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S2 - Proof and extension of proposition 2

Given a set of time points T = {t1, · · · , tk}, we first show for any tj , 1 ≤ j ≤ k that:

Wn(tj) ⇒ Y (tj) =

j∑
ℓ=1

S∑
g=1

√
pge

λg(tj−tℓ)eλgtℓ−1/2Vg(tℓ − tℓ−1) as n → ∞,

where Vg(t) is a random variable that has normal distribution N(0, σ2
g(t)) and the σ2

g(t)
here is the variance of subpopulation g linear birth-death process defined in equation (5)
of the main text. Since we assume that each cell grows independently, we define

Xg(t) =

Xg(0)∑
m=1

B(m)
g (t), g ∈ {1, · · · , S},

where B
(m)
g (t) is the number of descendants generated from the m-th type g cell. This

means that {B(m)
g ; t ≥ 0,m ∈ {1, . . . Xg(0)} is an independent sequence of identically

distributed linear birth-death processes. Note that due to the Markov property of the
linear birth-death process, we can write a more general equation for 0 ≤ t1 ≤ t2

Xg(t2) =

Xg(t1)∑
m=1

B(m)
g (t2 − t1).

Following an argument from Either and Kurtz [1], we have the decomposition

Wn(tj) =
1√
n

S∑
g=1

j∑
ℓ=1

eλg(tj−tℓ)Xg(tℓ)− eλg(tj−tℓ−1)Xg(tℓ−1)

=

j∑
ℓ=1

S∑
g=1

1√
n
eλg(tj−tℓ)

[
Xg(tℓ)− eλg(tℓ−tℓ−1)Xg(tℓ−1)

]

=

j∑
ℓ=1

S∑
g=1

{
eλg(tj−tℓ)

(pgn
n

)1/2
(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
B(m)

g (tℓ − tℓ−1)− eλg(tℓ−tℓ−1)
]
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By assuming the initial proportion pg for sub-type g is independent of n and using the
Law of large numbers, as n → ∞, we have(

Xg(tℓ−1)

pgn

)
→ E[B(m)

g (tℓ−1)] = eλgtℓ−1 a.s.

By assuming that the maximum number of time point NT and the length of time
interval ti − tj for any i ≥ j are both bounded and not depend on n, the Law of large
numbers also assures that for any ℓ ∈ {1, · · · , NT } the Xg(tℓ−1) will diverge to infinity
when n → ∞. Therefore, we may apply the Central Limit Theorem to the following
term:

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
B(m)

g (tℓ − tℓ−1)− eλg(tℓ−tℓ−1)
]
⇒ Vg(tℓ−tℓ−1) ∼ N(0, σ2

g(tℓ−tℓ−1)).

Thus, we conclude that

Wn(tj) ⇒
j∑

ℓ=1

S∑
g=1

√
pge

λg(tj−tℓ)eλgtℓ−1/2Vg(tℓ − tℓ−1) as n → ∞.

Next we show that the random vector W converges to the random vector Y, which has
the multivariate normal distribution. We can obtain the distribution for Y from the
independence between Vi(tℓ − tℓ−1) and Vj(tm − tm−1) for all
i, j ∈ {1, · · · , Ng}, ℓ,m ∈ {1, · · · , k}:

Y = [Y (t1), · · · , Y (tk)] ∼ N(0,Σ),

where

Σi,j =

min(i,j)∑
ℓ=1

S∑
g=1

pge
λg(ti−tℓ)eλg(tj−tℓ)eλgtℓ−1σ2

k(tℓ − tℓ−1).

Then we use the Cramer Wold device, given a constant vector a ∈ Rk < ∞, we have

⟨a,W⟩ =

k∑
j=1

aj

j∑
ℓ=1

S∑
g=1

{
√
pge

λg(tj−tℓ)

(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
B(m)

g (tℓ − tℓ−1)− eλg(tℓ−tℓ−1)
]

⇒
k∑

j=1

aj

j∑
ℓ=1

S∑
g=1

√
pge

λg(tj−tℓ)eλgtℓ−1/2Vg(tℓ − tℓ−1)

=

k∑
j=1

ajY (tj) = ⟨a,Y⟩

Thus, we show that W ⇒ Y.

Extension of proposition 2 while initial proportions can go to 0
with n → ∞
In proving Proposition 2, we made the assumption that the initial proportions pi for
i = 1, · · · , S are not dependent on the initial cell count n. In this sub-section, we aim to
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relax this assumption and demonstrate a similar result. Note we will assume that all
other inputs are still independent of n, i.e., S and T .

In particular, we will allow pi to depend on n, and allow for lim supn pin < ∞. We
denote two sets of subpopulations F and I, where

F = {i ∈ {1, · · · , S}; lim sup
n→∞

pin < ∞}

I = {i ∈ {1, · · · , S}; lim
n→∞

pin = ∞}

Due to
∑S

i=1 pi = 1, and S being fixed with n, we know that the set I must not be an
empty set. Then following a similar pattern as the proof of the Proposition 2, we derive:

Wn(tj) =

j∑
ℓ=1

S∑
g=1

{
eλg(tj−tℓ)

(pgn
n

)1/2
(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
B(m)

g (tℓ − tℓ−1)− eλg(tℓ−tℓ−1)
]

=

j∑
ℓ=1

∑
g∈I

{
eλg(tj−tℓ)

(pgn
n

)1/2
(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
B(m)

g (tℓ − tℓ−1)− eλg(tℓ−tℓ−1)
]

+

j∑
ℓ=1

∑
g∈F

{
eλg(tj−tℓ)

(pgn
n

)1/2
(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
B(m)

g (tℓ − tℓ−1)− eλg(tℓ−tℓ−1)
]

Next, we may consider these two double sums separately. For g ∈ I, because the pgn
diverges to infinity as n → ∞, the first double sum will converge to the same limit we
established in Proposition 2. For g ∈ F , pgn will stay bounded. Therefore, in the
second double sum, we will have

pgn
n converge to 0 as n → ∞, which makes the second

double sum vanish. In conclusion, we have

Wn(tj) ⇒
j∑

ℓ=1

∑
g∈I

√
pge

λg(tj−tℓ)eλgtℓ−1/2Vg(tℓ − tℓ−1) as n → ∞.

Note that this convergence result will lead to the same realization in practice, i.e., we
will define the covariance by summing over all subtypes. This is because in practice we
only have n < ∞ and we cannot actually assume subpopulations have zero contribution
to the covariance.
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