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Supplementary Figure 1. Examples of synthetics phase maps. Image data were augmented with

synthetic phase maps generated from two-dimensional sinusoidal waves with randomly selected frequency

and phase offsets.
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Supplementary Figure 2. Training AUTOMAP to reconstruct radial MRI data. Examples showing

the convergence dynamics of training set costs (solid lines) and validation set costs (dotted lines) as AU-

TOMAP is trained to reconstruct radially-sampled data .at two different undersampling factors. Data for

acquisition trajectories undersampled by a factor of 2 (purple) and 8 (red) in the phase-encode direction

are shown. The dashed line proportional to the inverse square of epoch number (x) is included as a guide

to the eye and for discussion in the text. We note that while long, the convergence time for networks with

R = 1,2 is finite, with the training cost measured by RMSE reducing as roughly the inverse square root of the

number of epochs. Models were found to fit to training data successfully with batch sizes in the range 5-100,

with fluctuations in the minimum validation costs reached being less than ∼10%. The training behaviors

observed are consistent with general properties of over-parameterized networks, such as AUTOMAP, where

poor local minima do not play a significant role in the training dynamics which are instead governed by a

high number of flat directions in the cost landscape, allowing training to be achieved.[1, 2] Regularization

methods to improve the fit performance of AUTOMAP to training/validation data were trialed, including

dropout and the addition of multiplicative noise but resulted in poorer validation costs, further indicating

that AUTOMAP is fitting well to the underlying reconstruction model.
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Supplementary Figure 3. Optimizing regularization parameters for compressed sensing recon-

struction. (a) The normalized root mean square error (NRMSE) of a 4× undersampled image reconstructed

with different values of the regularization parameter (λ). The regularization parameter corresponding to a

minimum in NRMSE was selected for testing via a grid search on training data for each undersampling fac-

tor. (b) The structural similarity (SSIM) of a 4× undersampled image reconstructed with different values of

the regularization parameter (λ). The red dotted line indicates the regularization parameter corresponding

to a minimum in NRMSE. Noticeably, the minimum in NRMSE and the maximum in SSIM metrics, which

correspond to the highest quality reconstructions, occur at different regularization values.
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