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S1 - Details and extra results of the numerical
experiments

We conclude the details setting and some extra results of the numerical experiments.

Generation of simulated data

To simulate data, the parameter set θBD(S), as defined in equation (7) of the main text,
is selected uniformly at random from a subset of the parameter space given in Table 2
of the main text. Note that one can obtain the generating parameter set θPP (S), as
defined in equation (2) of the main text, from θBD(S) directly by setting αi = βi − νi
for each subpopulation. Based on the parameter set θBD(S), we simulated data
generated according to the statistical model specified in equation (6) of the main text.
Note that data is collected from the simulation continuously during the course of the
experiment to replicate the live-cell imaging experiments.

Maximum likelihood estimation (MLE)

The maximum likelihood estimation was conducted by minimizing the negative
log-likelihood, subject to constraints that were placed on the range of each parameter.
The optimization process to find the minimum point was based on the MATLAB
Optimization Toolbox [1] function fmincon with sequential quadratic programming (sqp)
solver. Due to the non-convexity of the negative log-likelihood function, we performed
the optimization starting from 100 uniformly sampled initial points within a feasible
region. The feasible region sets limitations on the parameters based on prior knowledge
about them. For simulation studies, the feasible region is given by Table 1, and for the
in vitro data the feasible region is specified by Table 2. Among all the resulting local
optima, the parameter set with the lowest negative log-likelihood is the estimated result.

Bootstrapping

In the simulated experiments, bootstrapping is used to quantify the uncertainty in the
MLE estimator. In particular, 20 independent replicates of data measured at 11
concentration values D and 13 time points T are generated from the parameters θBD(S)
at the beginning of the experiment. Then bootstrapping is employed to randomly
re-sample 13 replicates from those 20 replicates with replacement 100 times. With 13
randomly sampled replicates it is possible to create an MLE for the parameter set θBD.
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Since there are now 100 MLE’s for θBD it is possible to construct confidence intervals as
well by using the empirical quantiles of the estimators.

GR50

Our goal is to estimate the number of subpopulations, initial mixture proportion pi, and
the drug sensitivity of each cellular subpopulation. The GR50, introduced in [2], is a
summary metric of drug-sensitivity. It is defined as the concentration at which a drug’s
effect on cell growth is half the observed effect. Note that at the largest administered
concentration level, the drug may not reach its theoretical maximum effect. Therefore,
we distinguish GR50 from E by noting that GR50 represents half the observed
maximum effect according to the concentration levels we applied, while E represents
half the theoretical maximum effect.

In the context of the model, the GR50 can be defined as below. Denote the
maximum dosage applied as dm, and define the half-maximum effect for subpopulation i
as ri = (νi(dm) + νi(0))/2. The explicit formula for the GR50 is then for subpopulation
i:

GR50 = Ei

(
1− eνi−ri

eνi−ri − bi

)1/mi

When S = 2, we will denote the higher GR50 as either the resistant GR50 or GRr,
and the lower GR50 as either the sensitive GR50 or GRs. In this setting, parameters for
the sensitive subpopulation and the resistant subpopulation, respectively, are denoted
by subscripts s and r, e.g. Es and Er.

Initial conditions.

The initial number of cells is set as n = 1000, and the initial size of each subpopulation
is set by rounding npi to the nearest integer for subpopulation i. The following drug
concentration levels are used

D = [0, 0.0313, 0.0625, 0.1250, 0.2500, 0.3750, 0.5, 1.25, 2.5, 3.75, 5]

and we collect the cell count data at the time points:

T = [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36].

For these specific concentration levels and time points, we have chosen the threshold
values of TL = 21 and DL = 1 in the PhenoPop model.

Optimization feasible region

When performing numerical optimization the parameters are restricted to a physically
realistic region. Unless otherwise noted, the optimization was performed using 100
uniformly sampled initial points from Table 1.

ps pr βs,r νs,r bs,r Es,r ms,r σL, σH c
Range [0, 0.5] 1− ps [0, 1] [β − 0.1, β] [0.27, 1] [0, 10] [0.01, 10] [0, 2500] [0, 10]

S1 Table 1. Feasible interval for each parameter.
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Estimation on in vitro experimental data

When solving the maximum likelihood optimization problems for the in vitro data, the
optimization feasible region was chosen to be the same as the feasible region used in
paper [3] for the Ba/F3 data, i.e., We solved each optimization problem 500 times

p β ν b E m σL, σH c
Range [0, 1] [0, 1] [β − 0.06, β] [0.878, 1] [0, 50] [0.001, 20] [0, 2500] [0, 100].

S1 Table 2. Optimization Feasible region

starting from randomly chosen initial points.

Imatinib sensitive and resistant Ba/F3 data estimation residual

To visualize how three methods mentioned in this manuscript fit the imatinib sensitive
and resistant Ba/F3 data, we plotted the residual from the estimated mean behavior for
all three methods in Fig. We can clearly see the estimation residual increase as time
increases, and thus the need for a model with variance that changes with time.

S1 Fig. Scatter plots between time and residual from the mean behavior of all three methods. The range of residual increase
with respect to time corresponds to our observation about the increasing variance over time.

Data and code availability

All data and code used for running experiments, model fitting, and plotting are available
on a GitHub repository at https://github.com/chenyuwu233/PhenoPop_stochastic.
The required Matlab version is Matlab R2022a or newer.
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3. Köhn-Luque A, Myklebust EM, Tadele DS, Giliberto M, Schmiester L, Noory J,
et al. Phenotypic deconvolution in heterogeneous cancer cell populations using
drug-screening data. Cell Reports Methods, page 100417, 2023.

February 20, 2024 4/4


	References

