8

9

11

2 Engineering of a TrpR-based Biosensor for Altered Dynamic Range and

3 Ligand Preference

- 5 Xinyu Gong ^{a, 1}, Ruihua Zhang ^{a, 1}, Jian Wang ^a, Yajun Yan ^{a, *}
- 6 a School of Chemical, Materials and Biomedical Engineering, College of Engineering, The
- 7 University of Georgia, Athens, GA 30602, USA

- 10 These authors contributed equally to the work.
- * Corresponding author:
- 13 Yajun Yan
- 14 302 East Campus Road, The University of Georgia, Athens, GA 30602, USA
- 15 E-mail: yajunyan@uga.edu
- 16 Telephone: +1-706-542-8293

17 Supporting Information

18 **Table S1** Plasmids and strains used in this study.

Plasmids	Description	Source
pCS27	PLlacO1, P15A ori, Kan ^R	1
pSA74	PLlacO1, pSC101* ori, Cl ^R	2
pCP20	Flippase, AmpR, and temperature-sensitive replicon	3
pSA-pLlacO1-TrpRwt	pSA74 harboring wild type <i>trpR</i> from <i>E. coli</i>	This study
pSA-pLlacO1-TrpR1	pSA74 harboring <i>trpR1</i> from <i>trpR</i> This stu	
pCS-PtrpOwt-GFP	pCS27 harboring wild type PtrpO from E. coli driving	This study
	egfp expression	
pCS-PtrpO1-GFP	pCS27 harboring PtrpO1 from E. coli driving egfp	This study
	expression	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1 with introduced HindIII site in	This study
TrpR1_HindIII	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57E mutation at	This study
TrpR1_I57E	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57D mutation at	This study
TrpR1_I57D	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57W mutation at	This study
TrpR1_I57W	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57A mutation at	This study
TrpR1_I57A	TrpR1	

pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57V mutation at	This study
TrpR1_I57V	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57S mutation at	This study
TrpR1_I57S	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57K mutation at	This study
TrpR1_I57K	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57N mutation at	This study
TrpR1_I57N	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57T mutation at	This study
TrpR1_I57T	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57G mutation at	This study
TrpR1_I57G	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58K mutation at	This study
TrpR1_V58K	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58S mutation at	This study
TrpR1_V58S	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58D mutation at	This study
TrpR1_V58D	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58T mutation at	This study
TrpR1_V58T	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58N mutation at	This study
TrpR1_V58N	TrpR1	

pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58Q mutation at	This study
TrpR1_V58Q	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58E mutation at	This study
TrpR1_V58E	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58W mutation at	This study
TrpR1_V58W	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58L mutation at	This study
TrpR1_V58L	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58A mutation at	This study
TrpR1_V58A	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with V58G mutation at	This study
TrpR1_V58G	TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57A V58E	This study
TrpR1_I57AV58E	mutations at TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57T V58E	This study
TrpR1_I57TV58E	mutations at TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57V V58E	This study
TrpR1_I57VV58E	mutations at TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57A V58K	This study
TrpR1_I57AV58K	mutations at TrpR1	
pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57T V58K	This study
TrpR1_I57TV58K	mutations at TrpR1	

pSA-pLlacO1-	pSA-pLlacO1-TrpR1_HindIII with I57V V58K	This study
TrpR1_I57VV58K	mutations at TrpR1	
pCS-PtrpO1(A4C)-GFP	pCS-PtrpO1-GFP with A4C mutation at PtrpO1	This study
pCS-PtrpO1(A4G)-	pCS-PtrpO1-GFP with A4G mutation at PtrpO1	This study
GFP		
pCS-PtrpO1(A4T)-GFP	pCS-PtrpO1-GFP with A4T mutation at PtrpO1	This study
pCS-PtrpO1(G3A)-	pCS-PtrpO1-GFP with G3A mutation at PtrpO1	This study
GFP		
pCS-PtrpO1(G3C)-	pCS-PtrpO1-GFP with G3C mutation at PtrpO1	This study
GFP		
pCS-PtrpO1(G3T)-GFP	pCS-PtrpO1-GFP with G3T mutation at PtrpO1	This study
pCS-PtrpO1(T2A)-GFP	pCS-PtrpO1-GFP with T2A mutation at PtrpO1	This study
pCS-PtrpO1(T2C)-GFP	pCS-PtrpO1-GFP with T2C mutation at PtrpO1	This study
pCS-PtrpO1(T2G)-GFP	pCS-PtrpO1-GFP with T2C mutation at PtrpO1	This study
Strains	Description	Source
E. coli XL1-Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac	Stratagene
	[F' proAB lacIqZ ΔM15 Tn10 (tetR)]	
E. coli BW25113	rrnBT14 Δlac ZWJ16 hsdR514 ΔaraBADAH33	CGSC
	ΔrhaBADLD78	
RZ1	E. coli BW25113 ΔtrpR ΔtnaA	This study

Table S2 Tryptophan content in different culture media

Culture Medium	Tryptophan content (mg/L)
M9 + 0 g yeast extract	0
M9 + 0.5 g yeast extract	Not detectable
M9 + 5 g yeast extract	6.495

Figure S1 The cell growth and biosensor performance of TrpR1-PtrpO1 in different culture media. (a) The cell growth (OD_{600}) in different culture media with 500 mg/L tryptophan at 12h and 24h. (b) The repression efficiency of TrpR1-PtrpO1 in different culture media at 24h. 0Y: pure M9. 0.5Y: M9 with 0.5 g/L yeast extract. 5Y: M9 with 5 g/L yeast extract. ** $P \le 0.01$ (two-tailed t-test; n = 3 independent biological replicates). All experimental data was collected from three independent biological replicates (n=3). The standard deviations were present as error bars.

Figure S2 The repression assay of TrpR1 double variants. The variants were tested through TrpR1-PtrpO1 biosensor system by comparing the fluorescence repression efficiency towards tryptophan and 5-HTP. All experimental data was collected from three independent biological replicates (n=3). The standard deviations were present as error bars.

Figure S3 The second round *trpO1* **variants screening couple with TrpR1 variants V58G and V58Q.** (a) The dynamic behavior of V58G coupled with *trpO1* variants to 0 to 500 mg/L tryptophan. (b) The dynamic behavior of V58G coupled with *trpO1* variants to 0 to 500 mg/L 5-HTP. (c) The dynamic behavior of V58Q coupled with *trpO1* variants to 0 to 500 mg/L tryptophan. (d) The dynamic behavior of V58Q coupled with *trpO1* variants to 0 to 500 mg/L 5-HTP. All experimental data was collected from three independent biological replicates (n=3). The standard deviations were present as error bars.

Figure S4 The second round *trpO1* **variants screening couple with TrpR1 variants V58E and V58K.** (a) The dynamic behavior of V58E coupled with *trpO1* variants to 0 to 500 mg/L tryptophan. (b) The dynamic behavior of V58E coupled with *trpO1* variants to 0 to 500 mg/L 5-HTP. (c) The dynamic behavior of V58K coupled with *trpO1* variants to 0 to 500 mg/L tryptophan. (d) The dynamic behavior of V58K coupled with *trpO1* variants to 0 to 500 mg/L 5-HTP. All experimental data was collected from three independent biological replicates (n=3). The standard deviations were present as error bars.

References

53

60

[1] Shen, C. R., and Liao, J. C. (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways, *Metab. Eng. 10*, 312-320.
[2] Huo, Y.-X., Cho, K. M., Rivera, J. G. L., Monte, E., Shen, C. R., Yan, Y., and Liao, J. C. (2011)
Conversion of proteins into biofuels by engineering nitrogen flux, *Nat. Biotechnol. 29*, 346-351.
[3] Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in
Escherichia coli K-12 using PCR products, *Proc. Natl. Acad. Sci. U. S. A. 97*, 6640-6645.