar-H), 6.65 – 6.61 (m, 2H, 2 × Ar-H), 4.51 (d, *J* = 13.1 Hz, 1H, 6-H), 3.94 (d, *J* = 13.1 Hz, 1H, 6'-H), 3.61 – 3.57 (m, 1H, 5-H), 3.41 (dd, *J* = 10.7, 6.3 Hz, 1H, 2-H), 3.32 – 3.20 (m, 1H, 4-H), 2.80 – 2.72 (m, 1H, 3-H), 2.57 – 2.47 (m, 1H, 3'-H), 2.39 – 2.29 (m, 1H, 30-H), 2.23 (td, *J* = 6.9, 2.4 Hz, 2H, 33-H), 2.13 – 1.97 (m, 3H, 4'-H, 5'-H + 30'-H), 1.95 (t, *J* = 2.6 Hz, 1H, 35-H), 1.74 – 1.55 (m, 4H, 29-H + 32-H), 1.47 – 1.37 (m, 2H, 31-H), 1.24 (s, 3H, 28-H).

¹³C NMR (101 MHz, CDCl₃) δ 182.5 (C=O), 180.3 (C=O), 172.6 (C=N), 161.9 (d, *J* = 248.0 Hz, Ar-C), 141.7 (Ar-C), 136.7 (Ar-C), 134.4 (d, *J* = 3.3 Hz, Ar-CH), 133.6 (Ar-CH), 131.7 (Ar-CH), 131.4 (d, *J* = 8.5 Hz, Ar-CH), 130.4 (Ar-CH), 129.6 (Ar-CH), 128.9 (Ar-C), 128.1 (Ar-CH), 127.4 (Ar-CH), 127.1 (Ar-CH), 124.7 (d, *J* = 3.6 Hz, Ar-CH), 124.1 (Ar-CH), 120.9 (Ar-CH), 120.6 (d, *J* = 14.4 Hz,

Ar-C), 116.3 (d, J = 22.4 Hz, Ar-CH), 84.4 (C), 78.3 (C), 70.3 (CH), 68.7 (CH), 56.9 (CH₂), 56.0 (CH₂), 40.1 (CH₂), 30.7 (CH₂), 29.8 (CH₃), 28.9 (CH₂), 28.4 (CH₂), 25.5 (CH₂), 23.4 (CH₂), 18.6 (CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃) δ –113.7.

Mp 128–130 °C.

 $[\alpha]_{D}^{25} = +3470$ (c 0.05 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3300 (C≡C-H), 2930 (C-H), 1719 (C=O), 1670 (C=N).

HRMS-EI (calcd for $C_{35}H_{36}FN_3NiO_3$ [M + Na]⁺) 646.1986, found 646.1963 ($\Delta = -3.7$ ppm).

11 ((*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)octynylalaninato-*N*,*N*',*N*'',O)nickel(II))

Method as **8** using L-Ala-Ni-(*S*)-FBPB **1** (6.50 g, 12.3 mmol, 1 equiv.) and 8-iodooct-1-yne **7** (3.50 g, 14.8 mmol, 1.2 equiv.) yielding **11** as a red solid (5.90 g, 75%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (td, *J* = 7.5, 1.7 Hz, 1H, 9-H), 8.03 (d, *J* = 8.3 Hz, 1H, Ar-H), 7.50 – 7.44 (m, 2H, 2 × Ar-H), 7.41 – 7.28 (m, 3H, 8-H + 2 × Ar-H), 7.20 (td, *J* = 7.5, 1.3 Hz, 1H, 10-H), 7.17 – 7.07 (m, 2H, 11-H + Ar-H), 6.97 – 6.95 (m, 1H, Ar-H), 6.67 – 6.62 (m, 2H, 2 × Ar-H), 4.52 (d, *J* = 13.3 Hz, 1H, 6-H), 3.95 (d, *J* = 13.3 Hz, 1H, 6'-H), 3.62 – 3.58 (m, 1H, 5-H), 3.41 (dd, *J* = 10.7, 6.4 Hz, 1H, 2-H), 3.34 – 3.22 (m, 1H, 4-H), 2.82 – 2.73 (m, 1H, 3-H), 2.58 – 2.47 (m, 1H, 3'-H), 2.40 – 2.29 (m, 1H, 30-H), 2.21 (td, *J* = 6.8, 2.6 Hz, 2H, 34-H), 2.14 – 1.97 (m, 3H,

4'-H, 5'-H, 30'-H), 1.95 (t, *J* = 2.6 Hz, 1H, 36-H), 1.70 (m, 1H, 29-H) 1.62 – 1.49 (m, 5H, 29'-H, 32-H + 33-H), 1.37 – 1.28 (m, 2H, 31-H), 1.24 (s, 3H, 28-H).

¹³**C NMR** (101 MHz, CDCl₃) δ 182.6 (C=O), 180.3 (C=O), 172.5 (C=N), 161.9 (d, *J* = 247.9 Hz, Ar-C), 141.6 (Ar-C), 136.7 (Ar-C), 134.4 (d, *J* = 3.3 Hz, Ar-CH), 133.6 (Ar-CH), 131.7 (Ar-CH), 131.4 (d, *J* = 8.4 Hz, Ar-CH), 130.5 (Ar-CH), 129.5 (Ar-CH), 129.0 (Ar-C), 128.1 (Ar-CH), 127.4 (Ar-CH), 127.1 (Ar-CH), 124.7 (d, *J* = 3.5 Hz, Ar-CH), 124.1 (Ar-CH), 120.9 (Ar-CH), 120.6 (d, *J* = 14.5 Hz, Ar-C), 116.3 (d, *J* = 22.3 Hz, Ar-CH), 84.6 (C), 78.4 (C), 70.3 (CH), 68.5 (CH), 56.8 (CH₂), 56.0 (CH₂), 40.3 (CH₂), 30.7 (CH₂), 29.9 (28-CH₃), 29.4 (CH₂), 28.9 (CH₂), 28.6 (CH₂), 26.1 (CH₂), 23.4 (CH₂), 18.5 (CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃) δ –113.7.

Mp 107–109 °C.

 $[\alpha]_{D}^{25} = +3000$ (c 0.05 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3305 (C≡C-H) 2928 (C-H), 1736 (C=O), 1670 (C=N).

HRMS-EI (calcd for $C_{36}H_{38}FN_3NiO_3$ [M + Na]⁺) 660.2143, found 660.2123 ($\Delta = -3.0$ ppm).

12 ((*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)heptynylglycinato-*N*,*N*′,*N*′′,O)nickel(II))

To ground NaOH (1.20 g, 30.0 mmol, 5.0 equiv.) was added dry DMF (15 mL) under N₂ and the flask cooled to 0 °C. A solution of L-Gly-Ni-(*S*)-FBPB **116** complex (3.10 g, 6.00 mmol, 1 equiv.) in dry DMF (10 mL) was added and the flask removed from the ice bath. 8-lodooct-1-

yne **7** (1.47 g, 6.60 mmol, 1.1 equiv.) was added dropwise and the solution left to stir for 30 mins at rt. The reaction mixture was quenched by pouring into H_2O (50 mL) and concentrated *in vacuo*. The residue was dissolved in DCM (100 mL) and H_2O (100 mL) and the layers separated. The aqueous layer was extracted with DCM (100 mL) and the combined organic layers washed with 5% w/v LiCl_(aq.) solution (3 × 100 mL), brine (3 × 100 mL), dried with MgSO₄ and concentrated *in vacuo*. Purification was carried out using normal phase flash column chromatography with a gradient of 50-100% EtOAc/Pet Ether to give **12** as a red solid (2.89 g, 79%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (td, *J* = 7.4, 1.8 Hz, 1H, 9-H), 8.16 – 8.14 (m, 1H, Ar-H), 7.52 – 7.44 (m, 3H, 3 × Ar-H), 7.24 – 7.14 (m, 4H, 8-H, 10-H + 2 × Ar-H), 7.07 – 7.02 (m, 1H, 11-H), 6.94 – 6.92 (m, 1H, Ar-H), 6.70 – 6.63 (m, 2H, 2 × Ar-H), 4.45 (d, *J* = 13.6 Hz, 1H, 6-H), 3.90 (dd, *J* = 8.3, 3.4 Hz, 1H, 27-H), 3.85 (d, *J* = 13.6 Hz, 1H, 6'-H), 3.61 – 3.52 (m, 1H, 5-H), 3.49 – 3.45 (m, 2H, 2-H + 4-H), 2.87 – 2.80 (m, 1H, 3-H), 2.62– 2.51 (m, 1H, 3'-H), 2.19– 1.96 (m, 5H, 4'-H, 5'-H, 28-H + 32-H), 1.93 (t, *J* = 2.6 Hz, 1H, 34-H), 1.66 – 1.55 (m, 3H, 28'-H + 30-H), 1.51– 1.44 (m, 2H, 31-H), 1.33– 1.18 (m, 2H, 29-H).

¹³**C** NMR (101 MHz, CDCl₃) δ 180.0 (C=O), 179.3 (C=O), 170.3 (C=N), 161.6 (d, J = 247.9 Hz, Ar-C), 142.2 (Ar-C), 134.2 (d, J = 3.1 Hz Ar-C), 133.8 (Ar-CH), 133.3 (Ar-CH), 132.2 (Ar-CH), 131.2 (d, J = 8.4 Hz, Ar-CH), 129.7 (Ar-CH), 129.0 (Ar-C + Ar-CH), 127.5 (Ar-CH), 127.2 (Ar-CH), 126.6 (Ar-CH), 124.5 (d, J = 3.4 Hz, Ar-CH), 123.7 (Ar-CH), 120.8 (Ar-C), 120.4 (d, J = 14.5 Hz, Ar-CH), 116.1 (d, J = 22.1 Hz, Ar-CH), 84.3 (C), 70.4 (CH), 70.3 (CH), 68.4 (C), 56.8 (CH₂), 55.6 (CH₂), 35.2 (CH₂), 30.7 (3-CH₂), 28.4 (CH₃), 28.1 (CH₂), 24.9 (CH₂), 23.7 (CH₂), 18.3 (CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃) δ –113.9.

Mp 168–170 °C.

 $[\alpha]_{D}^{25} = +2494$ (c 0.05 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3240 (C≡C-H) 2934 (C-H), 1670 (C=O), 1634 (C=N).

HRMS-EI (calcd for $C_{34}H_{34}FN_3NiO_3$ [M + Na]⁺) 632.1835, found 632.1840 (Δ = 0.8 ppm).

13 ((*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*R*)pentynylalaninato-*N*,*N*',*N*'',O)nickel(II))

Method as **8** using D-Ala-Ni-(*R*)-FBPB **2** (1.59 g, 3.00 mmol, 1 equiv.) and 5-iodopent-1-yne **4** (0.700 g, 3.61 mmol, 1.2 equiv.) to give **13** as a red solid (1.25 g, 70%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (td, *J* = 7.5, 1.8 Hz, 1H, 9-H), 8.04 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.48 – 7.43 (m, 2H, 2 × Ar-H), 7.39 – 7.27 (m, 3H, 8-H + 2 × Ar-H), 7.19 (td, *J* = 7.5, 1.2 Hz, 1H, 10-H), 7.16 – 7.12 (m, 1H, 11-H), 7.11 – 7.05 (m, 2H, 2 × Ar-H), 6.67 – 6.60 (m, 2H, 2 × Ar-H), 4.49 (d, *J* = 13.1 Hz, 1H, 6-H), 3.94 (d, *J* = 13.1 Hz, 1H, 6'-H), 3.61 – 3.57 (m, 1H, 5-H), 3.41 (dd, *J* = 10.7, 6.4 Hz, 1H, 2-H), 3.32 – 3.19 (m, 1H, 4-H), 2.83 – 2.76 (m, 1H, 3-H), 2.60 – 2.47 (m, 2H, 3'-H + 31-H), 2.39 – 2.30 (m, 1H, 30-H), 2.27 – 2.14 (m, 2H, 30'-H, 31'-H), 2.10 – 1.99 (m, 3H, 4'-H, 5'-H + 33-H), 1.95 – 1.87 (m, 1H, 29-H), 1.72 – 1.62 (m, 1H, 29'-H), 1.20 (s, 3H, 28-H).

¹³**C NMR** (101 MHz, CDCl₃) δ 182.1 (C=O), 180.2 (C=O), 172.7 (C=N), 161.8 (d, *J*= 248.0 Hz, Ar-C), 141.7 (Ar-C), 136.5 (Ar-C), 134.3 (d, *J* = 3.3 Hz, Ar-CH), 133.6 (Ar-CH), 131.8 (Ar-CH), 131.4 (d, *J* = 8.5 Hz, Ar-CH), 130.5 (Ar-CH), 129.5 (Ar-CH), 128.7 (Ar-C), 128.2 (Ar-CH), 127.6 (Ar-CH), 127.0 (Ar-CH), 124.6 (d, *J* = 3.6 Hz, Ar-CH), 124.0 (Ar-CH), 120.9 (Ar-CH), 120.6 (d, *J* = 14.4 Hz, Ar-C), 116.3 (d, *J* = 22.3 Hz, Ar-CH), 83.7 (C), 77.9 (C), 70.3 (CH), 69.3 (CH), 56.9 (CH₂), 56.1 (CH₂), 39.9 (CH₂), 30.7 (CH₂), 29.5 (CH₃), 25.0 (CH₂), 23.4 (CH₂), 18.7 (CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃) δ –113.7.

Mp 171–173 °C.

 $[\alpha]_{D}^{25} = -2190$ (c 0.05 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3288 (C≡C-H), 2936 (C-H), 1662 (C=O), 1631 (C=N).

HRMS-EI (calcd for $C_{33}H_{32}FN_3NiO_3$ [M + Na]⁺) 618.1673, found 618.1690 (Δ = 2.8 ppm).

14 ((*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*R*)hexynylalaninato-*N*,*N'*,*N''*,O)nickel(II))

Method as **8** using D-Ala-Ni-(*R*)-FBPB **2** (1.59 g, 3.00 mmol, 1 equiv.) and 6-iodohex-1-yne **5** (715 mg, 3.61 mmol, 1.2 equiv.) yielding **14** as a red solid (1.23 g, 69%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (td, *J* = 7.5, 1.8 Hz, 1H, 9-H), 7.99 (d, *J* = 8.7 Hz, 1H, Ar-H), 7.49 – 7.44 (m, 2H, 2 × Ar-H), 7.40 – 7.27 (m, 3H, 8-H + 2 × Ar-H), 7.21–7.06 (m, 3H, 10-H, 11-H + Ar-H), 7.01 – 6.98 (m, 1H, Ar-H), 6.67–6.60 (m, 2H, 2 × Ar-H), 4.50 (d, *J* = 13.1 Hz, 1H, 6-H), 3.93 (d, *J* = 13.1 Hz, 1H, 6'-H), 3.60 – 3.55 (m, 1H, 5-H), 3.39 (dd, *J* = 10.7, 6.3 Hz, 1H, 2-H), 3.34 – 3.22 (m, 1H, 4-H), 2.81 – 2.73 (m, 1H, 3-H), 2.58 – 2.45 (m, 2H, 3'-H + 30-H), 2.28 (td, *J* = 6.9, 2.7 Hz, 2H, 32-H), 2.13 – 1.98 (m, 3H, 4'-H, 5'-H, 30'-H), 1.97 (t, *J* = 2.6 Hz, 1H, 34-H), 1.72 – 1.62 (m, 1H, 29-H), 1.61 – 1.41 (m, 3H, 29'-H + 31-H), 1.25 (s, 3H, 28-H).

¹³**C** NMR (101 MHz, CDCl₃) δ 182.6 (C=O), 180.2 (C=O), 172.7 (C=N), 161.8 (d, *J*= 248.0 Hz, Ar-C), 141.5 (Ar-C), 136.6 (Ar-C), 134.3 (d, *J* = 3.3 Hz, Ar-CH), 133.4 (Ar-CH), 131.7 (Ar-CH), 131.3 (d, *J* = 8.4 Hz, Ar-CH), 130.3 (Ar-CH), 129.5 (Ar-CH), 128.9 (Ar-C), 128.1 (Ar-CH), 127.3 (Ar-CH), 127.0 (Ar-CH), 124.6 (d, *J* = 3.6 Hz, Ar-CH), 124.1 (Ar-CH), 120.9 (Ar-CH), 120.5 (d, *J* = 14.5 Hz, Ar-C), 116.2 (d, *J* = 22.3 Hz, Ar-CH), 84.0 (C), 78.1 (C), 70.2 (CH), 69.2 (CH), 56.9 (CH₂), 56.0 (CH₂), 39.5 (CH₂), 30.6 (CH₂), 29.9 (CH₃), 28.4 (CH₂), 25.0 (CH₂), 23.4 (CH₂), 18.5 (CH₂).

33

¹⁹**F NMR** (377 MHz, CDCl₃) δ –113.7.

Mp 120–122 °C.

[**α**]_D²⁵ = +1838 (c 0.05 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3292 (C≡C-H), 2933 (C-H), 1665 (C=O), 1636 (C=N).

HRMS-EI (calcd for $C_{34}H_{34}FN_3NiO_3$ [M + Na]⁺) 632.1830, found 632.1822 ($\Delta = -1.3$ ppm).

15 ((*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*R*)heptynylalaninato-*N*,*N*',*N*'',O)nickel(II))

Method as **8** using D-Ala-Ni-(*R*)-FBPB **2** (4.76 g, 9.00 mmol, 1 equiv.) and 7-iodohept-1-yne **6** (3.00 g, 13.5 mmol, 1.2 equiv.) yielding **15** as a red solid (4.06 g, 72%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (td, *J* = 7.5, 1.8 Hz, 1H, 9-H), 8.02 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.49 – 7.44 (m, 2H, 2 × Ar-H), 7.40 – 7.27 (m, 3H, 8-H + 2 × Ar-H), 7.20 (td, *J* = 7.5, 1.3 Hz, 1H, 10-H), 7.15 – 7.06 (m, 2H, 11-H + Ar-H), 6.98 – 6.95 (m, 1H, Ar-H), 6.65 – 6.66 (m, 2H, 2 × Ar-H), 4.50 (d, *J* = 13.1 Hz, 1H, 6-H), 3.93 (d, *J* = 13.1 Hz, 1H, 6'-H), 3.61 – 3.57 (m, 1H, 5-H), 3.40 (dd, *J* = 10.7, 6.3 Hz, 1H, 2-H), 3.32 – 3.19 (m, 1H, 4-H), 2.78 – 2.71 (m, 1H, 3-H), 2.57 – 2.46 (m, 1H, 3'-H) 2.39 – 2.29 (m, 1H, 30-H), 2.23 (td, *J* = 6.9, 2.4 Hz, 2H, 33-H), 2.12 – 1.97 (m, 3H, 4'-H, 5'-H + 30'-H), 1.94 (t, *J* = 2.6 Hz, 1H, 35-H), 1.74 – 1.53 (m, 4H, 29-H + 32-H), 1.46 – 1.37 (m, 2H, 31-H), 1.23 (s, 3H, 28-H).

¹³**C NMR** (101 MHz, CDCl₃) δ 182.5 (C=O), 180.2 (C=O), 172.5 (C=N), 161.8 (d, *J* = 248.0 Hz, Ar-C), 141.6 (Ar-C), 136.7 (Ar-C), 134.3 (d, *J* = 3.3 Hz, Ar-CH), 133.5 (Ar-CH), 131.7 (Ar-CH), 131.3

(d, *J* = 8.4 Hz, Ar-CH), 130.4 (Ar-CH), 129.5 (Ar-CH), 128.9 (Ar-C), 128.1 (Ar-CH), 127.3 (Ar-CH), 127.0 (Ar-CH), 124.6 (d, *J* = 3.6 Hz, Ar-CH), 124.1 (Ar-CH), 120.9 (Ar-CH), 120.5 (d, *J* = 14.5 Hz, Ar-C), 116.2 (d, *J* = 22.3Hz, Ar-CH), 84.3 (C), 78.2 (C), 70.2 (CH), 68.6 (CH), 56.8 (CH₂), 56.0 (CH₂), 40.1 (CH₂), 30.7 (CH₂), 29.8 (CH₃), 28.8 (CH₂), 28.4 (CH₂), 25.5 (CH₂), 23.4 (CH₂), 18.5 (CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃) δ –113.7.

Mp 127–129 °C.

 $[\alpha]_{D}^{25} = -2994$ (c 0.05 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3310 (C≡C-H), 2930 (C-H), 1719 (C=O), 1673 (C=N).

HRMS-EI (calcd for $C_{35}H_{36}FN_3NiO_3$ [M + Na]⁺) 646.1986, found 646.1954 ($\Delta = -5.0$ ppm).

16 ((*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)- (*R*)octynylalaninato-*N*,*N*',*N*'',O)nickel(II))

Method as **8** using D-Ala-Ni-(*R*)-FBPB **2** (4.35 g, 8.22 mmol, 1 equiv.) and 8-iodooct-1-yne **7** (2.33 g, 9.87 mmol, 1.2 equiv.) yielding **16** as a red solid (3.87 g, 75%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (td, *J* = 7.4, 1.4 Hz, 1H, 9-H), 8.03 (d, *J* = 8.5 Hz, 1H, Ar-H), 7.50 – 7.45 (m, 2H, 2 × Ar-H), 7.41 – 7.28 (m, 3H, 8-H + 2 × Ar-H), 7.20 (td, *J* = 7.5, 1.2 Hz, 1H, 10-H), 7.17 – 7.07 (m, 2H, 11-H + Ar-H), 6.97 – 6.95 (m, 1H, Ar-H), 6.67 – 6.62 (m, 2H, 2 × Ar-
H), 4.52 (d, *J* = 13.1 Hz, 1H, 6-H), 3.95 (d, *J* = 13.1 Hz, 1H, 6'-H), 3.62 – 3.58 (m, 1H, 5-H), 3.41 (dd, *J* = 10.8, 6.4 Hz, 1H, 2-H), 3.34 – 3.21 (m, 1H, 4-H), 2.81 – 2.73 (m, 1H, 3-H), 2.58 – 2.47 (m, 1H, 3'-H), 2.40 – 2.29 (m, 1H, 30-H), 2.21 (td, *J* = 6.7, 2.6 Hz, 2H, 34-H), 2.13 – 1.97 (m, 3H, 4'-H, 5'-H, 30'-H), 1.95 (t, *J* = 2.6 Hz, 1H, 36-H), 1.70 (td, *J* = 13.5, 13.0, 4.7 Hz, 1H, 29-H) 1.62 – 1.48 (m, 5H, 29'-H, 32-H + 33-H), 1.37 – 1.28 (m, 2H, 31-H), 1.24 (s, 3H, 28-H).

¹³**C NMR** (101 MHz, CDCl₃) δ 182.6 (C=O), 180.3 (C=O), 172.5 (C=N), 161.9 (d, *J* = 247.9 Hz, Ar-C), 141.6 (Ar-C), 136.7 (Ar-C), 134.4 (d, *J* = 3.3 Hz, Ar-CH), 133.6 (Ar-CH), 131.7 (Ar-CH), 131.4 (d, *J* = 8.4 Hz, Ar-CH), 130.5 (Ar-CH), 129.5 (Ar-CH), 129.0 (Ar-C), 128.1 (Ar-CH), 127.4 (Ar-CH), 127.1 (Ar-CH), 124.7 (d, *J* = 3.6 Hz, Ar-CH), 124.1 (Ar-CH), 120.9 (Ar-CH), 120.6 (d, *J* = 14.5 Hz, Ar-C), 116.3 (d, *J* = 22.3 Hz, Ar-CH), 84.6 (C), 78.4 (C), 70.3 (CH), 68.5 (CH), 56.8 (CH₂), 56.0 (CH₂), 40.3 (CH₂), 30.7 (CH₂), 29.9 (CH₃), 29.4 (CH₂), 28.9 (CH₂), 28.6 (CH₂), 26.1 (CH₂), 23.4 (CH₂), 18.5 (CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃) δ –113.7.

Mp 104–106 °C.

 $[\alpha]_{D}^{25} = -3040$ (c 0.05 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3303 (C≡C-H) 2936 (C-H), 1736 (C=O), 1670 (C=N).

HRMS-EI (calcd for $C_{36}H_{38}FN_3NiO_3$ [M + Na]⁺) 660.2143, found 660.2116 (Δ = -4.1 ppm).

17 ((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid)

(*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)pentynylalaninato-*N*,*N'*,*N''*,O)nickel(II) **8** (2.00 g, 3.35 mmol, 1 equiv.) was dissolved in MeOH (40 mL), added dropwise to 3 M HCl_(aq.) (20 mL) at 70 °C and left to stir for 30 mins. The solution was cooled to rt and concentrated *in vacuo*. The residue was dissolved in H₂O and DCM and the aqueous layer extracted with DCM (5 × 100 mL) to recover the chiral auxiliary. After concentrating the aqueous layer, 6% Na₂CO_{3(aq.)} (40.0 mL) was added until the pH reached 9-10. EDTA (916 mg, 2.46 mmol, 1 equiv.) was added and left to stir for 15 mins at rt. Afterwards, Fmoc-OSu (1.25 g, 3.35 mmol, 1.1 equiv.) was dissolved in MeCN (40.0 mL) and added dropwise at 0 °C. The reaction mixture was warmed to rt and left to stir for 16 h. MeCN was then removed *in vacuo*, the aqueous layer acidified to pH 1 with 1 M HCl_(aq.) and then extracted with EtOAc (3 × 100 mL). The organic layer was washed with brine (3 × 100 mL), dried with MgSO₄ and concentrated *in vacuo*. Purification was carried out using normal phase flash column chromatography with a gradient of 0-10% DCM/10% MeOH in DCM yielding **17** as a pale yellow solid (0.750 g, 60%).

¹**H NMR** (400 MHz, MeOD) δ 7.82 (d, *J* = 7.5 Hz, 2H, 16-H), 7.69 (d, *J* = 7.4 Hz, 2H, 13-H), 7.41 (t, *J* = 7.4 Hz, 2H, 15-H), 7.34 (td, *J* = 7.5, 1.2 Hz, 2H, 14-H), 4.37 – 4.36 (m, 2H, 10-H), 4.24 (t, *J* = 6.5 Hz, 1H, 11-H), 2.23 – 2.19 (m, 3H, 5-H + 7-H), 2.02 – 1.98 (m, 2H, 3-H), 1.49 – 1.31 (m, 5H, 4-H + 8-H).

¹³C NMR (101 MHz, MeOD) δ 177.5 (C=O), 157.1 (C=O), 145.3 (2 × Ar-C), 142.6 (2 × Ar-C), 128.7 (2 × Ar-CH), 128.1 (2 × Ar-CH), 126.2 (2 × Ar-CH), 120.9 (2 × Ar-CH), 84.6 (C), 69.8 (CH), 67.4 (CH₂), 60.1 (C), 48.5 (CH), 37.1 (CH₂), 24.3 (CH₂), 23.3 (CH₃), 19.2 (CH₂).

37

 $[\alpha]_{D}^{25} = +2.0$ (c 0.1 in MeOH).

IR (U_{max}/cm⁻¹, neat) 3294 (C≡C-H) 2941 (C-H), 1709 (C=O).

HRMS-EI (calcd for $C_{23}H_{23}NO_4$ [M + Na]⁺) 400.1519, found 400.1513 ($\Delta = -1.7$ ppm).

RP-HPLC (20 min gradient) $t_R = 19.4 \text{ min}, 97\%$ purity.

18 ((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methyloct-7-ynoic acid)

Methodas**17**using(S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)-hexynylalaninato-N,N',N'',O)nickel(II)**9**(1.50 g,2.46 mmol, 1 equiv.) yielding **18** as a pale yellow solid (0.580 g, 60%).

¹**H NMR** (400 MHz, MeOD) δ 7.79 (d, *J* = 7.5 Hz, 2H, 17-H), 7.66 (d, *J* = 7.3 Hz, 2H, 14-H), 7.38 (t, *J* = 7.4 Hz, 2H, 16-H), 7.31 (td, *J* = 7.4, 1.2 Hz, 2H, 15-H), 4.33 – 4.31 (m, 2H, 11-H), 4.21 (t, *J* = 6.5 Hz, 1H, 12-H), 2.18 – 2.15 (m, 3H, 6-H + 8-H), 1.90 – 1.86 (m, 2H, 3-H), 1.51 – 1.33 (m, 7H, 4-H, 5-H + 9-H).

¹³**C NMR** (101 MHz, MeOD) δ 177.7 (C=O), 157.1 (C=O), 145.3 (2 × Ar-C), 142.6 (2 × Ar-C), 128.7 (2 × Ar-CH), 128.1 (2 × Ar-CH), 126.2 (2 × Ar-CH), 120.9 (2 × Ar-CH), 84.8 (C), 69.6 (CH), 67.5 (CH₂), 60.3 (C), 48.5 (CH), 37.3 (CH₂), 29.7 (CH₂), 24.0 (CH₂), 23.3 (CH₃), 18.9 (CH₂).

 $[\alpha]_{D}^{25} = +5.1$ (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3298 (C≡C-H) 2938 (C-H), 2864 (C-H), 1701 (C=O), 1449 (OH).

HRMS-EI (calcd for $C_{24}H_{25}NO_4$ [M + Na]⁺) 414.1676, found 414.1671 (Δ = -1.3 ppm).

RP-HPLC (20 min gradient) $t_R = 20.0 \text{ min}$, 98% purity.

19 ((S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylnon-8-ynoic acid)

Methodas**17**using(S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)-heptynylalaninato-N,N',N'',O)nickel(II) **10** (4.02 g,6.44 mmol, 1 equiv.) yielding **19** as a pale yellow solid (1.40 g, 54%).

¹**H NMR** (400 MHz, MeOD) δ 7.77 (d, *J* = 7.5 Hz, 2H, 18-H), 7.65 (d, *J* = 7.5 Hz, 2H, 15-H), 7.37 (t, *J* = 7.5 Hz, 2H, 17-H), 7.30 (td, *J* = 7.4, 1.1 Hz, 2H, 16-H), 4.33 – 4.31 (m, 2H, 12-H), 4.19 (t, *J* = 6.6 Hz, 1H, 13-H), 2.17 – 2.11 (m, 3H, 7-H + 9-H), 1.89 – 1.84 (m, 2H, 3-H), 1.52 – 1.24 (m, 9H, 4-H, 5-H, 6-H, and 10-H).

¹³**C NMR** (101 MHz, MeOD) δ 177.7 (C=O), 157.1 (C=O), 145.3 (2 × Ar-C), 142.6 (2 × Ar-C), 128.7 (2 × Ar-CH), 128.1 (2 × Ar-CH), 126.2 (2 × Ar-CH), 120.9 (2 × Ar-CH), 85.0 (C), 69.5 (CH), 67.4 (CH₂), 60.4 (C), 48.5 (CH), 37.8 (CH₂), 29.8 (CH₂), 29.5 (CH₂), 24.4 (CH₂), 23.2 (CH₃), 18.9 (CH₂).

 $[\alpha]_{D}^{25} = +3.0$ (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3296 (C≡C-H) 2940 (C-H), 2862 (C-H), 1717 (C=O).

HRMS-EI (calcd for $C_{25}H_{27}NO_4$ [M + Na]⁺) 428.1832, found 428.1827 ($\Delta = -1.3$ ppm).

20 ((S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methyldec-9-ynoic acid)

Method as **17** using (*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*S*)-octynylalaninato-N,N',N'',O)nickel(II) **11** (4.10 g, 6.57 mmol, 1 equiv.) yielding **20** as a yellow gum (1.60 g, 58%).

¹**H NMR** (400 MHz, MeOD) δ 7.77 (d, *J* = 7.5 Hz, 2H, 19-H), 7.64 (d, *J* = 7.5 Hz, 2H, 16-H), 7.37 (t, *J* = 7.4 Hz, 2H, 18-H), 7.29 (td, *J* = 7.4, 1.1 Hz, 2H, 17-H), 4.31 – 4.30 (m, 2H, 13-H), 4.19 (t, *J* = 6.6 Hz, 1H, 14-H), 2.14 – 2.10 (m, 3H, 8-H + 10-H), 1.85 – 1.81 (m, 2H, 3-H), 1.45 – 1.28 (m, 11H, 4-H, 5-H, 6-H, 7-H and 11-H).

¹³**C NMR** (101 MHz, MeOD) δ 177.7 (C=O), 157.1 (C=O), 145.3 (2 × Ar-C), 142.6 (2 × Ar-C), 128.7 (2 × Ar-CH), 128.1 (2 × Ar-CH), 126.2 (2 × Ar-CH), 120.9 (2 × Ar-CH), 85.0 (C), 69.4 (CH), 67.5 (CH₂), 60.4 (C), 48.5 (CH), 37.9 (CH₂), 30.2 (CH₂), 29.6 (2 × CH₂), 24.8 (CH₂), 23.3 CH₃), 19.0 (CH₂).

 $[\alpha]_{D}^{25}$ = +3.0 (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3303 (C≡C-H) 2934 (C-H), 2860 (C-H), 1701 (C=O).

HRMS-EI (calcd for $C_{26}H_{29}NO_4$ [M + Na]⁺) 442.1989, found 442.1976 ($\Delta = -3.0$ ppm).

RP-HPLC (20 min gradient) $t_R = 21.5 \text{ min}, 98\%$ purity.

21 ((S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-non-8-ynoic acid)

Methodas**17**using(S)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(S)-heptynylglycinato-N, N', N'', O)nickel(II)**12** (2.89 g,4.73 mmol, 1 equiv.) yielding**21** as a yellow gum (1.11 g, 60%).

¹**H NMR** (400 MHz, MeOD) δ 7.82 (d, *J* = 7.6 Hz, 2H, 17-H), 7.70 (t, *J* = 7.0 Hz, 2H, 14-H), 7.41 (t, *J* = 7.4 Hz, 2H, 16-H), 7.33 (t, *J* = 7.5 Hz, 2H, 15-H), 4.39 (d, *J* = 6.9 Hz, 2H, 11-H), 4.26 (t, *J* = 6.9 Hz, 1H, 12-H), 4.19 – 4.15 (d, 1H, 2-H), 2.21 – 2.18 (m, 3H, 7-H + 9-H), 1.92 – 1.82 (m, 1H, 3-H), 1.75 – 1.68 (m, 1H, 3'-H), 1.59 – 1.32 (m, 6H, 4-H, 5-H + 6-H).

¹³**C NMR** (101 MHz, MeOD) δ 176.0 (C=O), 158.6 (C=O), 145.3 (Ar-C), 145.1 (Ar-C), 142.5 (2 × Ar-C), 128.7 (2 × Ar-CH), 128.1 (2 × Ar-CH), 126.2 (2 × Ar-CH), 120.9 (2 × Ar-CH), 85.0 (C), 69.5 (CH), 67.9 (13-CH₂), 55.2 (C), 48.4 (CH), 32.6 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 26.4 (CH₂), 18.9 (CH₃).

 $[\alpha]_{D}^{25}$ = +6.0 (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3293 (C≡C-H), 2941 (C-H), 2864 (C-H), 1701 (C=O).

HRMS-EI (calcd for $C_{24}H_{25}NO_4$ [M + Na]⁺) 414.1676, found 414.1666 (Δ = -2.3 ppm).

RP-HPLC (20 min gradient) $t_R = 20.4 \text{ min}$, 96% purity.

22 ((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid)

Method as **17** using (*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*R*)-pentynylalaninato-*N*,*N*′,*N*″,O)nickel(II) **13** (0.460 g, 0.810 mmol, 1 equiv.) yielding **100d** as a pale yellow solid (190 mg, 62%).

¹**H NMR** (400 MHz, MeOD) δ 7.82 (d, *J* = 7.5 Hz, 2H, 16-H), 7.69 (d, *J* = 7.4 Hz, 2H, 13-H), 7.41 (t, *J* = 7.4 Hz, 2H, 15-H), 7.34 (td, *J* = 7.4, 1.2 Hz, 2H, 14-H), 4.37 – 4.36 (m, 2H, 10-H), 4.24 (t, *J* = 6.5 Hz, 1H, 11-H), 2.24 – 2.18 (m, 3H, 5-H + 7-H), 2.02 – 1.98 (m, 2H, 3-H), 1.49 – 1.31 (m, 5H, 4-H + 8-H).

¹³**C NMR** (101 MHz, MeOD) δ 177.5 (C=O), 157.0 (C=O), 145.2 (2 × Ar-C), 142.5 (2 × Ar-C), 128.7 (2 × Ar-CH), 128.1 (2 × Ar-CH), 126.2 (2 × Ar-CH), 120.9 (2 × Ar-CH), 84.6 (C), 69.9 (CH), 67.4 (CH₂), 60.1 (C), 48.4 (CH), 37.1 (CH₂), 24.3 (CH₂), 23.3 (CH₃), 19.2 (CH₂).

 $[\alpha]_{D}^{25} = -2.0$ (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3292 (C≡C-H), 2936 (C-H), 1701 (C=O).

HRMS-EI (calcd for $C_{23}H_{23}NO_4$ [M + Na]⁺) 400.151, found 400.1510 (Δ = -2.3 ppm).

RP-HPLC (20 min gradient) $t_R = 19.4 \text{ min}$, 96% purity.

23 ((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methyloct-7-ynoic acid)

Method as **17** using (*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*R*)-hexynylalaninato-N, N', N'', O)nickel(II) **14** (458 mg, 0.750 mmol, 1 equiv.) yielding **23** as a pale yellow solid (179 mg, 61%).

¹**H NMR** (500 MHz, MeOD) δ 7.80 (d, *J* = 7.5 Hz, 2H, 17-H), 7.67 (d, *J* = 7.3 Hz, 2H, 14-H), 7.40 (t, *J* = 7.5 Hz, 2H, 16-H), 7.32 (t, *J* = 7.3 Hz, 2H, 15-H), 4.34 – 4.33 (m, 2H, 11-H), 4.22 (t, *J* = 6.5 Hz, 1H, 12-H), 2.17 – 2.16 (m, 3H, 6-H + 8-H), 1.89-1.88 (m, 2H, 3-H), 1.48 – 1.30 (m, 7H, 4-H, 5-H + 9-H).

¹³C NMR (101 MHz, MeOD) δ 177.6 (C=O), 157.0 (C=O), 145.3 (2 × Ar-C), 142.5 (2 × Ar-C), 128.7 (2 × Ar-CH), 128.1 (2 × Ar-CH), 126.2 (2 × Ar-CH), 120.9 (2 × Ar-CH), 84.8 (C), 69.6 (CH), 67.4 (CH₂), 60.3 (C), 48.4 (CH), 37.3 (CH₂), 29.7 (CH₂), 24.0 (CH₂), 23.3 (CH₃), 18.9 (CH₂).

 $[\alpha]_{D}^{25} = -5.4$ (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3293 (C≡C-H) 2940 (C-H), 2864 (C-H), 1705 (C=O).

HRMS-EI (calcd for $C_{24}H_{25}NO_4$ [M + Na]⁺) 414.1676, found 414.1670 (Δ = -1.4 ppm).

RP-HPLC (20 min gradient) t_R = 20.0 min, 99% purity.

24 ((R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylnon-8-ynoic acid)

Method as **17** using (*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*R*)-heptynylalaninato-N,N',N'',O)nickel(II) **15** (4.06 g, 6.50 mmol, 1 equiv.) yielding **24** as a pale yellow solid (2.00 g, 77%).

¹**H NMR** (400 MHz, MeOD) δ 7.77 (d, *J* = 7.5 Hz, 2H, 18-H), 7.64 (d, *J* = 7.5 Hz, 2H, 15-H), 7.37 (t, *J* = 7.4 Hz, 2H, 17-H), 7.29 (td, *J* = 7.5, 1.1 Hz, 2H, 16-H), 4.32 – 4.31 (m, 2H, 12-H), 4.19 (t, *J* = 6.6 Hz, 1H, 13-H), 2.16 – 2.11 (m, 3H, 7-H + 9-H), 1.87 – 1.85 (m, 2H, 3-H), 1.50 – 1.24 (m, 9H, 4-H, 5-H, 6-H, and 10-H).

¹³**C NMR** (101 MHz, MeOD) δ 177.8 (C=O), 157.1 (C=O), 145.3 (2 × Ar-C), 142.6 (2 × Ar-C), 128.7 (2 × Ar-CH), 128.1 (2 × Ar-CH), 126.2 (2 × Ar-CH), 120.9 (2 × Ar-CH), 85.0 (C), 69.5 (CH), 67.4 (CH₂), 60.4 (C), 48.5 (CH), 37.8 (CH₂), 29.8 (CH₂), 29.5 (CH₂), 24.4 (CH₂), 23.3 (CH₃), 18.9 (CH₂).

 $[\alpha]_{D}^{25} = -3.3$ (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3304 (C≡C-H) 2934 (C-H), 2855 (C-H), 1719 (C=O).

HRMS-EI (calcd for $C_{25}H_{27}NO_4$ [M + Na]⁺) 428.1832, found 428.1820 (Δ = -2.8 ppm).

RP-HPLC (20 min gradient) $t_R = 20.8 \text{ min}, 97\%$ purity.

25 ((R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methyldec-9-ynoic acid)

Method as **17** using (*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*R*)-octynylalaninato-N, N', N'', O)nickel(II) **16** (2.66 g, 4.16 mmol, 1 equiv.) yielding **25** as a yellow gum (1.20 g, 69%).

¹**H NMR** (400 MHz, MeOD) δ 7.78 (d, *J* = 7.5 Hz, 2H, 19-H), 7.65 (d, *J* = 7.5 Hz, 2H, 16-H), 7.38 (t, *J* = 7.4 Hz, 2H, 18-H), 7.30 (td, *J* = 7.5, 1.2 Hz, 2H, 17-H), 4.33 – 4.31 (m, 2H, 13-H), 4.20 (t, *J* = 6.6 Hz, 1H, 14-H), 2.15 – 2.12 (m, 3H, 8-H + 10-H), 1.85 – 1.81 (m, 2H, 3-H), 1.46 – 1.29 (m, 11H, 4-H, 5-H, 6-H, 7-H and 11-H).

¹³**C NMR** (101 MHz, MeOD) δ 177.7 (C=O), 157.1 (C=O), 145.3 (2 × Ar-C), 142.6 (2 × Ar-C), 128.7 (2 × Ar-CH), 128.1 (2 × Ar-CH), 126.2 (2 × Ar-CH), 120.9 (2 × Ar-CH), 85.0 (C), 69.5 (CH), 67.4 (CH₂), 60.4 (C), 48.5 (CH), 37.9 (CH₂), 30.2 (CH₂), 29.6 (2 × CH₂), 24.4 (CH₂), 23.3 (CH₃), 19.0 (CH₂).

 $[\alpha]_{D}^{25} = -3.1$ (c 0.1 in MeOH).

IR (u_{max}/cm⁻¹, neat) 3305 (C≡C-H) 2934 (C-H), 2860 (C-H) 1705 (C=O).

HRMS-EI (calcd for $C_{25}H_{27}NO_4$ [M + Na]⁺) 442.1989, found 442.1973 ($\Delta = -3.5$ ppm).

RP-HPLC (20 min gradient) $t_R = 21.4 \text{ min}, 98\%$ purity.

NMR Data

S1 ((2-Fluorobenzyl)-L-proline hydrochloride)

¹H NMR

S2 ((2-Fluorobenzyl)-D-proline hydrochloride)

S3 ((S)-N-(2-Benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide)

¹H NMR

S4 ((R)-N-(2-Benzoylphenyl)-1-(2-fluorobenzyl)pyrrolidine-2-carboxamide)

¹H NMR

S5 (Oct-7-yn-1-ol)

1 ((*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)alaninato-*N*,*N*′,*N*″,O)nickel(II))

¹H NMR

2 ((*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*R*)alaninato-*N*,*N*′,*N*″,O)nickel(II))

3 ((*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)glycinato-*N*,*N'*,*N''*, O)nickel(II))

¹H NMR

4 (5-lodopent-1-yne)

5 (6-lodohex-1-yne)

6 (7-lodohept-1-yne)

7 (8-lodooct-1-yne)

8 (C5 *S* Alkylated Complex - (*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*S*)-pentynylalaninato-*N*,*N*',*N*'',O)nickel(II))

¹H NMR

9 (C6 *S* Alkylated Complex - (*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*S*)-hexynylalaninato-*N*,*N*',*N*'',O)nickel(II))

10 (C7 *S* Alkylated Complex - (*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*S*)-heptynylalaninato-*N*,*N*',*N*'',O)nickel(II))

¹H NMR

11 (C8 *S* Alkylated Complex - (*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2-carboxamide]phenyl)phenylmethylene)-(*S*)-octynylalaninato-*N*,*N*',*N*'',O)nickel(II))

12 (S7 Gly Alkylated Complex - (*S*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*S*)-heptynylglycinato-*N*,*N*',*N*'',O)nickel(II))

¹H NMR

13 (C5 *R* Alkylated Complex - (*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*R*)-pentynylalaninato-*N*,*N*',*N*'',O)nickel(II))

71
14 (C6 *R* Alkylated Complex - (*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*R*)-hexynylalaninato-*N*,*N*',*N*'',O)nickel(II))

¹H NMR

¹⁹F NMR

15 (C7 *R* Alkylated Complex - (*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)-(*R*)-heptynylalaninato-*N*,*N'*,*N''*,O)nickel(II))

16 (C8 *R* Alkylated Complex - (*R*)-((2-[1-(2-Fluorobenzyl)pyrrolidine-2carboxamide]phenyl)phenylmethylene)- (*R*)-octynylalaninato-*N*,*N*',*N*'',O)nickel(II))

¹H NMR

¹⁹F NMR

17 (C5 S AA - (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid)

18 (C6 S AA - (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methyloct-7-ynoic acid)

19 (C7 S AA - (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylnon-8-ynoic acid)

20 (C8 S AA - (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methyldec-9-ynoic acid)

80

¹³C NMR

21 (C7 S H AA - (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-non-8-ynoic acid)

81

¹³C NMR

22 (C5 *R* AA - (*R*)-2-((((9*H*-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid)

23 (C6 R AA - ((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methyloct-7-ynoic acid)

24 (C7 R AA - (R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylnon-8-ynoic acid)

25 (C8 R AA - (R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methyldec-9-ynoic acid)

Peptide Characterisation Data

Peptide Characterisation Table

Peptide Sequence	Purity by RP-HPLC (%)	Yield (%)	t _R (20 min, 50 min gradient)	Calculated m/z	Measured m/z	Err (ppm)
26 (T-STAR) FTU-Ahx-AKAYAR(NIe)GRALKEIAK-NH₂	99	10	14.2, 27.3	[M+3H] ³⁺ = 754.0735	[M+3H] ³⁺ = 754.0709	-3.5
27 (T-STAR-diyne-S₅S₅) FTU-Ahx-AK <i>S</i> ₅YAR(Nle)GR <i>S</i> ₅LKEIAK-NH₂	98	2	15.1, 29.7	[M+3H] ³⁺ = 797.4329	[M+3H] ³⁺ = 797.4344	1.8
28 (T-STAR-diyne-S₅S₅) FTU-Ahx-AKS ₆ YAR(Nle)GRS ₆ LKEIAK-NH₂	95	3	14.6, 28.4	[M+3H] ³⁺ = 806.7767	[M+3H] ³⁺ = 806.7757	-1.3

29 (T-STAR-diyne-S₇S₇) FTU-Ahx-AKS ₇ YAR(Nle)GRS ₇ LKEIAK-NH ₂	99	6	15.5, 30.7	[M+3H] ³⁺ = 816.1204	[M+3H] ³⁺ = 816.1221	2.1
30 (T-STAR-diyne-<i>R</i>₇<i>R</i>₇) FTU-Ahx-AK <i>R</i> ₇ YAR(Nle)GR <i>R</i> ₇ LKEIAK-NH ₂	96	4	15.9, 31.5	[M+4H] ⁴⁺ = 619.3422	[M+4H] ⁴⁺ = 619.3434	2.1
31 (T-STAR-diyne-<i>R</i>₇<i>S</i>₇) FTU-Ahx-AK<i>R</i>₇YAR(Nle)GR<i>S</i>₇LKEIAK-NH₂	98	4	15.9, 31.4	[M+4H] ⁴⁺ = 612.3422	[M+4H] ⁴⁺ = 612.3444	3.7
32 (T-STAR-diyne-S₇R₇) FTU-Ahx-AKS ₇ YAR(Nle)GRS ₇ LKEIAK-NH ₂	99	2	14.9, 29.2	[M+3H] ³⁺ = 816.1204	[M+3H] ³⁺ = 816.1229	2.9
33 (T-STAR-diyne-S₈S₈) FTU-Ahx-AKS ₈ YAR(Nle)GRS ₈ LKEIAK-NH₂	95	5	15.4, 30.3	[M+4H] ⁴⁺ = 619.3500	[M+4H] ⁴⁺ = 619.3525	4.1

34 (T-STAR-diyne-<i>R</i>₈<i>R</i>₈) FTU-Ahx-AK <i>R</i> ₈ YAR(Nle)GR <i>R</i> ₈ LKEIAK-NH ₂	96	3	16.3, 32.6	[M+4H] ⁴⁺ = 619.3500	[M+4H] ⁴⁺ = 619.3525	4.0
35 (T-STAR-diyne-<i>R</i>₈S₈) FTU-Ahx-AK <i>R</i> ₈ YAR(Nle)GR <i>S</i> ₈ LKEIAK-NH ₂	97	5	16.2, 32.2	[M+4H] ⁴⁺ = 619.3500	[M+4H] ⁴⁺ = 619.3511	1.8
36 (T-STAR-diyne-S₈R₈) FTU-Ahx-AK <i>S</i> ₈ YAR(Nle)GR <i>R</i> ₈ LKEIAK-NH₂	97	3	15.7, 31.0	[M+3H] ³⁺ = 825.4642	[M+3H] ³⁺ = 825.4680	4.6
37 (T-STAR-HCS-2-<i>cis</i>) FTU-Ahx-AKX ₈ YAR(Nle)GRX5LKEIAK-NH2	95	5	16.1, 32.1	[M+3H] ³⁺ = 804.1204	[M+3H] ³⁺ = 804.1186	-2.3
38 (T-STAR-HCS-2-<i>trans</i>) FTU-Ahx-AKXଃYAR(Nle)GRX₅LKEIAK-NH₂	96		16.3, 32.6	[M+3H] ³⁺ = 804.1204	[M+3H] ³⁺ = 804.1168	-4.5

39 (T-STAR-diyne-S_{7н}S_{7н}) FTU-Ahx-AKS _{7н} YAR(Nle)GRS _{7н} LKEIAK-NH₂	98	2	16.9, 31.0	[M+3H] ³⁺ = 806.7767	[M+3H] ³⁺ = 806.7734	-4.1
40 (Acetylated T-STAR) Ac-AKAYAR(NIe)GRALKEIAK-NH ₂	99	12	13.0, 24.2	[M+3H] ³⁺ = 601.0380	[M+3H] ³⁺ = 601.0385	0.82
41 (Acetylated T-STAR-diyne-S₇S₇) Ac-AKS ₇ YAR(NIe)GRS ₇ LKEIAK-NH ₂	98	3	15.1, 29.6	[M+3H] ³⁺ = 663.0850	[M+3H] ³⁺ = 663.0844	-0.82

Table S1: Peptide sequence, % purity, % yield, m/z and retention time of peptides. Abbreviations: FTU = Fluorescein thiourea, Ahx = Aminohexanoic acid, Ac = Acetylated, NH₂ = C-terminal amide, NIe = norleucine, S₅ = (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, S₆ = (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, S₈ = (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, S₈ = (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, S₈ = (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, R₅ = (R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, R₆ = (R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, R₆ = (R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, R₈ = ((R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, R₈ = (R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-2-methylhept-6-ynoic acid, R₈ = (R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-0-(4-pentenyl)alanine)

26 (Native T-STAR)

FTU-Ahx-AKAYAR(NIe)GRALKEIAK-NH2

20 min HPLC

27 (T-STAR-diyne-S₅S₅)

FTU-Ahx-AKS₅YAR(NIe)GRS₅LKEIAK-NH₂

28 (T-STAR-diyne-S₆S₆)

FTU-Ahx-AKS₆YAR(NIe)GRS₆LKEIAK-NH₂

29 (T-STAR-diyne-S₇S₇)

FTU-Ahx-AKS₇YAR(NIe)GRS₇LKEIAK-NH₂

30 (T-STAR-diyne-R7R7)

FTU-Ahx-AKR₇YAR(NIe)GRR₇LKEIAK-NH₂

31 (T-STAR-diyne-R₇S₇)

FTU-Ahx-AKR₇YAR(NIe)GRS₇LKEIAK-NH₂

32 (T-STAR-diyne-S7R7)

FTU-Ahx-AKS₇YAR(Nle)GRR₇LKEIAK-NH₂

33 (T-STAR-diyne-S₈S₈)

FTU-Ahx-AKS₈YAR(NIe)GRS₈LKEIAK-NH₂

34 (T-STAR-diyne-R₈R₈)

FTU-Ahx-AKR₈YAR(NIe)GRR₈LKEIAK-NH₂

618

z 4+ 619

m/z

619.3500

617

616

620

621

Meas. m/z

619.3525

622

err [ppm]

-4.0

623

624

-2.5

err [mDa]

m/z

2000

0-1-615

Formula

35 (T-STAR-diyne-R₈S₈)

FTU-Ahx-AKR₈YAR(Nle)GRS₈LKEIAK-NH₂

20 min HPLC

HR-MS

+MS, 0.2-0.9min #(10-53)

50 min HPLC

HR-MS

36 (T-STAR-diyne-S₈R₈)

FTU-Ahx-AKS₈YAR(NIe)GRR₈LKEIAK-NH₂

20 min HPLC

37 (T-STAR-HCS-2-cis)

FTU-Ahx-AKR₈YAR(Nle)GRS₅LKEIAK-NH₂

38 (T-STAR-HCS-2-trans)

FTU-Ahx-AKR₈YAR(NIe)GRS₅LKEIAK-NH₂

20 min HPLC

HR-MS

39 (T-STAR-diyne-S_{7H}S_{7H})

FTU-Ahx-AKS7HYAR(NIe)GRS7HLKEIAK-NH2

50 min HPLC

HR-MS

40 (Ac-Native T-STAR)

Ac-AKAYAR(NIe)GRALKEIAK-NH₂

20 min HPLC

50 min HPLC

HR-MS

41 (Ac-T-STAR-diyne-S₇S₇)

Ac-AKS₇YAR(NIe)GRS₇LKEIAK-NH₂

20 min HPLC

50 min HPLC

HR-MS

Starting Material	Product	Yield (%)
CI	4	78
ОН	5	86
ОН	6	96
но	7	96

 Table S2. Synthesis of the iodo electrophiles with varying carbon chain length.

Circular Dichroism Data for all T-STAR Peptide Analogues

Figure S2. Circular dichroism spectra of stapled peptides **29-32**. Conditions: peptides 100 μ M in PBS, pH 7.4. Spectra recorded between 190 and 260 nm.

Figure S3. Circular dichroism spectra of stapled peptides **27** and **28**. Conditions: peptides 100 μ M in PBS, pH 7.4. Spectra recorded between 190 and 260 nm.

115

Fluorescence Microscopy Images for all T-STAR Peptide Analogues

Figure S4. Fluorescence microscopy imaging showing the Brightfield channel (left), Fluorescein excitation channel at 495 nm (middle) and overlaid (right) images for the T-STAR peptide analogues incubated with HEK293 cells. Microscopy images were acquired with a custom-built multi-modal microscope setup. Images were processed using MetaMorph software. Scale bars = $40 \mu m$, n = 2.