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S3 - Exact path likelihood computation

Here we show how to calculate the exact likelihood of a sample path observation of the
total cell count of multiple heterogeneous birth-death processes. While we do not use
this approach for likelihood evaluation in the current manuscript we report it here to
show that it is not feasible. We say an algorithm has computational complexity Θ(g(x))
if there exists positive constants c and C such that computational complexity is greater
than cg(x) for all x and less than Cg(x) for all x.

We first consider the following joint probability of a homogeneous linear birth-death
process:

P(X(t1) = x1, · · · , X(tk) = xk|X(t0) = n, θBD(2))

=

Nt∏
k=1

P(X(tk) = xk|X(tk−1) = xk−1, θBD(2)).

For ease of notation define the transition probability

pi,j(tk − tk−1) = P(X(tk) = j|X(tk−1) = i, θBD(2)).

It is important to note that evaluating pi,j(tk − tk−1) is the most
computation-demanding task when evaluating the joint probability. As a result, we
mainly consider the number of evaluations of this transition probability. The analytical
form for this transition probability was derived in [1]:

pi,j(t) =

min(i,j)∑
k=0

(
i

k

)(
i+ j − k − 1

i− 1

)
a(t)i−kb(t)j−k(1− a(t)− b(t))k, (1)

where

a(t) =
ν(e(β−ν)t − 1)

βe(β−ν)t − ν
, b(t) =

β(e(β−ν)t − 1)

βe(β−ν)t − ν
.

Note that numerical evaluation (1) will be computationally expensive due to the
presence of multiple factorial terms. We use a Gosper refined version of the Stirling
formula [2] to approximate these factorials
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n! ≈

√(
2n+

1

3

)
πnne−n.

We find that this approximation leads to good performance in our examples. It is thus
straightforward to evaluate the path likelihood for the case of a homogeneous linear
birth-death process.

If we instead have observations of a sum of birth-death processes, the evaluation of
the path likelihood is much more difficult. In particular, the sum of the birth-death
processes is no longer a Markov process and we must therefore sum over possible values
of our unobserved subpopulations. Specifically, if we have two subpopulations we can
formulate the equation (11) of the main text, as

P (X(r)(t) = xt, t ∈ T |θBD(2))

=

x1∑
i1=0

· · ·
xNT∑

iNT
=0

P (X1(t1) = i1, X2(t1) = x1 − i1, . . . , X1(tNT
) = iNT

, X2(tNT
) = xNT

− iNT
|θBD(2))

=

x1∑
i1=0

· · ·
xNT∑

iNT
=0

{P (X1(t1) = i1, X1(t2) = i2, · · · , X1(tNT
) = iNT

|θBD(2))

P (X2(t1) = x1 − i1, X2(t2) = x2 − i2, . . . , X2(tNT
) = xNT

− iNT
|θBD(2))} .

(2)

Note that the last equality is due to the assumption that subpopulations grow
independently, and we can decompose the joint probability of mixture cell count into a
summation of multiple joint probabilities of the homogeneous linear birth-death process.
It is not hard to see that if we naively evaluate the above sum, the number of
computations of the homogeneous joint probability is around Θ(xNT

t ). Since many
examples have NT ≈ 10, and xt ≈ 103 this is clearly an infeasible approach.

In order to avoid the exponential dependence on the number of time points, one
option is to use techniques from Hidden Markov Models (HMM). The main assumption
of HMM is the Markov property of the hidden process, and that the hidden process
relates to the observable process according to a specified distribution B. Recall that the
time series of observed total cell count is given by {X(ti); i ∈ T } and denote the time
series of the subpopulations as {(X1(ti), . . . , XS(ti); i ∈ T }. Then {X(ti); i ∈ T } in the
HMM is the observable process, and {(X1(ti), . . . , XS(ti)); i ∈ T } is the hidden Markov
process due to the Markov property of the linear birth-death process. Notice that the
relationship between the hidden process {(X1(ti), . . . , XS(ti)); i ∈ T } and the
observable process {X(ti); i ∈ T } can be defined as

P(X(t) = x|(X1(t), . . . , XS(t)) = (x1, . . . , xS)) =

{
1 if x1 + . . .+ xS = x

0 o.w.

We can translate the live-cell imaging experiment into an HMM and significantly
improve the computational complexity of evaluating the exact likelihood function, i.e.
equation (8) of the main text. In particular, we can use popular HMM techniques, such
as the forward-backward procedure to reduce the total number of transition probability,
i.e., equation (18) of the main text, computation to Θ(H2NT ) for one replicate at one
dosage level, where H is the number of hidden states. In particular, we need to
calculate the H by H transition matrix for every time point, and if we assume the
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length of time intervals are identical, we can reduce the upper bound to Θ(H2). The
number of hidden states depends on both the number of cells observed at each time
point xt and the number of subpopulations S; note that due to the exponential growth,
xt may change drastically as t increases. As we will now show, this is unfortunately not
a sufficient reduction in computational complexity. In particular, assume we observe x
total cells. In that case, the number of hidden states is given by

(
x−1
S−1

)
, and assuming

that x ≫ S, we have that
(
x−1
S−1

)
= Θ

(
xS−1

)
as x → ∞. With only two subpopulations

this results in computational complexity of Θ(x2), and in many experiments, we might
have maximum total cell number x approximately 104 thus requiring approximately 108

operations for one likelihood evaluation. If S = 3 we would end up with the far worse
computational complexity of Θ(x4).

In conclusion, using a naive approach to compute the joint probability of mixture

cell count would require Θ
(
xNT
t

)
many computations of transition probability, which is

clearly infeasible when many cell counts are in the thousands with over 10 observed
time points. We also discuss an HMM based approach to evaluating the likelihood that
results in a significant reduction in the computational burden for evaluating this
likelihood. In particular, with this approach we can reduce the number of computations
of the transition probability to Θ

(
x2

)
with x approximately 104. Note that this will be

the complexity for evaluating the likelihood of one single replicate at a single dose, so
taking into account that we can have more than 10 different doses, with more than 10
replicates at each dose we see that unfortunately, this HMM approach is computationally
infeasible. In addition, this HMM approach will have significantly worse computational
complexity after we include observation noise terms and/or more than 2 subpopulations.
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