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Supporting information and appendices  

Interactive effects of rising temperatures and urbanisation on birds across 

different climatic zones: a mechanistic perspective. 

Supplementary Glossary 

 
Air and environmental temperature – Air, environmental and ambient temperatures are terms 

often used interchangeably in the literature, but in reality they have very distinct meanings. Strictly 

speaking, air temperature is the temperature of the air itself, normally measured using a temperature 

probe sheltered within a Stevenson screen at a weather station. The probe is sheltered to remove all 

influence of radiation, etc, on the temperature reading. Environmental temperature (also known as 

operative temperature or operative environmental temperature), on the other hand, integrates air 

temperature, wind, solar and reflected radiation, etc, into a single number approximating the ‘thermal 

challenge’ an animal would experience in a particular location in the environment. Environmental 

temperatures can vary enormously across landscapes under identical air temperature conditions (for 

example, environmental temperatures in the shade can be tens of degrees °C cooler than 

environmental temperatures in the sun), and are specific to the animal or object experiencing them as 

they are influenced by features of the animal itself such as plumage reflectance, etc. ‘Ambient 

temperature’ is a term often used loosely in place of either air or environmental temperature, and the 

exact meaning must often be inferred from context. Some researchers advocate reserving the use of 

the term ambient temperature to mean controlled temperature conditions in the laboratory 

(Cunningham et al. 2021). 

 

Anthropogenic global warming – long-term increase in the average temperature of Earth's 

atmosphere as an effect of the Anthropocene (e.g., human industry and agriculture). 

 

Climate types – following the 5 classifications by Köppen (1931): (1) tropical (or megathermal) climate; 

(2) arid (or dry) climate; (3) temperate (or mesothermal) climate; (4) continental (or microthermal) 

climate; (5) polar (or alpine) climate. 

 

Fatty acids (FA) – represent an important energy source for birds and are key structural components 

of phospholipid bilayers that affect membrane fluidity and cellular function (Hulbert, 2008; Sinensky, 

1974). In addition, FAs are crucial for animal development and key modulators of many physiological 
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processes depending on their chemical nature (Hulbert & Abbott, 2012). The FAs of animals are 

generally chains of 14 to 22 carbon atoms, which can either be saturated (have no double bonds), 

monounsaturated (one double bond), or polyunsaturated (several double bonds). The polyunsaturated 

fatty acids (PUFA) are further classified into e.g., ω-3 or ω-6 PUFAs depending on the position of the 

most terminal double bond. In birds the ω-3 PUFA α-linolenic acid and the ω-6 PUFA linoleic acid are 

essential, meaning that they cannot be biosynthesized and therefore must be obtained from the diet. 

The different classes of FAs have differential effects on physiological processes, and the FA composition 

of animal tissues can be modulated in response to varying physiological and energetic demands. The 

FA composition of the diet as well as temperature have individual and combined effects on the FA 

composition of animals with extended effects on physiology linked to performance, life history, and 

fitness (Andersson et al., 2018; Ben-Hamo et al., 2011; Guglielmo, 2010; Twining et al., 2016). For 

instance, basal-, resting-, and peak metabolic rate have all been shown to be affected by the types or 

identity FAs available for metabolism (Newman et al., 2002; Pierce et al., 2005; Price et al., 2011). In 

addition, the FA composition of animal tissue affects oxidative stress due to differences in lipid 

peroxidation susceptibility and effects on membrane fluidity, depending on the degree of FA 

unsaturation (Hulbert, 2005, 2008). FAs also affect inflammatory responses, with ω-3 PUFAs having 

anti-inflammatory properties and ω-6 PUFAs pro-inflammatory properties (Hulbert & Abbott, 2012). 

Expected changes in anthropogenic and natural diet availability, which are likely to be different in urban 

versus non-urban habitats, in combination with increasing temperatures are therefore likely to affect a 

large number of physiological traits of birds with unpredictable effects on survival and reproduction. 

 

Immune system – is fundamental for self-maintenance and protects the body from diseases, thereby 

increasing survival (Roitt et al., 1998). At the same time, it incurs costs in terms of production, 

maintenance and activation (Hasselquist & Nilsson, 2012; Klasing, 2004). Innate immune function 

represents the first line of defence, for which activation and maintenance is particularly costly (Klasing, 

2004). Innate immune function is related to natural pathogen pressure (Horrocks et al., 2015; Horrocks 

et al., 2012), and responds to environmental conditions (Hegemann et al., 2012a; Ndithia et al., 2019; 

Nwaogu et al., 2019). Innate immune function can further be split into baseline (constitutive) immune 

function and immune responses. Baseline innate immune function represents the ability of an organism 

to prevent pathogens from entering the body, while an innate immune response is mounted when a 

pathogen starts replicating and establishing itself in the body. Innate immune responses, in particular 

acute phase responses, are costly because they include inflammation, fever, reductions of appetite, 

body mass loss and reduced activity (Adelman et al., 2010; Hart, 1988; Hegemann et al., 2018; 

Hegemann et al., 2012b; Sköld-Chiriac et al., 2014). Baseline immune function and immune responses 
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are differently regulated (Hegemann et al., 2012a; Vermeulen et al., 2015; Vinterstare et al., 2019) but 

reductions in either due to trade-offs with other behavioural and physiological processes can have 

negative impacts on fitness (Hasselquist & Nilsson, 2012; Hegemann et al., 2013a; Klasing, 2004). 

Pollutants entering the body will trigger the immune system and may lead to inflammatory responses, 

which come with a suite of behavioural and physiological costs (Armour et al., 2020; Bonneaud et al., 

2003; Burness et al., 2010; Hegemann et al., 2018; Hegemann et al., 2012b; Hegemann et al., 2013b; 

Owen-Ashley & Wingfield, 2007). Hence, pollution is likely to result in fitness consequences for urban 

animals as resources are allocated towards immune function and are consequently not available for 

other physiological and behavioural processes.  

 

Luxury effect – a pattern of higher biodiversity in affluent neighbourhoods, created by the 

maintenance of green space and the tendency of both humans and other species to favour 

environmentally desirable areas, while avoiding environmental burdens (Chamberlain et al., 2019). The 

Luxury Effect is amplified in arid cities and as neighbourhoods age, and is reduced in tropical areas 

(Chamberlain et al., 2020). 

 

Non-urban – The literature cited uses different habitat types which the authors contrast with “urban” 

areas. These are either rural areas, mainly consisting of managed agricultural and forestry areas with 

dispersed human settlements in-between. Or actual natural environments, with little human 

interference and limited human infrastructure. In this article, we are using the inclusive term “non-

urban” that captures both options, so we do not have to explicitly state at every reference used how 

the original authors contrasted their examples to “urban”. This was done to increase readability. 

 

Redox-system – stands for “oxidation-reduction status” and refers to chemical reactions in which the 

reactants undergo a change in their oxidation states.  

 

Scholander-Irving model – Metabolic rates (and therefore energy costs) are highest when ambient 

temperature (i.e. controlled temperature in the laboratory, where most such measurements are done, 

corresponding most closely to environmental temperature in the field) is low, as endotherms generate 

extra heat to replace heat lost to the environment (Scholander et al. 1950; Calder and King 1974, see 

also Figure 1B). Energy costs are minimised over a species-specific range of ‘moderate’ ambient 

temperatures (the “thermoneutral zone”, TNZ). The upper critical limit of the TNZ is defined by a sharp 

increase in metabolic rate (McNab, 2012) and/or an increase in evaporative water loss (EWL) (IUPS 

2001), changes which may or may not co-occur (Mitchell et al., 2018). Water loss rates increase most 
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rapidly when the thermal gradient for passive heat loss to the environment disappears or is reversed – 

i.e., when ambient temperature approaches or exceeds the animal’s preferred body temperature and 

evaporative cooling becomes the only effective avenue of heat loss. 

 

Thermal performance curve – are commonly measured in ectothermic animals in the lab (see also 

Figure 1A) by exposing animals to warmer or cooler ambient temperatures, to which their body 

temperature then equilibrates. Performance is then measured using righting response, sprint speed, 

bite strength and other similar measures. Similar performance curves also exist in endothermic animals 

although these are more difficult to measure empirically, given the physiological control that 

endotherms exert over their body temperature in the face of changing environmental temperatures. 

 

Urban –The literature cited uses different definitions of “urban”, either referring to an urban – non-

urban contrast (binary measure) or to a position along an urban – non-urban transition (continuous 

measure). In our article, we follow the idea of “urban” as a measurable physical structure (e.g., the 

human footprint in building density or proportion of sealed/unproductive area; known to be associated 

with human population density, and the exposure to light-, sound- and air-pollution). We refer to areas 

that are dominated by built structures [> 10 buildings per ha] with more than a minimum density of 

human residents [typically > 620 km2 or 10 per ha] and surface cover (> 50%) types (Marzluff, 2001). 

We are aware that there are others ecologically relevant social gradients linked to urban – non-urban 

systems, that can be independent of the classical gradients based on urban physical structures. If we, 

or studies we cite, are referring to such a nuanced view of urbanisation, we go into detail about which 

measure was used explicitly. See for example the “luxury effect”. 

 

Urban heat island effect (UHI) – a measurable increase in urban air and environmental temperatures 

resulting primarily from the replacement of vegetation with buildings, roads, and other heat-absorbing 

infrastructure. The heat island effect can result in significant temperature differences between non-

urban and urban areas. Impervious surfaces and buildings retain more solar energy than vegetated 

surfaces during the day, and have lower rates of radiant cooling during the night, resulting in a more 

pronounced UHI at night (Oke, 1982) that peaks 2-3 h after sunset (Pickett et al., 2001). 

 

Urban heat sink – Cities in arid and semi-arid regions show a modified UHI effect, often exhibiting 

lower temperatures than non-urban areas during the day (Carnahan & Larson, 1990; Imhoff et al., 2010; 

Nassar et al., 2016), but with a pronounced heat island effect at night. Urban heat sinks are less 

documented and more spatially and temporally restricted than UHIs (Zhang et al., 2004). 
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