Supplementary Information

High-Yield Lasso Peptide Production in a *Burkholderia* Bacterial Host by Plasmid Copy Number Engineering

Hannah N. Fernandez,¹ Ashley Kretsch,² Sylvia Kunakom,¹ Adjo E. Kadjo,¹ Douglas A. Mitchell,² Alessandra S. Eustáquio^{1*}

¹Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA

²Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Table of Contents

Table S1. Previously reported heterologous production of lasso peptides from	
Pseudomonadota	S4, 5
Table S2. Identified differences between the reference genome and either pSK020	
outlier overproducer or pSK020+48 low producer	S6–8
Table S3. Primer sequence list for plasmid construction requiring PCR	S9, 10
Figure S1. Schematic of pSK020+48 plasmid and sequence of the promoter region	S 11
Figure S2. Plasmid is not the only factor contributing to the overproducer phenotype	S 11
Figure S3. Assessment of the overproducer clone's ability to recapitulate high yield	
capistruin production when used as a heterologous host	S12
Figure S4. Normalized copy number of different replicons in Burkholderia sp. FERM	
BP-3421	S12
Figure S5. Generation of pKAE001 and pHNF011	S13
Figure S6. Comparison of cell density between production cultures of <i>Burkholderia</i> sp.	
FERM BP-3421 harboring alternate capistruin expression vectors	S14
Figure S7. Generation of pHNF021	S15
Figure S8. Production of capistruin in wild-type and spliceostatin-defective mutant of	
Burkholderia sp. FERM BP-3421	S16
Figure S9. Sequence similarity networks of predicted lasso core peptides	S17
Figure S10. HR-ESI-MS/MS of purified mycetolassin-15	S18
Figure S11. HR-ESI-MS/MS of purified mycetolassin-18	S19
Figure S12. Proteolytic resistance of purified mycetolassins	S20
Figure S13. Hydrogen-deuterium exchange of mycetolassin-15 and mycetolassin-18	S21
Figure S14. Generation of pHNF007 and pHNF010	S22
Figure S15. Growth curve comparison between production with alternate <i>mls</i>	
expression vectors	S22
Figure S16. Export of mycetolassins with and without inclusion of transporter gene	S23

Figure S17. Production of mycetolassins in E. coli				
Figure S18. Inhibition of transcription and/or translation assessed by cell free				
production of mCherry	S25			
Figure S19. Sequences of mycetolassin genetic constructs $mlsA_1A_2B$, $mlsC$, and $mlsD$	S25–27			
References	S28, 29			

Source of BGC (Genus)	Class and Family of BGC Source	G+C (%)	Host Used	Class and Family of Host	G+C (%)	Inducer	Codon Optimized	Yield (mg/L)	Compound	Ref
Asticcacaulis	Alphaproteobacteria Caulobacteraceae	60	E. coli	Gammaproteobacteria Enterobacteriaceae	50	anhydrotetracycline	no	0.26	astexin-1	1
Asticcaucalis	Alphaproteobacteria Caulobacteraceae	60	E. coli	Gammaproteobacteria Enterobacteriaceae	50	?	?	0.28	benenodin I and II	2,3
Brevundimonas	Alphaproteobacteria Caulobacteraceae	63	S. subterranea	Alphaproteobacteria Sphingomonadaceae	50	none, constitutive Sphingomonas promoter	no	10.2	brevunsin	4
Burkholderia / Mycetohabitans	Betaproteobacteria Burkholderiaceae	61	B. gladioli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	trace	burhizin-23	5
Burkholderia	Betaproteobacteria Burkholderiaceae	68	E. coli	Gammaproteobacteria Enterobacteriaceae	50	anhydrotetracycline note: stem loop between <i>capA</i> and <i>capB</i> removed	no	1.6	capistruin	6
Burkholderia	Betaproteobacteria Burkholderiaceae	68	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	0.2	capistruin	7
Burkholderia	Betaproteobacteria Burkholderiaceae	68	<i>Burkholderia</i> Sp. FERM BP- 3421	Betaproteobacteria Burkholderiaceae	68	L-arabinose	no	Non- outliers: 3 Outlier over- producer: 116	capistruin	8
Caulobacter	Alphaproteobacteria Caulobacteraceae	68	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	3.4	caulonodin I- III	5
Caulobacter	Alphaproteobacteria Caulobacteraceae	68	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	0.3	caulosegnin I- III	9
Citrobacter	Gammaproteobacteria Enterobacteriaceae	52	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG for <i>citA</i> , and constitutive promoter of <i>mcjBCD</i> for <i>citBCD</i>	yes	2.7	citrocin	10
Klebsiella	Gammaproteobacteria Enterobacteriaceae	57	E. coli	Gammaproteobacteria Enterobacteriaceae	50	L-arabinose	no	5	klebsidin	11
Sphingomonas	Alphaproteobacteria Sphingomonadaceae	65	S. subterranea	Alphaproteobacteria Sphingomonadaceae	63	none, constitutive Sphingomonas promoter	no	2.8	koreensin	12
Escherichia	Gammaproteobacteria Enterobacteriaceae	50	E. coli	Gammaproteobacteria Enterobacteriaceae	50	?	yes	12	microcin J25	13
Salmonella	Gamaproteobacteria Enterobacteriaceae	52	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	9.61	microcin Y	14

Table S1. Previously reported heterologous production of lasso peptides from Pseudomonadota.

Mycetohabitans	Betaproteobacteria Burkholderiaceae	61	E. coli	Gammaproteobacteria Enterobacteriaceae	50	L-arabinose	no	1	mycetohabin- 15	15
Panderoaea	Betaproteobacteria Burkholderiaceae	63	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	2	pandonodin	16
Rhodanobacter	Gammaproteobacteria Rhodanobacteraceae	65	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	trace	rhodanodin	5
Rubrivivax	Betaproteobacteria Burkholderiaceae	70	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	2.5	rubrinodin	17
Rubrivivax	Betaproteobacteria Burkholderiales order	71	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	0.5	rubrivinodin	5
Sphingobium	Alphaproteobacteria Sphingomonadaceae	64	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	0.9	sphingonodin I and II	5
Sphingopyxis	Alphaproteobacteria Sphingomonadaceae	65	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	3.4	sphingopyxin I and II	5
Sphingobium	Alphaproteobacteria Sphingomonadaceae	64	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	5.2	syanodin I	5
Burkholderia	Betaproteobacteria Burkholderiaceae	68	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	yes	1.8	ubonodin	18
Xanthomonas	Gammaproteobacteria Xanthomonadaceae	65	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	12.7	xanthomonin I-III	19
Phenylobacterium	Alphaproteobacteria Caulobacteraceae	70	E. coli	Gammaproteobacteria Enterobacteriaceae	50	IPTG	no	trace	zucinodin	5

Table updated from.⁸ Yields isolated from liquid cultures. IPTG, isopropyl β -D-1-thiogalactopyranoside Blue rows, isolated yields greater than 10 mg/L. Trace, only trace amounts of compound detected.

Table S2. Identified differences between the reference genome and either pSK020 outlieroverproducer or pSK020+48 low producer.PATRIC was used for analysis.

Reference	Variation	Type of	Amino	Frame-	Function
Genome	found	mutation	Acid shift	shift?	
Oratlian Orac man d					
CCC		incontion	Ang Cly2fa	1100	Drotoin ImpC/MagA
	CCCCCA	insertion	Arg2_Gly31s	yes	TCSS common and
GCCGA	GCC <u>C</u> GA	insertion	Ser500_Ala5011s	yes	TssC (ImpC/VipB)
CAAAAG	<u>CCACTGCCCGA</u>	insertion	-	—	not in coding region
	AGGCCACGCGG GACAAAAG				
CGGT	GGG <u>C</u>	substitution (synonymous)	SerGly152SerGly	no	ABC transporter, substrate-binding
					protein
CCAC	CCAC <u>AC</u>	insertion	Asp597_Val598fs	yes	hypothetical protein
ACCCTG	ACCC <u>C</u> TG	insertion	Arg835_Val836fs	yes	hypothetical protein
GCCCCCACG	GCCCCC <u>C</u> ACG	insertion	Trp832_Gly833fs	yes	hypothetical protein
TCCCCGCCG CA	TCCCC <u>C</u> GCCGC A	insertion	Ala827_Gly828fs	yes	hypothetical protein
ССТС	ССТСТС	insertion	Val808 Glu809fs	VAS	hypothetical protein
GT	GCTC	insertion	Thr801fs	Ves	hypothetical protein
	CCAGCT	insertion	Ala691delinsGluLe	no	hypothetical protein
	<u>een</u> der	msertion	u	110	nypotietieti protein
CGGGGGCTTC G	CGGGG <u>GGGGG</u> C TTCG	insertion	—	—	not in coding region
CGGGGGC	CGGGGGG <u>G</u> C	insertion	_	_	not in coding region
ACA	AC <u>C</u> A	insertion	—	-	not in coding region
G	A	substitution (synonymous)	Leu150Leu	no	Quinolinate phosphoribosyltrans- ferase [decarboxylating] (EC 2.4.2.19)
ATGCGA	ATCAAATGTGT AGGTATAAGGC GATGCGA	insertion	Met1_Arg2fs	yes	Transcriptional regulator, HxlR family
GGTCG	CGTT	deletion	-	_	not in coding region
CGACCGCGC GCGCGA	CGAGCTCGGTC GG	deletion	_	—	not in coding region
CCCGACGAA GCCTAGGCC GCCCGCGGC CC	CCCGACGAAGC CTAGGCCGCCC GC <u>GCGGTATCG</u> <u>AGCGGGC</u> GGCC C	insertion	_	-	not in coding region
CCCCG	<u>CCCGCT</u> CCCG	insertion	Gly69_Gly70fs	yes	hypothetical protein
TCCCCG	TCCCC <u>C</u> GC	insertion	_	—	not in coding region
ACCCG	ACCCCG	insertion	_	—	not in coding region
CGCCCGA	CCCG <u>C</u> CCCGA	insertion	Arg404delinsAlaGl		CaiB/BaiF family
			y		protein

GGC	GGAGC	insertion	-	_	LSU rRNA 23S
					rRNA, large subunit
					ribosomal RNA
CAACC	CTTAACC	insertion	_	_	LSU rRNA 23S
					rRNA. large subunit
					ribosomal RNA
ССТ	CCC	substitution	_	_	not in coding region
001		(non-			not in toting region
		synonymous)			
ACCGA	ACCCGA	insertion	Ser156 Val157fs	ves	hypothetical protein
CCGACCGA	CCCGA	deletion	Arg148 Ser149del	2	hypothetical protein
A	Т	substitution	Gln270Leu	no	Replicative DNA
		substitution	0111270200		helicase (DnaB)
					(EC 3.6.4.12)
Nonoutlier Low F	Producer				(20 0101112)
CCGGGTGA	CAATGTGATGC	insertion	_	_	not in coding region
cesseren	GCCGGGTGA	moertion			not in county region
GGC	GGCAGC	insertion	Gln102 Pro103ins	no	hypothetical protein
000	000 <u>00</u>	moordion	GlnLeu		nypourour protoin
GGCGA	GAGCTGA	insertion	Ala14fs	ves	T6SS component
000011	0 <u>11001</u> 011	moertion	i iiu iib	y 08	TssK (ImpI/VasE)
А	G	substitution	Ser16Glv	no	T6SS component
11	0	(non-	berroory	110	TssK (ImpI/VasE)
		(non synonymous)			1 ssix (imps/ v usiz)
ACGCCTG	ACGCCCCCTG	insertion	Arg30/ Arg305ins	no	T6SS component
ACOCCIO	Acocc <u>ece</u> ro	msertion	ArgGly	110	TssM (IcmF/VasK)
TACG	TACACG	insertion	not indicated	not	SSU rRNA 16S
meo	me <u>ne</u> o	msertion	not indicated	indicate	rRNA small subunit
				d	ribosomal RNA
TCG	GTA	substitution	AlaArg60ValArg	no	T6SS component
100	<u>01A</u>	(non-	Alanigoovalnig	110	TesM (IcmF/VasK)
		(non synonymous)			
CCGCCG	CCTGCGCGCGC	insertion	Glv292delinsAlaAr	no	T6SS outer
cedeed	G	mortion	oAla	110	membrane
	°,		5.114		component TssL
					(ImpK/VasF)/
					OmpA/MotB domain
G	С	substitution	Ala2228Ala	no	hypothetical protein
0	C	(synonymous)	1111122201111	no	nypotnetieur protein
Т	С	substitution	Thr237Thr	no	VgrG protein
1	C	(synonymous)	111237111	no	, gro protoni
Т	С	substitution	Leu252Pro	no	VgrG protein
-	°	(non-	200202110		, gro protoni
		synonymous)			
А	G	substitution	Lys256Lys	no	VgrG protein
		(synonymous)			· 8 F- · · · · ·
Т	С	substitution	Val311Ala	no	VgrG protein
		(non-			6 - r
		synonymous)			
Т	С	substitution	Tyr14Tyr	no	VgrG protein
		(synonymous)			
AAGCCTAGG	AAGCCTAGGCC	insertion	_	_	hypothetical protein
CCGCCCGCG	GCCCGCGCGGT				Jr Protoin
GCCC	ATCGAGCGGGC				
-	GGCCC				
		1	1		

G	А	substitution	Val320Val	no	NADH-ubiquinone
		(synonymous)			oxidoreductase chain
					N (EC 1.6.5.3)
CCCCGGA	<u>T</u> CCCGGA	substitution	Gly70Ser	no	hypothetical protein
		(non-			
		synonymous)			
CGCCCCAG	CGCCCC <u>C</u> AG	insertion	—	_	not in coding region
GCACCCGCA	GCACCC <u>C</u> GCA	insertion	-	—	not in coding region
GCCCCGCCC	GCCCC <u>C</u> GCCC	insertion	_	_	not in coding region
AGGGA	AGGG <u>G</u> A	insertion	not indicated	not	LSU rRNA 23S
				indicate	rRNA, large subunit
				d	ribosomal RNA
А	С	substitution	Arg94Arg	no	hypothetical protein
		(synonymous)			
CC	AT	substitution	GlnAla15582GlnS	no	Polyketide synthase
		(non-	er		modules and related
		synonymous)			proteins

Plasmid constructed	Forward primer	Reverse primer		
pKAE001	P_CapBGC_BglII_f	P_CapBGC_ <i>Nde</i> I_r		
	GCC TAA <u>AGA TCT</u> CCT GCA TCG ATT TAT TAT GAC	GAC TAA <u>CAT ATG</u> CAC ACA GGA AAC AGC TAT G		
	<i>Bgl</i> II site underlined	NdeI site underlined		
pHNF008	PBAD_NheI_f	PBAD_BglII_r		
	CGT AAC <u>GCT AGC</u> CCT GCA TCG ATT TAT TAT GAC	GAT <u>AGA TCT</u> ACT CGA GGC TAT GAC ATG ATT ACG AAT TC		
	<i>NheI</i> site underlined	BglII site underlined		
pHNF009	P_pBBR1_G159S_f	P_pBBR1_G159S_r		
	ACT ACC GAC CAG CCC CGG CGA	TGC TGC TCG CCC GGA TAC		
рАК343	P_mlsA1A2B_OLEwithpUC_f	P_mlsA1A2B_OLEwithmlsC_r		
	TAG AGG ATC CCC GGG TAC CGA GCT atcaaggagatttc ATG AAT AAG CAG CAA GAC GTG	ATA GGC GAT GCC GAG CAG GGT CAT TCA CAG GGG CAG TGC C		
	Overlap region underlined, RBS site in italics	Overlap region underlined		
	P_mlsC_OLEwithmlsABf	P_mlsC_OLEwithpUC_r		
	<u>CCG CTG CTG GCA CTG CCC</u> <u>CTG TGA</u> ATG ACC CTG CTC GGC ATC	<u>GCT ATG ACC ATG ATT ACG</u> <u>AAT TCG</u> TCA TTG CCA TCC TTG AAC AAA CAG		
	Overlap region underlined	Overlap region underlined		
pAK343 Sanger sequencing	CGT CAC ACT TTG CTA TGC CA	N/A		
pHNF007	P_B13BGC_BglII_f	P_B13BGC_ <i>Hind</i> III_ r		
	GAC TAA <u>AGA TCT</u> CCT GCA TCG ATT TAT TAT GAC	GAC TAG <u>AAG CTT</u> GCT ATG ACA TGA TTA CGA ATT C		
	<i>Bgl</i> II site underlined	HindIII site underlined		
pHNF012	P_pBBR1_G159S_f	P_pBBR1_G159S_r		
	ACT ACC GAC CAG CCC CGG CGA	TGC TGC TCG CCC GGA TAC		
araC qPCR	P_araC_qPCR_f	P_araC_qPCR_r		
	TAA CCT TTC ATT CCC AGC GGT C	CTG CCG GGA TAC TCG TTT AAT G		

Table S3. Primer sequence list for plasmid construction requiring PCR.

kan ^R qPCR	P2_kanqPCR_f	P2_kanqPCR_r		
	CTC TGG TAA GGT TGG GAA GC	GTG CAA TCC ATC TTG TTC AAT CAT G		
recA qPCR	P_recA_qPCR_f	P_recA_qPCR_r		
	ACA CCA CCT GGA TGT CCT CG	ATG GAA GAT AGC AAG AAG GGT TC		
gyrA qPCR	P_gyrA_qPCR_f	P_gyrA_qPCR_r		
	ACA CCG AAG ACC TGA TCA CG	TCC AGT CGT CTT CCT TCA TCT G		

Figure S1. Schematic of pSK020+48 plasmid and sequence of the promoter region. (A) The capistruin BGC (*capABCD*, orange) under the control of the *araC* regulator (blue) and P_{BAD} promoter in the pR01600based vector. The sequence of the P_{BAD} promoter is denoted by underlined -35 and -10 regions, respectively. The 48-bp insertion (dark and light red) is located upstream of the start codon of *capA* (yellow) and contains three *KpnI* sites (teal). The thymine-rich region that is part of the translation enhancer and the RBS site upstream of *capA* are bolded. (**B**) We speculate the 48-bp insertion originated from the pUC57-Kan vector used to clone the synthetic *cap* BGC, which was used to generate pSK020. The 48-bp insertion (dark and light red) is composed of inverted repeats flanked by *KpnI* sites (teal).

Figure S2. Plasmid is not the only factor contributing to the overproducer phenotype. Comparison of capistruin titers between pSK020 overproducer and clones that were obtained after retransformation of the plasmid isolated from the overproducer host into the *Burkholderia* sp. WT strain. Average of $N = 4 \pm$ standard deviation. For the overproducer clone, N = 3 indicates results from three production culture flasks inoculated from the same seed culture. For the cleared host, N = 4 indicates results from three independent clones. The plasmid from the pSK020 overproducer was reintroduced via electroporation and four independent clones were selected for analysis. T-test was implemented for statistical analysis. *, P = 0.09.

Figure S3. Assessment of the overproducer clone's ability to recapitulate high yield capistruin production when used as a heterologous host. Comparison of capistruin titers between pSK020 overproducer and clones that were obtained after clearing the pSK020 overproducer clone of plasmid and retransforming it. (A) After host clearing, pSK020+48 plasmid from *E. coli* was reintroduced into the host via electroporation. N = 1 for pSK020 overproducer and average of $N = 7 \pm$ standard deviation of 0.5% is shown for cleared host, pSK020+48. Biological replicates were utilized. (B) After plasmid clearing, the pSK020 plasmid from the overproducer was retransformed into the cleared host. N = 1 for pSK020 overproducer and average of $N = 2 \pm$ standard deviation of 3.5% is shown for cleared host, pSK020. Biological replicates were utilized.

Figure S4. Normalized copy number of different replicons in *Burkholderia* **sp. FERM BP-3421.** Empty vectors containing the RSF1010 (pAM4891), RK2 (pSEVA227M), and pBBR1 (pM0168) replicons were transferred into *Burkholderia* sp. and genomic DNA was then isolated and sequenced using Illumina technology. Normalized plasmid copy number per genome equivalent is shown. All vectors contain a kanamycin resistance marker.

Figure S5. Generation of pKAE001 and pHNF011. The *cap* BGC (orange) under the control of the *araC*/P_{BAD} promoter was amplified by PCR and subcloned into pMo168 (pBBR1-based vector) using the restriction sites *Bgl*II and *Nde*I to generate pKAE001. Cloning of the *cap* BGC disrupted the *xylE* reporter gene. The 48 bp insert (red) between the P_{BAD} promoter and the RBS is present in pKAE001 because pSK020+48 was used as PCR template before we discovered the 48-bp insertion. The underlined sites in teal bordering and within the 48-bp insert denote *Kpn*I restriction sites. Isolated pKAE001 plasmid was digested with *Kpn*I and ligated to generate pHNF011. In the boxed sequence, the RBS site is bolded, and the start of transcription is shown in yellow.

Figure S6. Comparison of cell density between production cultures of *Burkholderia* sp. FERM BP-3421 harboring alternate capistruin expression vectors. (A) The wet cell weight of production cultures of FERM BP-3421 harboring the pSK020, pHNF011, or pHNF021 vectors. Wet cell weights were acquired from aliquots (10 mL) of 48-h production cultures, which were centrifuged at maximum speed to separate the supernatant and cell mass. The average of $N = 3 \pm$ standard deviation is shown. (B) The number of colony forming units per milliliter (CFU/mL) from production cultures of FERM BP-3421 harboring the pSK020, pHNF011, or pHNF021 vectors. CFU/mL counts were acquired from serially diluting resuspended cell pellet that was harvested from 10 mL aliquots of 48-h production cultures. The average of $N = 3 \pm$ standard deviation is shown. T-test was implemented for statistical analysis. *, P ≤ 0.02 ; **, P \leq $1.0E^{-4}$; ns, no significant difference.

Figure S7. Generation of pHNF021. (A) The *araC*/P_{BAD} L-arabinose inducible promoter was cloned into the pMo168 vector backbone to generate pHNF008. (**B**) Site-directed mutagenesis was used to introduce the G159S point mutation in the pBBR1 *rep* gene and generate pHNF009 (indicated as pBBR1 **rep*). pHNF013 was constructed by subcloning the capistruin BGC into pHNF009 using the restrictions sites *NheI* and *SfiI*. pHNF013 contained the 48 bp insert carried over from the template plasmid before we found out about the 48-bp insertion. pHNF021 was then created by further digesting pHNF013 with *KpnI* (teal) and ligating the digested plasmid. Cloning of the *cap* BGC disrupted the *xylE* reporter gene. All constructs were verified by restriction digest and either Sanger or whole plasmid sequencing. (**C**) Sanger sequence data indicating the introduction of the point mutation in the *rep* gene. The orange arrow annotation indicates the original sequence of the *rep* codon (GGC) before introduction of the point mutation (AGC).

Figure S8. Production of capistruin in wild-type and spliceostatin-defective mutant of *Burkholderia* sp. FERM BP-3421. Relative capistruin titers when using the WT background versus the *fr9DEF*-background. The average of triplicates \pm standard deviation is shown for both WT and mutant. T-test was implemented for statistical analysis. *, P = 0.03.

Figure S9. Sequence similarity networks of predicted lasso core peptides. Core peptides from a previous curation of predicted lasso peptides.²⁰ The non-identical set of curated sequences (N = 4,485) was used to generate a sequence similarity network (SSN) using EFI-EST.²¹ (**A**) SSN at alignment score 5 is displayed and colored by phylum of the encoding organism. Bolded nodes are core sequences from experimentally validated lasso peptides. The clade containing mycetolassin-15 and -18 is circled. (**B**) SSN at alignment score 5 of core peptides from *Burkholderiaceae* only. Literature reported lasso peptides are indicated. (**C**) A comparison of the sequences of several reported lasso peptides and mycetolassin-15 and -18. Conserved residues are in bold. Residues not observed in the final lasso product are grey.

Figure S10. HR-ESI-MS/MS of purified mycetolassin-15. Mycetolassin-15 was subjected to collision induced dissociation (30 keV), resulting in a series of b^+ , b^{2+} , and y^+ ions consistent with a macrolactam linkage between Gly1 and Glu8 of the mycetolassin-15 core peptide. HR-MS of purified mycetolassin-15 is consistent with the predicted mass of the core peptide with a single cyclization.

Figure S11. HR-ESI-MS/MS of purified mycetolassin-18. Mycetolassin-18 was subjected to collision induced dissociation (30 keV), resulting in a series of b^+ , b^{2+} , and y^+ ions. The significantly lower intensity of the b7, b6, b5, and y12 ions is consistent with a macrolactam linkage between Gly1 and Glu8 of the mycetolassin-18 core peptide. HR-MS of purified mycetolassin-18 is consistent with the predicted mass of the core peptide with a single cyclization.

A Mycetolassin-15 GGSGQYREAGVGRFF expected mass m/z 1569.8

Figure S12. Proteolytic resistance of purified mycetolassins. Panel 1 and 2, purified (A) mycetolassin-15 and (B) mycetolassin-18 treated with either PBS control or carboxypeptidase Y and incubated for 18 h at room temperature. Panel 3 and 4, mycetolassins subjected to initial heat treatment for 3h at 95 °C followed by carboxypeptidase treatment identical to above. (A) After either treatment of mycetolassin-15, removal of the C-terminal residue F15 (m/z 1422.7) was not detected (ND, orange). (B) Carboxypeptidase treatment of mycetolassin-18 with/without heat exposure yielded masses corresponding to the removal of the C-terminal Ala (m/z 1785.8) and Gly-Ala (m/z 1728.8), shown in panel 2 and 4 in blue. Heat treatment of mycetolassin-18 alone yielded a mass corresponding to the removal of the two C-terminal residues G17A18 (m/z 1728.8), indicated in panel 3 in blue. Removal of three or four residues was not observed (ND, orange). Masses indicated with / were identified in the PBS, carboxypeptidase Y sample and were not attributed to the mycetolassins, panel 5.

Figure S13. Hydrogen-deuterium exchange of mycetolassin-15 and mycetolassin-18. Raw data for mycetolassin-15 (A) and mycetolassin-18 (B) peptide deuteration over time. Partial deuteration occurred rapidly, but deuteration continued to progress for 24 h, which supports a threaded conformation. The expected mass of mycetolassin-15 and -18 is $[M+H]^+ m/z = 1569.9$ and 1856.9, respectively (shown in grey, dashed lines). With full deuteration the expected mass is $[M+H]^+ m/z = 1598$ and 1888 for mycetolassin-15 and mycetolassin-18, respectively (shown in blue, dashed line), approximated using MSTools.²²

Figure S14. Generation of pHNF007 and pHNF010. (A) The mycetolassin BGC ($mlsA_1A_2BC$ green) under the control of the $araC/P_{BAD}$ promoter was amplified by PCR and subcloned into pMo168 (pBBR1-based vector) to generate pHNF007. (B) The native mlsD transporter gene was synthetized by Twist and *Hind*III and *SphI* restriction sites were used to subclone mlsD into pHNF007 to generate pHNF010.

Figure S15. Growth curve comparison between production with alternate *mls* expression vectors. Forty-eight-hour growth comparison in production media between the *Burkholderia* sp. FERM BP-4321 spliceostatin-defective mutant strain (*fr9DEF*) containing alternate *mls* expression vectors. The average of $N = 10 \pm$ standard deviation is shown.

Figure S16. Export of mycetolassins with and without inclusion of transporter gene. (A) The percent of mycetolassin-15 detected in the supernatant of production cultures. (B) The percent of mycetolassin-18 detected in the supernatant of production cultures. Production was done in the *Burkholderia* sp. *fr9DEF* strain. The average of triplicates \pm standard deviation is shown.

Figure S17. Production of mycetolassins in *E. coli.* (A) Masses corresponding to mycetolassin-15 and mycetolassin-18 (expected mass $[M+H]^+ m/z = 1569.9$ and 1856.9, respectively) were observed in trace amounts by MALDI-TOF-MS in *E. coli* expressing pAK343 (containing *mlsA1A2BC*) and not in the empty vector control. (B) HPLC traces of the pellet and supernatant extracts from *E. coli* do not show significant peaks at 280 nm at the retention times consistent with purified mycetolassin-15 and mycetolassin-18. (C) Quantification of mycetolassin-18 from a 500 mL *E. coli* culture expressing pAK343. 1% of the extract (eq. ~5 mL culture) was injected onto the HPLC and the area of the 220 nm absorbance peak corresponding to retention time of mycetolassin-18 was compared to a standard curve to determine yield (N = 1). Blue circle, *E. coli* extract; grey circles, authentic standard.

Figure S18. Inhibition of transcription and/or translation assessed by cell free production of mCherry. mCherry under the control of an endogenous *E. coli* σ 70 promoter was produce in the presence of negative control 10% methanol, and 50 μ M final concentration of mycetolassin-15, a C-terminal truncation of mycetolassin-18 (mycetolassin-18 Δ 2), and mycetolassin-18. Capistruin (30 μ M), a known RNA polymerase inhibitor, is also shown. Error bars represent standard error of the mean (N = 4), and only samples containing capistruin exhibited a statistically significant difference in fluorescent intensity. T-test was implemented for statistical analysis. ***, P = 0.0001.

Sequences for mycetolassin expression plasmids

mlsA1:

5'- atgaataagcagcaagacgtgaagcatgaagtgtcggaattcctgttggatgacgaatcgctgatggaactgtccgcttccgaatcgacgctgggc ggttcgggacaataccgagaagctggcgttggccgctttttctga -3'

Intergenic region:

5'- catagggcgaccagccgcctgcctaccgggtagcggtttcctttccactacgggatcaaggagattctc -3'

mlsA₂:

5'- atgaataagcaacaagacgtgacgtatgaagtgtcgaacttcctgttggacgatgaatcgctgatggaactgtgcgcttccgagtcgacgctgggtg gtacggggcaatacaaagaagtcggcattggccgcttctatgatggagcgtaa -3'

Intergenic region:

5'- tcttagatgtattgtgacgcatactaaggttttgcttagcgttctcttgtagtcacgatacagaacaaaaaa -3'

mlsB:

mlsC:

5'- atgaccctgctcggcatcgcctatccgaagacgcaggattatttgacgcaaaaacgggattggaggttcgtgcgcgacccgtccaaccagattgca ggaccagagcgaaattaaggaagacgacttgcaggcaattgcggcagtgggtcccgcgcatctcatggctcgattctggggtaaatatttgtttatctgcttggtgagctgccgtttgatcgtatccaagaaattccggcaggctgcgctgtctcctatatcgatgatggtcaaccgcaaatcgtgacggtttgggatcccctcaag cacg cagt gg aag at ga cacccca a a ccccg tt cg g cattt tg aag aat tat ct ta a ccgg tt tg tg c g tt cg g c c g tg c c g tg c g g a c c c g tg c g g a c c c g tg c g g a c c c g tg c g g a c c c g tg c g g a c c c g tg c g g a c c c g tg c g g a c c c g tg c g g a c c c g tg c g g a c c c g tg c g g a c c c g tg c g g a c c c g t g g a c c c g t g g a c c c g t g g a c c c g t g c g g a c c c g t g g a c c g t g g a c c g t g g a c c g t g g a c c c g t g g a c c c g t g g a c c g t g a c c g t g a c c g t g a c c g t g a c c g t g a c c g t g a c c g t g a c c g t g a c c g t g a c c g t g a c c g t g a c c g t g a c c g t g a c c g acggaggtctggaatccagctccgtgctgctgccaatgcgcgcagtctcctccgctgaccatccgctgtcctgcgcgcattattaccatgccggtgtcgcttcgggcatggaggggattcgctctttttggcgccgccgccgttcagcgcgcttgccgatgcggcactgacgtggcaatggcgacgattggtgcgcgtgg tgtggcgacgacaacaaaggcgaaacgtcgggtatcgatttgttgggcattcgtgaccacaaggatcatatgatggcgctctgcctcgagggatttttggcc ccgaactgtttgttcaaggatggcaatga -3'

Intergenic region:

5'- cgaattcgtaatcatgtcatagcaagcttctagcgagtaaagcgtg -3'

mlsD:

5'- atgcagcatggtctcttcaaaacaatcttgtttttgctgcattgcttgtggacgcgtgaatggaaaacgcgtcttcagatcatcgcagccattggctgtac aggatgctcagtcgggctgaccattatcgcaccgatgttgctcaagtggctcatcgacggtttgtccaacgcggcgctctcggcagtgagcgtctacctgc tctgtgtagcttacggcggcgcgtggtttctgtcacaagcgacgaaccgttgcgaacagtatttgttcgtgttggtcaatgaacgtattaaacgcacgattac

S26

Figure S19. Sequences of mycetolassin genetic constructs *mlsA*₁*A*₂*B*, *mlsC*, and *mlsD*. The *mlsA*₁*A*₂*B* and *mlsC* constructs were purchased from GenScript and utilized to generate pAK343. To avoid rare codons from both *Burkholderia* sp. and *E. coli*, codons were swapped as follows: UUA \rightarrow UUG, UCU \rightarrow UCC, UCA \rightarrow UCG, UAA \rightarrow UGA, UGU \rightarrow UGC, CUA \rightarrow CUG, CCU \rightarrow CCG, CCA \rightarrow CCG, AUA \rightarrow AUC, ACU \rightarrow ACC, ACA \rightarrow ACG, AGU \rightarrow AGC, AGA \rightarrow AGG, GUA \rightarrow GUG. The native *mlsD* sequence was synthesized by Twist Bioscience and utilized in the pHNF010 and pHNF012 constructs. The native sequence originates from *Mycetohabitans* sp. (basonym *Burkholderia* sp.) B13 (NZ_FTPM01000001). Accession codes for each gene are as follows: *A*₁, WP_175972411; *A*₂, WP_175972412; *B*, WP_083705989; *C*, WP_076785565; *D*, WP_076785566.

References

- 1. Maksimov, M. O.; Pelczer, I.; Link, A. J. Precursor-centric genome-mining approach for lasso peptide discovery. *Proc. Natl. Acad. Sci. U. S. A.* **2012**, *109*, 15223-15228.
- 2. Chekan, J. R.; Koos, J. D.; Zong, C.; Maksimov, M. O.; Link, A. J.; Nair, S. K. Structure of the lasso peptide isopeptidase identifies a topology for processing threaded substrates. *J. Am. Chem. Soc.* **2016**, *138*, 16452-16458.
- 3. Zong, C.; Wu, M. J.; Qin, J. Z.; Link, A. J. Lasso peptide benenodin-1 is a thermally actuated [1]rotaxane switch. *J. Am. Chem. Soc.* **2017**, *139*, 10403-10409.
- 4. Kodani, S.; Hemmi, H.; Miyake, Y.; Kaweewan, I.; Nakagawa, H. Heterologous production of a new lasso peptide brevunsin in *Sphingomonas subterranea*. J. Ind. Microbiol. Biotechnol. **2018**, 45, 983–992.
- 5. Hegemann, J. D.; Zimmermann, M.; Zhu, S.; Klug, D.; Marahiel, M. A. Lasso peptides from proteobacteria: Genome mining employing heterologous expression and mass spectrometry. *Biopolymers* **2013**, *100*, 527-542.
- 6. Pan, S. J.; Rajniak, J.; Maksimov, M. O.; Link, A. J. The role of a conserved threonine residue in the leader peptide of lasso peptide precursors. *Chem. Commun.* **2012**, *48*, 1880-1882.
- 7. Knappe, T. A.; Linne, U.; Zirah, S.; Rebuffat, S.; Xie, X.; Marahiel, M. A. Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of *Burkholderia thailandensis* E264. *J. Am. Chem. Soc.* **2008**, *130*, 11446-11454.
- 8. Kunakom, S.; Eustáquio, A. S. Heterologous production of lasso peptide capistruin in a *Burkholderia* host. *ACS Synth. Biol.* **2020**, *9*, 241-248.
- 9. Hegemann, J. D.; Zimmermann, M.; Xie, X.; Marahiel, M. A. Caulosegnins i-iii: A highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. *J. Am. Chem. Soc.* **2013**, *135*, 210-222.
- 10. Cheung-Lee, W. L.; Parry, M. E.; Cartagena, A. J.; Darst, S. A.; James Link, A. Discovery and structure of the antimicrobial lasso peptide citrocin. *J. Biol. Chem.* **2019**, *294*, 6822-6830.
- Metelev, M.; Arseniev, A.; Bushin, L. B.; Kuznedelov, K.; Artamonova, T. O.; Kondratenko, R.; Khodorkovskii, M.; Seyedsayamdost, M. R.; Severinov, K. Acinetodin and klebsidin, RNA polymerase targeting lasso peptides produced by human isolates of *Acinetobacter gyllenbergii* and *Klebsiella pneumoniae*. ACS Chem. Biol. 2017, 12, 814-824.
- 12. Fuwa, H.; Hemmi, H.; Kaweewan, I.; Kozaki, I.; Honda, H.; Kodani, S. Heterologous production of new lasso peptide koreensin based on genome mining. *J. Antibiot.* **2021**, *74*, 42-50.
- Yu, H.; Ding, X.; Shang, L.; Zeng, X.; Liu, H.; Li, N.; Huang, S.; Wang, Y.; Wang, G.; Cai, S.; et al. Protective ability of biogenic antimicrobial peptide microcin J25 against enterotoxigenic *Escherichia coli*-induced intestinal epithelial dysfunction and inflammatory responses IPEC-J2 Cells. *Front. Cell. Infect. Microbiol.* 2018, 8, 242-242.
- 14. Li, Y.; Han, Y.; Zeng, Z.; Li, W.; Feng, S.; Cao, W. Discovery and bioactivity of the novel lasso peptide microcin y. *J. Agric. Food. Chem.* **2021**, *69*, 8758-8767.

- Bratovanov, E. V.; Ishida, K.; Heinze, B.; Pidot, S. J.; Stinear, T. P.; Hegemann, J. D.; Marahiel, M. A.; Hertweck, C. Genome mining and heterologous expression reveal two distinct families of lasso peptides highly conserved in endofungal bacteria. *ACS Chem. Biol.* 2020, *15*, 1169-1176.
- 16. Cheung-Lee, W. L.; Cao, L.; Link, A. J. Pandonodin: A proteobacterial lasso peptide with an exceptionally long c-terminal tail. *ACS Chem. Biol.* **2019**, *14*, 2783-2792.
- 17. Xiu, H.; Wang, M.; Fage, C. D.; He, Y.; Niu, X.; Han, M.; Li, F.; An, X.; Fan, H.; Song, L.; et al. Discovery and characterization of rubrinodin provide clues into the evolution of lasso peptides. *Biochemistry* **2022**, *61*, 595-607.
- Cheung-Lee, W. L.; Parry, M. E.; Zong, C.; Cartagena, A. J.; Darst, S. A.; Connell, N. D.; Russo, R.; Link, A. J. Discovery of ubonodin, an antimicrobial lasso peptide active against members of the *Burkholderia cepacia* complex. *ChemBioChem* 2020, *21*, 1335-1340.
- 19. Hegemann, J. D.; Zimmermann, M.; Zhu, S.; Steuber, H.; Harms, K.; Xie, X.; Marahiel, M. A. Xanthomonins I-III: A new class of lasso peptides with a seven-residue macrolactam ring. *Angew. Chem. Int. Ed. Engl.* **2014**, *53*, 2230-2234.
- 20. Si, Y.; Kretsch, A. M.; Daigh, L. M.; Burk, M. J.; Mitchell, D. A. Cell-free biosynthesis to evaluate lasso peptide formation and enzyme-substrate tolerance. *J. Am. Chem. Soc.* **2021**, *143*, 5917-5927.
- 21. Zallot, R.; Oberg, N.; Gerlt, J. A. The EFI web resource for genomic enzymology tools: Leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. *Biochemistry* **2019**, *58*, 4169-4182.
- 22. Kavan, D.; Man, P. MStools—web based application for visualization and presentation of HXMS data. *Int. J. Mass spectrom.* **2011**, *302*, 53-58.