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Web Appendix A Identification of potential outcome means

A.1 Identification using the collection of trials

Theorem 1 (Identification of potential outcome means): Under conditions A1 through

A5, the potential outcome mean in the target population under treatment a ∈ A, E[Y a|R = 0],

is identifiable by the observed data functional

ψ(a) ≡ E
[
E[Y |X,R = 1, A = a]

∣∣R = 0
]
, (S1)

which can be equivalently expressed as

ψ(a) =
1

Pr[R = 0]
E

[
I(R = 1, A = a)Y Pr[R = 0|X]

Pr[R = 1|X] Pr[A = a|X,R = 1]

]
. (S2)

Proof. By conditions A4 and A5 from the main text and the definition of R, we have

E[Y a|X = x, S = s] = E[Y a|X = x, S = 0] = E[Y a|X = x,R = 0], for every s ∈ S and every

x such that f(x, S = 0) 6= 0. This implies that the conditional counterfactual outcome means

in the trials are all equal between them and with the conditional counterfactual outcome

mean in the target population, that is, for every a ∈ A and every x such that f(x, S = 0) 6= 0,

E[Y a|X = x, S = 1] = . . . = E[Y a|X = x, S = m]

= E[Y a|X = x,R = 1]

= E[Y a|X = x,R = 0],

where we use E[Y a|X = x,R = 1] to denote the common, across-trials, potential outcome

mean under treatment a, conditional on covariates, in the the collection of trials S.

Using conditions A1 through A3, the above result implies that, for every a ∈ A and every

x such that f(x, S = 0) 6= 0,

E[Y |X = x, S = 1, A = a] = . . . = E[Y |X = x, S = m,A = a]

= E[Y |X = x,R = 1, A = a]

= E[Y a|X = x,R = 0],

(S3)
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where E[Y |X = x,R = 1, A = a] is the common, across-trials, outcome mean among

individuals receiving treatment a, conditional on covariates, in the the collection S.

Thus, using the law of total expectation and the second-to-last equality in (S3) we obtain

E[Y a|R = 0] = E
[
E[Y a|X,R = 0]

∣∣R = 0
]

= E
[
E[Y |X,R = 1, A = a]

∣∣R = 0
]

≡ ψ(a),

which completes the derivation of the result in (6). We can re-express (6) to use weighting,

ψ(a) ≡ E
[
E[Y |X,R = 1, A = a]

∣∣R = 0
]

= E

[
E

[
I(R = 1, A = a)Y

Pr[R = 1|X] Pr[A = a|X,R = 1]

∣∣∣X
] ∣∣∣∣∣R = 0

]

=
1

Pr[R = 0]
E

[
I(R = 0)E

[
I(R = 1, A = a)Y

Pr[R = 1|X] Pr[A = a|X,R = 1]

∣∣∣X
] ]

=
1

Pr[R = 0]
E

[
E

[
I(R = 1, A = a)Y Pr[R = 0|X]

Pr[R = 1|X] Pr[A = a|X,R = 1]

∣∣∣X
] ]

=
1

Pr[R = 0]
E

[
I(R = 1, A = a)Y Pr[R = 0|X]

Pr[R = 1|X] Pr[A = a|X,R = 1]

]
.

Remark 1: The derivation of (7) from (6) relies on the positivity conditions and does

not use any causal (counterfactual) conditions. Thus, the result holds whether or not ψ(a)

has a causal interpretation.

It is worth noting that we can derive the main identification result of Theorem 1 in an

alternative way, using the implications of the identifiability conditions derived in Section 3.

We now give this alternative proof.

Proof. [Alternative proof of the first part of Theorem 1] We have shown that identifiability
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conditions A2 and A4 imply that Y a⊥⊥R|X and Y a⊥⊥ (S,A)|(X,R = 1). Furthermore, the

second of these independence conditions implies that Y a ⊥⊥ A|(X,R = 1).

Using the law of total expectation, the independence conditions Y a ⊥⊥ R|X and Y a ⊥⊥

A|(X,R = 1), and identifiability condition A1, we obtain

E[Y a|R = 0] = E
[
E[Y a|X,R = 0]

∣∣R = 0
]

= E
[
E[Y a|X,R = 1]

∣∣R = 0
]

= E
[
E[Y a|X,R = 1, A = a]

∣∣R = 0
]

= E
[
E[Y |X,R = 1, A = a]

∣∣R = 0
]

≡ ψ(a).

Here, all quantities are well-defined because positivity condition A5 implies that Pr[R =

1|X = x] > 0 for every x such that f(x,R = 0) 6= 0; and positivity condition A3 implies

that Pr[A = a|X = x,R = 1] > 0 for every treatment a ∈ A, and every x such that

f(x,R = 1) 6= 0.
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Web Appendix B Identification under weaker positivity conditions

B.1 Weaker positivity conditions for Theorem 1

The alternative proof of Theorem 1 at the end of the previous section of the Appendix,

suggests that identification is possible under weaker positivity conditions.

To show this, suppose that the independence conditions Y a⊥⊥R|X and Y a⊥⊥A|(X,R = 1)

hold. That can be the case either because identifiability conditions A2 and A4 hold (as in

the main text) or because the independence conditions are taken as primitive assumptions

(i.e., not derived from others). These independence conditions have intuitive interpretations

and their plausibility can be evaluated using background scientific knowledge: Y a ⊥⊥ R|X

means that participation in the collection of trials is independent of the potential outcome

given the baseline covariates; Y a ⊥⊥ A|(X,R = 1) means that treatment is “unconfounded”

in the collection of trials, conditional on baseline covariates.

Suppose, then, that Y a ⊥⊥ R|X and Y a ⊥⊥ A|(X,R = 1) hold. The alternative proof of

Theorem 1 suggests that ψ(a) is identifiable under the following positivity conditions:

A3∗. Positivity of the probability of treatment in the collection of trials: for each treatment

a ∈ A, if f(x,R = 1) 6= 0, then Pr[A = a|X = x,R = 1] > 0.

A5∗. Positivity of the probability of participation in the collection of trials: if f(x,R = 0) 6= 0,

then Pr[R = 1|X = x] > 0.

We can now state the following theorem:

Theorem 2 (Identification under weaker positivity conditions): If Y a⊥⊥R|X and Y a⊥⊥

A|(X,R = 1) and conditions A1, A3∗, and A5∗ hold, then the potential outcome mean in the

target population under treatment a ∈ A, E[Y a|R = 0], is identifiable by ψ(a).

Proof. The proof follows from the arguments presented in the Alternative proof of the first

part of Theorem 1 at the end of Web Appendix A.
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B.2 Weaker overlap and exchangeability conditions for potential outcome means

Let Xs for s ∈ {0, 1, . . . ,m} denote the support of the random vector X in trial S = s. That

is,

Xs ≡ {x : f(x|S = s) > 0}.

Recall that for each covariate pattern X = x that can occur in collection of trials, that is,

for each x ∈ ⋃
s∈S

Xs, we define Sx as the subset of trials in S such that x belongs in their

support set. That is,

Sx ≡ {s : s ∈ S, x ∈ Xs}.

Note that Sx ⊆ S; intuitively, Sx denotes the subset of trials where the covariate pattern

X = x can occur.

B.2.1 Identifiability conditions

Using this additional notation, consider the following identifiability conditions:

A4†. Exchangeability in mean over S: For every x such that f(x|S = 0) > 0 and every

s ∈ Sx,

E[Y a|X = x, S = 0] = E[Y a|X = x, S = s].

A5†. Overlap of the collection S with the target population:
⋃
s∈S

(Xs ∩ X0) = X0.

Note that
⋃
s∈S

(Xs ∩ X0) = X0 ⇐⇒ X0 ∩
( ⋃
s∈S

Xs

)
= X0 =⇒ X0 ⊆ ⋃

s∈S

Xs; where the

equivalence follows from claim 3 of Proposition A.4. in Proschan and Shaw (2018).

B.2.2 Identification

Theorem 3 (Identification under weaker overlap and exchangeability conditions): Under

identifiability conditions A1 through A3, A4† and A5†, for every a ∈ A, E[Y a|S = 0] is
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identifiable by

φ(a) ≡
∫

E
[
Y |X = x, I(S ∈ Sx) = 1, A = a

]
f(x|S = 0)dx.

Proof. By condition A5 †, for each x such that f(x, S = 0) 6= 0, there exists a non-empty

set Sx of trials where X = x has positive density.

By condition A4 †, for each x such that f(x, S = 0) 6= 0 and for each trial s ∈ Sx,

E[Y a|X = x, S = s] = E[Y a|X = x, S = 0].

For each x such that f(x, S = 0) 6= 0 and for each trial s ∈ Sx, by definition,

E[Y a|X = x, S = s] = E[Y a|X = x, S = s, I(S ∈ Sx) = 1].

Thus, for each x such that f(x, S = 0) 6= 0 and for each trial in s ∈ Sx,

E[Y a|X = x, S = 0] = E[Y a|X = x, S = s, I(S ∈ Sx) = 1]. (S4)

By conditions A2 and A3, for each x such that f(x, S = 0) 6= 0 and for each trial s ∈ Sx,

E[Y a|X = x, S = s, I(S ∈ Sx) = 1] = E[Y a|X = x, S = s, I(S ∈ Sx) = 1, A = a].

By condition A1, and the above result, for each x such that f(x, S = 0) 6= 0 and for each

trial s ∈ Sx,

E[Y a|X = x, S = s, I(S ∈ Sx) = 1] = E[Y |X = x, S = s, I(S ∈ Sx) = 1, A = a].

Combining the above result and the result in (S4), for each x such that f(x, S = 0) 6= 0

and for each trial s ∈ Sx, we obtain

E[Y a|X = x, S = 0] = E[Y |X = x, S = s, I(S ∈ Sx) = 1, A = a].

The left hand side above does not depend on s, so it has to be that, for each x such that

f(x, S = 0) 6= 0 and for each trial s ∈ Sx,

E[Y |X = x, S = s, I(S ∈ Sx) = 1, A = a] = E[Y |X = x, I(S ∈ Sx) = 1, A = a].



7

Thus, we can conclude that that for every x such that f(x, S = 0) 6= 0,

E[Y a|X = x, S = 0] = E[Y |X = x, I(S ∈ Sx) = 1, A = a]. (S5)

From the law of total expectation,

E[Y a|S = 0] =

∫

x:f(x,S=0) 6=0

E
[
Y a|X = x, S = 0

]
f(x|S = 0)dx

Using the result in (S5), completes the proof, because

E[Y a|S = 0] =

∫

x:f(x,S=0) 6=0

E[Y |X = x, I(S ∈ Sx) = 1, A = a]f(x|S = 0)dx ≡ φ(a).
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Web Appendix C Identification of average treatment effects under

exchangeability in effect measure

In this Appendix, we discuss identification of average treatment effects under the weaker

condition of exchangeability in effect measure. Consider the following condition:

A4‡. Exchangeability in effect measure over S: for every pair of treatments a and a′, with

a ∈ A and a′ ∈ A, for every s ∈ S, and for every x such that f(x, S = s) > 0, we have

E[Y a − Y a′ |X = x, S = s] = E[Y a − Y a′ |X = x,R = 0].

Remark 2: Condition A4‡ is weaker than condition A4, in the sense that A4 =⇒ A4‡,

but A4‡ 6=⇒ A4.

We now use condition A4‡ to derive more general identification results for average treat-

ment effects. Note that, under this condition, the potential outcome means are no longer

identifiable.

Theorem 4 (Identification under exchangeability in effect measure): Under conditions

A1 through A3, A4‡, and A5, the average treatment effect in the target population comparing

treatments a ∈ A and a′ ∈ A, E[Y a − Y a′ |R = 0], is identifiable by the observed data

functional

ρ(a, a′) ≡ E
[
τ(a, a′;X)

∣∣R = 0
]

(S6)

where,

τ(a, a′;X) ≡ E[Y |X,S = s, A = a]− E[Y |X,S = s, A = a′],

does not vary over s ∈ S. Furthermore, ρ(a, a′) can be re-expressed as

ρ(a, a′) =
1

Pr[R = 0]
E [w(a, a′;R,X, S,A)Y ] , (S7)
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where

w(a, a′;R,X, S,A) ≡
(

I(R = 1, A = a)

Pr[A = a|X,S,R = 1]
− I(R = 1, A = a′)

Pr[A = a′|X,S,R = 1]

)
Pr[R = 0|X]

Pr[R = 1|X]
.

Proof. For each specific s∗ ∈ S and forX values in the the support of the target population,

we have

E[Y a − Y a′ |X,R = 0]

= E[Y a − Y a′ |X,S = s∗]

= E[Y a|X,S = s∗]− E[Y a′ |X,S = s∗]

= E[Y a|X,S = s∗, A = a]− E[Y a′ |X,S = s∗, A = a′]

= E[Y |X,S = s∗, A = a]− E[Y |X,S = s∗, A = a′].

(S8)

Because the above result, by assumption, holds for every trial s∗ ∈ S, we conclude that

E[Y a − Y a′ |X,R = 0] = E[Y |X,S = s, A = a]− E[Y |X,S = s, A = a′], for every s ∈ S.

Using τ(a, a′;X) to denote the common conditional mean difference function,

τ(a, a′;X) ≡ E[Y |X,S = s, A = a]− E[Y |X,S = s, A = a′], for every s ∈ S,

we have, by assumption A4 ‡,

τ(a, a′;X) = E[Y a − Y a′ |X,R = 0].

Taking expectations we obtain

E[Y a − Y a′ |R = 0] = E
[
E[Y a − Y a′ |X,R = 0]

∣∣R = 0
]

= E
[
τ(a, a′;X)

∣∣R = 0
]

≡ ρ(a, a′),

(S9)

which establishes that the average treatment effect in the target population is identified by

ρ(a, a′).
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Furthermore, for each specific s∗ ∈ S, using the result in (S8), we have

E[Y a − Y a′ |X,R = 0]

= E[Y |X,S = s∗, A = a]− E[Y |X,S = s∗, A = a′]

= E

[
I(A = a)Y

Pr[A = a|X,S = s∗, R = 1]

∣∣∣X,S = s∗
]
− E

[
I(A = a′)Y

Pr[A = a′|X,S = s∗, R = 1]
|X,S = s∗

]

= E

[(
I(A = a)

Pr[A = a|X,S = s∗, R = 1]
− I(A = a′)

Pr[A = a′|X,S = s∗, R = 1]

)
Y
∣∣∣X,S = s∗

]

= E

[(
I(A = a)

Pr[A = a|X,S,R = 1]
− I(A = a′)

Pr[A = a′|X,S,R = 1]

)
Y
∣∣∣X,S = s∗

]
.

Because the above result, by assumption, holds for every trial s∗ ∈ S, we conclude that

E[Y a − Y a′ |X,R = 0] =

E

[(
I(A = a)

Pr[A = a|X,S,R = 1]
− I(A = a′)

Pr[A = a′|X,S,R = 1]

)
Y
∣∣∣X,R = 1

]
.

(S10)

Taking expectations, then, we obtain

E[Y a − Y a′ |R = 0]

= E
[
E[Y a − Y a′ |X,R = 0]

∣∣R = 0
]

= E

[
E

[(
I(A = a)

Pr[A = a|X,S,R = 1]
− I(A = a′)

Pr[A = a′|X,S,R = 1]

)
Y
∣∣∣X,R = 1

] ∣∣∣∣∣R = 0

]
.

(S11)

Combining the above result with (S9) we obtain the expression for ρ(a, a′) in (S7):

ρ(a, a′)

= E

[

E

[(

I(A = a)

Pr[A = a|X,S,R = 1]
−

I(A = a′)

Pr[A = a′|X,S,R = 1]

)

Y
∣

∣

∣
X,R = 1

]

∣

∣

∣

∣

∣

R = 0

]

=
1

Pr[R = 0]
E

[

I(R = 0)E

[(

I(A = a)

Pr[A = a|X,S,R = 1]
−

I(A = a′)

Pr[A = a′|X,S,R = 1]

)

Y
∣

∣

∣
X,R = 1

]

]

=
1

Pr[R = 0]
E

[

Pr[R = 0|X] E

[(

I(A = a)

Pr[A = a|X,S,R = 1]
−

I(A = a′)

Pr[A = a′|X,S,R = 1]

)

Y
∣

∣

∣
X,R = 1

]

]

=
1

Pr[R = 0]
E

[

E

[(

I(A = a)

Pr[A = a|X,S,R = 1]
−

I(A = a′)

Pr[A = a′|X,S,R = 1]

)

I(R = 1)Y Pr[R = 0|X]

Pr[R = 1|X]

∣

∣

∣
X

]

]

=
1

Pr[R = 0]
E

[(

I(A = a)

Pr[A = a|X,S,R = 1]
−

I(A = a′)

Pr[A = a′|X,S,R = 1]

)

I(R = 1)Y Pr[R = 0|X]

Pr[R = 1|X]

]

.
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Remark 3: Yet another expression for ρ(a, a′) can be obtained,

ρ(a, a′)

= E

[
E

[(
I(A = a)

Pr[A = a|X,S,R = 1]
− I(A = a′)

Pr[A = a′|X,S,R = 1]

)
Y
∣∣∣X,R = 1

] ∣∣∣∣∣R = 0

]

= E

[
E

[
E

[(
I(A = a)

Pr[A = a|X,S,R = 1]
− I(A = a′)

Pr[A = a′|X,S,R = 1]

)
Y
∣∣∣X,R = 1, S

] ∣∣∣X,R = 1

] ∣∣∣∣∣R = 0

]

= E

[
E

[
E [I(A = a)Y |X,R = 1, S]

Pr[A = a|X,S,R = 1]

∣∣∣X,R = 1

] ∣∣∣∣∣R = 0

]

− E

[
E

[
E [I(A = a′)Y |X,R = 1, S]

Pr[A = a′|X,S,R = 1]

∣∣∣X,R = 1

] ∣∣∣∣∣R = 0

]

= E
[
E
[
E[Y |X,R = 1, S, A = a]− E[Y |X,R = 1, S, A = a′]

∣∣X,R = 1
]∣∣∣R = 0

]
,

where, it is worth noting that under the identifiability conditions the difference E[Y |X,R =

1, S, A = a] − E[Y |X,R = 1, S, A = a′] does not depend on S (even if each of its two

component conditional expectations does depend on S).
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Web Appendix D Influence function for ψ(a)

D.1 Influence function under the nonparametric model

Recall that under the nonparametric model,Mnp, for the observable data,O = (X,S,R,A, Y ),

the density of the law of the observable data can be written as

p(r, x, s, a, y) = p(r)p(x|r)p(s|x, r)p(a|r, x, s)p(y|r, x, s, a).

Under this model, the tangent space is the Hilbert space of mean zero random variables with

finite variance and can be decomposed as L0
2 = ΛR ⊕ ΛX|R ⊕ ΛS|R,X ⊕ ΛA|R,X,S ⊕ ΛY |R,X,S,A.

We now derive the influence function for ψ(a) under this nonparametric model.

Recall that

ψ(a) ≡ E
[
E[Y |X,R = 1, A = a]

∣∣R = 0
]
.

We will use the path differentiability of ψ(a) to obtain the efficient influence function under

the non-parametric model for the observed data (Bickel et al., 1993). To do so, we examine

the derivative of ψpt(a) with respect to t; where the subscript pt denotes the dependence

of ψ(a) on a one-dimensional parametric sub-model pt, indexed by t ∈ [0, 1), with t = 0

denoting the “true” data law.

∂ψpt(a)

∂t

∣∣∣∣∣
t=0

=
∂

∂t
Ept
[
Ept [Y |X,R = 1, A = a]

∣∣R = 0
]
∣∣∣∣∣
t=0

=
∂

∂t
Ept
[
Ep0 [Y |X,R = 1, A = a]

∣∣R = 0
]
∣∣∣∣∣
t=0

+ Ep0

[
∂

∂t
Ept [Y |X,R = 1, A = a]

∣∣∣
t=0

∣∣∣R = 0

]
.
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Working on each of the two terms in the last expression above,

∂

∂t
Ept
[
Ep0 [Y |X,R = 1, A = a]

∣∣R = 0
]
∣∣∣∣∣
t=0

=
1

Prp0 [R = 0]
Ep0

[
I(R = 0)

{
Ep0 [Y |X,R = 1, A = a]− ψp0(a)

}
u(O)

]
, and

Ep0

[
∂

∂t
Ept [Y |X,R = 1, A = a]

∣∣∣
t=0

∣∣∣R = 0

]

=
1

Prp0 [R = 0]
Ep0

[
I(R = 1, A = a) Prp0 [R = 0|X]

Prp0 [R = 1|X] Prp0 [A = a|X,R = 1]

{
Y − Ep0 [Y |X,R = 1, A = a]

}
u(O)

]
,

where u(O) denotes the score of the observable data, O = (R,X, S,A, Y ).

Combining these results,

∂ψpt(a)

∂t

∣∣∣∣∣
t=0

= Ep0

[
1

Prp0 [R = 0]

{
I(R = 0)

{
Ep0 [Y |X,R = 1, A = a]− ψp0(a)

}

+
I(R = 1, A = a) Prp0 [R = 0|X]

Prp0 [R = 1|X] Prp0 [A = a|X,R = 1]

{
Y − Ep0 [Y |X,R = 1, A = a]

}}
u(O)

]
.

It follows that the influence function of ψ(a), under the nonparametric model is

Ψ 1
p0
(a) =

1

Prp0 [R = 0]

{
I(R = 0)

{
Ep0 [Y |X,R = 1, A = a]− ψp0(a)

}

+
I(R = 1, A = a) Prp0 [R = 0|X]

Prp0 [R = 1|X] Prp0 [A = a|X,R = 1]

{
Y − Ep0 [Y |X,R = 1, A = a]

}}
.

D.2 Influence function under semiparametric models

We need to examine the implications for the influence function of ψ(a) of two kinds of

restrictions on the law of the observed data. First, we need to examine the impact of the

independence condition Y ⊥⊥ S|(X,R,A = a), derived in Section 3 of the main text. Second,

we need to examine the impact of knowing the probability of treatment, that is, of knowing

the conditional density p(a|x, s); this might be the case, for example, because treatment

assignment in the collection of trial S is under the control of the investigators and only a

single (non-experimental) treatment is available in the target population.
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D.2.1 Incorporating the restriction Y ⊥⊥ S|(X,R,A = a)

Consider the semiparamatric model Msemi that incorporates the restriction Y ⊥⊥S|(X,R,A =

a). Under this model, the density of the law of the observable data is

p(r, x, s, a, y) = p(r)p(x|r)p(s|x, r)p(a|r, x, s)p(y|r, x, a),

and we obtain the decomposition Λsemi = ΛR⊕ΛX|R⊕ΛS|R,X⊕ΛA|R,X,S⊕ΛY |R,X,A. Rewriting

the influence function under the nonparametric model as the sum of two terms, we obtain

Ψ 1
p0
(a) =

I(R = 1, A = a) Prp0 [R = 0|X]

Prp0 [R = 0] Prp0 [R = 1|X] Prp0 [A = a|X,R = 1]

{
Y − Ep0 [Y |X,R = 1, A = a]

}

+
I(R = 0)

Prp0 [R = 0]

{
Ep0 [Y |X,R = 1, A = a]− ψp0(a)

}
.

(S12)

It is easy to see that the first term is a function of (R,X,A, Y ) that has mean zero con-

ditional on (R,X,A), and thus belongs to ΛY |R,X,A. Furthermore, the second term in the

above expression is a function of (R,X) that has mean zero conditional on R, and thus

belongs to ΛX|R. From these observations we conclude that he influence function under the

semiparametric model, Ψ 1
p0
(a), belongs to Λsemi and its projection onto that space is equal to

itself. We can conclude that the unique influence function under the nonparametric model,

Ψ 1
p0
(a), is also the efficient influence function under the semiparametric model Msemi.

D.2.2 Knowing the probability of treatment

Consider now the semiparametric model M∗
semi

for the law of the observed data where the

restriction Y ⊥⊥ S|(X,R,A = a) holds and p(a|x, s) is known. Then, we obtain the decom-

position Λ∗
semi

= ΛR⊕ΛX|R⊕ΛS|R,X ⊕ΛY |R,X,A. Considering the expression for the influence

function in (S12), it is again easy to see that the first term is a function of (R,X,A, Y ) that

has mean zero conditional on (R,X,A) thus it belongs to ΛY |R,X,A. Furthermore, the second

term in the above expression is a function of (R,X) that has mean zero conditional on R

thus it belongs to ΛX|R. Thus, the influence function under the nonparametric model, Ψ 1
p0
(a),
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belongs to Λ∗
semi

and its projection onto that space is equal to itself. We can conclude that

the unique influence function under the nonparametric model, Ψ 1
p0
(a), is also the efficient

influence function under the semiparametric model M∗
semi

.

D.3 Influence function under the biased sampling model

Following the arguments in Breslow et al. (2000), the identifiability of ψ(a) under the biased

sampling model implies that influence functions for ψ(a) under sampling from q(x, s, a, y) are

equivalent to those under sampling from p(x, s, a, y), with densities from q(x, s, a, y) replacing

those under p(x, s, a, y) (see Kennedy et al. (2015) for a similar argument in the context of

matched cohort studies and Dahabreh et al. (2020) in the context of transporting inferences

from a single randomized trial). Specifically, under the biased sampling model, the influence

function of ψ(a) is

Ψ 1
q0
(a) =

1

Prq0 [R = 0]

{
I(R = 0)

{
Eq0 [Y |X,R = 1, A = a]− ψq0(a)

}

+
I(R = 1, A = a) Prq0 [R = 0|X]

Prq0 [R = 1|X] Prq0 [A = a|X,R = 1]

{
Y − Eq0 [Y |X,R = 1, A = a]

}}
,

which we have used to obtain the estimator ψ̂(a), given in the main text.
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Web Appendix E Asymptotic properties of the estimator

Theorem 5: If assumptions (i) through (iv) hold, then

(1) ψ̂
aug
(a)

a.s.−→ ψ(a); and

(2) ψ̂
aug
(a) has the asymptotic representation

√
n
(
ψ̂

aug
(a)− ψ(a)

)
= Gn

(
H(γ∗, g∗a(X), e∗a(X), p∗(X))

)
+Rem+ oP (1), (S13)

where Gn

(
H(γ∗, g∗a(X), e∗a(X), p∗(X))

)
is asymptotically normal and

Rem 6
√
nOP

((∣∣∣∣Pr[R = 1|X]− p̂(X)
∣∣∣∣

2
+
∣∣∣∣Pr[A = a|X,R = 1]− êa(X)

∣∣∣∣
2

)

×
∣∣∣∣ĝa(X)− E[Y |X,R = 1, A = a]

∣∣∣∣
2

)
. (S14)

Proof. Unless otherwise stated, in this proof, all convergence results refer to convergence

almost surely.

As n −→ ∞,

ψ̂aug(a) −→
1

Pr[R = 0]

{
E

[
I(R = 1, A = a)

1− p∗(X)

p∗(X)e∗a(X)

{
Y − g∗a(X)

}]

+ E [I(R = 0)g∗a(X)]

}
.

(S15)

We now study the asymptotic limit of the right-hand-side of (S15) by considering the two

different cases presented in Assumption (iv).

Case 1: correct specification of the model for the probability of participation in any trial and

the treatment assignment model. Assume that the models for Pr[R = 1|X] and Pr[A =

a|X,R = 1] are correctly specified, such that

p̂(X) −→ p∗(X) = Pr[R = 1|X]

êa(X) −→ e∗a(X) = Pr[A = a|X,R = 1].

We do not, however, assume that the asymptotic limit g∗a(X) is equal the corresponding

target parameter. Using iterated expectation arguments for the right-hand-side of (S15) we
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obtain

1

Pr[R = 0]
E

[
I(R = 1, A = a)

Pr[R = 0|X]

Pr[R = 1|X]Pr[A = a|X,R = 1]
g∗a(X)

]

=
1

Pr[R = 0]
E [Pr[R = 0|X]g∗a(X)]

and

1

Pr[R = 0]
E [I(R = 0)g∗a(X)] =

1

Pr[R = 0]
E [Pr[R = 0|X]g∗a(X)] .

Hence,

ψ̂aug(a) −→
1

Pr[R = 0]
E

[
I(R = 1, A = a)

1− p∗(X)

p∗(X)e∗a(X)
Y

]

=
1

Pr[R = 0]
E

[
I(R = 1, A = a)

1− Pr[R = 1|X]

Pr[R = 1|X] Pr[A = a|X,R = 1]
Y

]

=
1

Pr[R = 0]
E


Pr[R = 0|X] E

[
I(A = a)

Pr[A = a|X,R = 1]
Y

∣∣∣∣∣X,R = 1

]


=
1

Pr[R = 0]
E


I(R = 0)E

[
I(A = a)

Pr[A = a|X,R = 1]
Y

∣∣∣∣∣X,R = 1

]


= E


E

[
I(A = a)

Pr[A = a|X,R = 1]
Y

∣∣∣∣∣X,R = 1

]∣∣∣∣∣R = 0




= E
[
E[Y |X,R = 1, A = a]

∣∣R = 0
]

≡ ψ(a).

Thus, if the models for Pr[R = 1|X] and Pr[A = a|X,R = 1] are correctly specified, then

ψ̂aug(a) −→ ψ(a).

Case 2: correct specification of the model for the outcome mean. Assume that the model for

E[Y |X,R = 1, A = a] is correctly specified, such that

ĝa(X) −→ g∗a(X) = E[Y |X,R = 1, A = a].

We do not, however, assume that the asymptotic limit p∗(X) equals Pr[R = 1|X] or that the

asymptotic limit e∗a(X) equals Pr[A = a|X,R = 1]. Using iterated expectation arguments
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for the right-hand-side of (S15) we obtain

1

Pr[R = 0]
E

[
I(R = 1, A = a)

1− p∗(X)

p∗(X)e∗a(X)

{
Y − g∗a(X)

}]

=
1

Pr[R = 0]
E

[
E

[
I(R = 1, A = a)

1− p∗(X)

p∗(X)e∗a(X)

{
Y − E[Y |X,A = a,R = 1]

}] ∣∣∣∣∣X
]

=
1

Pr[R = 0]
E

[
Pr[R = 1, A = a|X]

1− p∗(X)

p∗(X)e∗a(X)

{
E[Y |X,A = a,R = 1]− E[Y |X,A = a,R = 1]

}]

= 0.

Hence,

ψ̂aug(a) −→
1

Pr[R = 0]
E [I(R = 0)g∗a(X)]

= E
[
E[Y |X,R = 1, A = a]

∣∣R = 0
]

≡ ψ(a).

Thus, if the model for E[Y |X,R = 1, A = a] is correctly specified, then ψ̂aug(a) −→ ψ(a).

This completes the proof of part (a) of Theorem 5.

Part (b): Decompose

√
n
(
ψ̂aug(a)− ψ(a)

)
=

{
Gn

(
H(γ̂, ĝa(X), êa(X), p̂(X))

)

−Gn

(
H(γ∗, g∗a(X), e∗a(X), p∗(X))

)}

+Gn

(
H(γ∗, g∗a(X), e∗a(X), p∗(X))

)

+
√
n

{
E
[
H(γ̂, ĝa(X), êa(X), p̂(X))

]
− ψ(a)

}

︸ ︷︷ ︸
T

.

By assumption (i),

Gn

(
H(γ̂, ĝa(X), êa(X), p̂(X))

)
−Gn

(
H(γ∗, g∗a(X), e∗a(X), p∗(X))

)
= oP (1).

By the central limit theorem, Gn

(
H(γ∗, g∗a(X), e∗a(X), p∗(X))

)
is asymptotically normal.

Hence, the asymptotic distribution of ψ̂aug(a) depends on the behavior of the term T .

Using assumption (iv), the double robustness of ψ̂aug(a), and that
√
n
(
γ̂ −Pr[R = 0]−1

)
=
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OP (1), we have

T =
√
n

{
1

Pr[R = 0]

{
E [I(R = 0)ĝa(X)]︸ ︷︷ ︸

T1

+ E

[
I(R = 1, A = a)

1− p̂(X)

êa(X)p̂(X)

{
Y − ĝa(X)

}]

︸ ︷︷ ︸
T2

}
− ψ(a)

}
+ oP (1).

By iterated expectation,

T1 = E
[
E
[
I(R = 0)ĝa(X)

∣∣∣X
]]

= E [Pr[R = 0|X]ĝa(X)] .

By iterated expectation,

√
nT2 =

√
nE

[
I(R = 1, A = a)

1− p̂(X)

êa(X)p̂(X)

{
Y − ĝa(X)

}
]

=
√
nE

[
E

[
I(R = 1, A = a)

1− p̂(X)

êa(X)p̂(X)

{
Y − ĝa(X)

}
∣∣∣∣∣X
]]

=
√
nE

[
E

[
1− p̂(X)

p̂(X)

I(A = a)

êa(X)
Pr[R = 1|X]

{
Y − ĝa(X)

}
∣∣∣∣∣X,R = 1

]]

=
√
nE

[
E

[
1− p̂(X)

p̂(X)êa(X)
Pr[R = 1, A = a|X]

{
Y − ĝa(X)

}
∣∣∣∣∣X,R = 1, A = a

]]

=
√
nE

[
E

[
1− p̂(X)

p̂(X)êa(X)
Pr[R = 1, A = a|X]

{
E
[
Y |X,R = 1, A = a]− ĝa(X)

}]]

=
√
nE

[
1− p̂(X)

p̂(X)êa(X)
Pr[R = 1, A = a|X]

{
E
[
Y |X,R = 1, A = a]− ĝa(X)

}]

Rewriting ψ(a) gives

ψ(a) =
1

Pr[R = 0]
E
[
I(R = 0)E

[
Y |X,R = 1, A = a]

]

=
1

Pr[R = 0]
E
[
Pr[R = 0|X] E

[
Y |X,R = 1, A = a]

]
.
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Combining the above results,

T =
√
n

1

Pr[R = 0]

{
E

[(
Pr[R = 0|X]− Pr[R = 1|X]

1− p̂(X)

p̂(X)

Pr[A = a|X,R = 1]

êa(X)

)

×
(
ĝa(X)− E

[
Y |X,R = 1, A = a]

)
]}

+ oP (1)

=
√
n

1

Pr[R = 0]

{
E

[(
Pr[R = 0|X]p̂(X)− Pr[R = 1|X](1− p̂(X))

p̂(X)

− Pr[R = 1|X](1− p̂(X))

p̂(X)êa(X)

(
Pr[A = a|X,R = 1]− êa(X)

)
)

×
(
ĝa(X)− E

[
Y |X,R = 1, A = a]

)
]}

+ oP (1)

6
√
nOP

((∣∣∣∣Pr[R = 1|X]− p̂(X)
∣∣∣∣

2
+
∣∣∣∣Pr[A = a|X,R = 1]− êa(X)

∣∣∣∣
2

)

×
∣∣∣∣ĝa(X)− E

[
Y |X,R = 1, A = a]

∣∣∣∣
2

)
+ oP (1),

where the last step follows from the Cauchy-Schwartz inequality.
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Web Appendix F Complete simulation results

Table S1: Bias estimates based on 10,000 simulation runs; all sample size scenarios; the
probability of treatment in the collection of trials was estimated by averaging the trial-
specific treatment probabilities.

a n
∑

3

s=1
ns Balanced TxAM varies ψ̂aug(a) ψ̂g(a) ψ̂w(a)

1 10000 1000 Yes No -0.0006 0.0002 -0.0106
1 10000 1000 Yes Yes -0.0029 -0.0013 0.0107
1 10000 1000 No No -0.0011 -0.0000 -0.0174
1 10000 1000 No Yes 0.0015 -0.0002 0.0129
1 10000 2000 Yes No 0.0022 0.0003 -0.0011
1 10000 2000 Yes Yes 0.0004 -0.0003 -0.0026
1 10000 2000 No No -0.0006 -0.0001 -0.0082
1 10000 2000 No Yes 0.0011 0.0002 -0.0067
1 10000 5000 Yes No -0.0003 0.0002 -0.0030
1 10000 5000 Yes Yes -0.0002 -0.0001 0.0035
1 10000 5000 No No -0.0003 0.0004 -0.0013
1 10000 5000 No Yes -0.0004 0.0002 -0.0012
1 100000 1000 Yes No -0.0032 -0.0005 0.0046
1 100000 1000 Yes Yes 0.0028 0.0007 -0.0074
1 100000 1000 No No -0.0020 -0.0010 -0.0272
1 100000 1000 No Yes -0.0006 -0.0022 -0.0064
1 100000 2000 Yes No -0.0003 0.0002 -0.0104
1 100000 2000 Yes Yes -0.0002 0.0008 0.0102
1 100000 2000 No No -0.0012 -0.0002 -0.0074
1 100000 2000 No Yes 0.0009 0.0013 0.0039
1 100000 5000 Yes No 0.0013 0.0000 0.0041
1 100000 5000 Yes Yes -0.0001 -0.0001 -0.0020
1 100000 5000 No No 0.0002 0.0001 0.0035
1 100000 5000 No Yes 0.0007 0.0003 0.0026

0 10000 1000 Yes No -0.0003 -0.0003 0.0008
0 10000 1000 Yes Yes -0.0003 0.0016 0.0075
0 10000 1000 No No 0.0006 0.0005 0.0183
0 10000 1000 No Yes -0.0016 -0.0006 0.0087
0 10000 2000 Yes No 0.0001 0.0008 0.0083
0 10000 2000 Yes Yes 0.0006 0.0004 0.0060
0 10000 2000 No No 0.0010 -0.0003 0.0002
0 10000 2000 No Yes 0.0002 0.0005 0.0106
0 10000 5000 Yes No -0.0000 0.0003 -0.0001
0 10000 5000 Yes Yes -0.0000 0.0004 0.0050
0 10000 5000 No No 0.0001 0.0005 0.0011
0 10000 5000 No Yes -0.0007 -0.0005 0.0059
0 100000 1000 Yes No -0.0048 -0.0017 -0.0048
0 100000 1000 Yes Yes 0.0019 -0.0005 -0.0001
0 100000 1000 No No -0.0027 -0.0014 -0.0114
0 100000 1000 No Yes -0.0014 -0.0019 0.0093
0 100000 2000 Yes No 0.0013 0.0005 0.0016
0 100000 2000 Yes Yes -0.0009 -0.0000 0.0034
0 100000 2000 No No -0.0009 -0.0003 0.0064
0 100000 2000 No Yes 0.0012 0.0006 0.0109
0 100000 5000 Yes No 0.0005 0.0004 -0.0027
0 100000 5000 Yes Yes -0.0001 0.0005 -0.0016
0 100000 5000 No No 0.0021 0.0004 0.0031
0 100000 5000 No Yes -0.0012 -0.0002 -0.0029

In the column titled Balanced, Yes denotes scenarios in which the trials had on average
equal sample sizes; No denotes scenarios with unequal trial sample sizes. In the column
titled TxAM varies, Yes denotes scenarios in which the treatment assignment mechanism
varied across trials; No denotes scenarios in which the mechanism did not vary.
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Table S2: Variance estimates based on 10,000 simulation runs; all sample size scenarios; the
probability of treatment in the collection of trials was estimated by averaging the trial-specific
treatment probabilities.

a n
∑

3

s=1
ns Balanced TxAM varies ψ̂aug(a) ψ̂g(a) ψ̂w(a)

1 10000 1000 Yes No 0.0245 0.0075 0.6253
1 10000 1000 Yes Yes 0.0213 0.0068 0.7541
1 10000 1000 No No 0.0238 0.0076 0.6189
1 10000 1000 No Yes 0.0222 0.0075 0.5392
1 10000 2000 Yes No 0.0105 0.0038 0.2893
1 10000 2000 Yes Yes 0.0084 0.0035 0.1945
1 10000 2000 No No 0.0101 0.0038 0.2167
1 10000 2000 No Yes 0.0088 0.0038 0.1925
1 10000 5000 Yes No 0.0038 0.0019 0.0727
1 10000 5000 Yes Yes 0.0033 0.0019 0.0616
1 10000 5000 No No 0.0038 0.0020 0.0742
1 10000 5000 No Yes 0.0035 0.0019 0.0613
1 100000 1000 Yes No 0.0308 0.0080 0.8841
1 100000 1000 Yes Yes 0.0258 0.0072 0.5534
1 100000 1000 No No 0.0299 0.0080 0.6868
1 100000 1000 No Yes 0.0276 0.0077 0.7559
1 100000 2000 Yes No 0.0144 0.0039 0.3316
1 100000 2000 Yes Yes 0.0120 0.0035 0.3610
1 100000 2000 No No 0.0143 0.0039 0.4028
1 100000 2000 No Yes 0.0128 0.0037 0.2925
1 100000 5000 Yes No 0.0052 0.0015 0.1469
1 100000 5000 Yes Yes 0.0043 0.0014 0.1042
1 100000 5000 No No 0.0057 0.0015 0.1449
1 100000 5000 No Yes 0.0048 0.0015 0.1203

0 10000 1000 Yes No 0.0274 0.0073 0.2967
0 10000 1000 Yes Yes 0.0336 0.0083 0.6326
0 10000 1000 No No 0.0214 0.0074 0.2273
0 10000 1000 No Yes 0.0259 0.0077 0.3620
0 10000 2000 Yes No 0.0103 0.0039 0.1165
0 10000 2000 Yes Yes 0.0131 0.0042 0.1509
0 10000 2000 No No 0.0101 0.0039 0.1136
0 10000 2000 No Yes 0.0118 0.0040 0.1551
0 10000 5000 Yes No 0.0039 0.0019 0.0433
0 10000 5000 Yes Yes 0.0048 0.0021 0.0540
0 10000 5000 No No 0.0038 0.0020 0.0400
0 10000 5000 No Yes 0.0044 0.0020 0.0480
0 100000 1000 Yes No 0.0306 0.0080 0.4502
0 100000 1000 Yes Yes 0.0493 0.0091 1.2177
0 100000 1000 No No 0.0346 0.0078 0.5608
0 100000 1000 No Yes 0.0389 0.0082 0.5444
0 100000 2000 Yes No 0.0151 0.0039 0.1873
0 100000 2000 Yes Yes 0.0198 0.0043 0.2699
0 100000 2000 No No 0.0146 0.0038 0.1663
0 100000 2000 No Yes 0.0218 0.0040 0.3243
0 100000 5000 Yes No 0.0055 0.0015 0.0703
0 100000 5000 Yes Yes 0.0080 0.0018 0.1796
0 100000 5000 No No 0.0052 0.0016 0.0643
0 100000 5000 No Yes 0.0072 0.0016 0.1091

In the column titled Balanced, Yes denotes scenarios in which the trials had on average
equal sample sizes; No denotes scenarios with unequal trial sample sizes. In the column
titled TxAM varies, Yes denotes scenarios in which the treatment assignment mechanism
varied across trials; No denotes scenarios in which the mechanism did not vary.
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Table S3: Bias estimates based on 10,000 simulation runs; all sample size scenarios; the
probability of treatment in the collection of trials was estimated by (misspecified) logistic
regression with main covariate effects, fit over all trials.

a n
∑

3

s=1
ns Balanced TxAM varies ψ̂aug(a) ψ̂g(a) ψ̂w(a)

1 10000 1000 Yes No -0.0006 0.0002 -0.0105
1 10000 1000 Yes Yes -0.0027 -0.0013 -0.0746
1 10000 1000 No No -0.0011 -0.0000 -0.0212
1 10000 1000 No Yes 0.0013 -0.0002 -0.0219
1 10000 2000 Yes No 0.0021 0.0003 -0.0002
1 10000 2000 Yes Yes 0.0003 -0.0003 -0.0761
1 10000 2000 No No -0.0006 -0.0001 -0.0082
1 10000 2000 No Yes 0.0010 0.0002 -0.0378
1 10000 5000 Yes No -0.0003 0.0002 -0.0032
1 10000 5000 Yes Yes -0.0002 -0.0001 -0.0622
1 10000 5000 No No -0.0002 0.0004 -0.0001
1 10000 5000 No Yes -0.0003 0.0002 -0.0305
1 100000 1000 Yes No -0.0031 -0.0005 0.0044
1 100000 1000 Yes Yes 0.0023 0.0007 -0.1003
1 100000 1000 No No -0.0019 -0.0010 -0.0287
1 100000 1000 No Yes -0.0007 -0.0022 -0.0475
1 100000 2000 Yes No -0.0002 0.0002 -0.0105
1 100000 2000 Yes Yes -0.0001 0.0008 -0.0820
1 100000 2000 No No -0.0011 -0.0002 -0.0075
1 100000 2000 No Yes 0.0011 0.0013 -0.0355
1 100000 5000 Yes No 0.0013 0.0000 0.0035
1 100000 5000 Yes Yes -0.0001 -0.0001 -0.0866
1 100000 5000 No No 0.0001 0.0001 0.0036
1 100000 5000 No Yes 0.0007 0.0003 -0.0337

0 10000 1000 Yes No -0.0005 -0.0003 0.0014
0 10000 1000 Yes Yes -0.0004 0.0016 -0.0989
0 10000 1000 No No 0.0007 0.0005 0.0169
0 10000 1000 No Yes -0.0015 -0.0006 -0.0198
0 10000 2000 Yes No 0.0000 0.0008 0.0084
0 10000 2000 Yes Yes 0.0003 0.0004 -0.0893
0 10000 2000 No No 0.0009 -0.0003 -0.0000
0 10000 2000 No Yes 0.0002 0.0005 -0.0171
0 10000 5000 Yes No -0.0001 0.0003 -0.0005
0 10000 5000 Yes Yes -0.0002 0.0004 -0.0847
0 10000 5000 No No 0.0001 0.0005 0.0017
0 10000 5000 No Yes -0.0006 -0.0005 -0.0207
0 100000 1000 Yes No -0.0045 -0.0017 -0.0052
0 100000 1000 Yes Yes 0.0020 -0.0005 -0.1137
0 100000 1000 No No -0.0025 -0.0014 -0.0109
0 100000 1000 No Yes -0.0016 -0.0019 -0.0262
0 100000 2000 Yes No 0.0015 0.0005 0.0010
0 100000 2000 Yes Yes -0.0010 -0.0000 -0.1093
0 100000 2000 No No -0.0010 -0.0003 0.0055
0 100000 2000 No Yes 0.0011 0.0006 -0.0205
0 100000 5000 Yes No 0.0004 0.0004 -0.0032
0 100000 5000 Yes Yes -0.0003 0.0005 -0.1133
0 100000 5000 No No 0.0022 0.0004 0.0028
0 100000 5000 No Yes -0.0014 -0.0002 -0.0335

In the column titled Balanced, Yes denotes scenarios in which the trials had on average
equal sample sizes; No denotes scenarios with unequal trial sample sizes. In the column
titled TxAM varies, Yes denotes scenarios in which the treatment assignment mechanism
varied across trials; No denotes scenarios in which the mechanism did not vary.
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Table S4: Variance estimates based on 10,000 simulation runs; all sample size scenarios; the
probability of treatment in the collection of trials was estimated by (misspecified) logistic
regression with main covariate effects, fit over all trials.

a n
∑

3

s=1
ns Balanced TxAM varies ψ̂aug(a) ψ̂g(a) ψ̂w(a)

1 10000 1000 Yes No 0.0242 0.0075 0.6533
1 10000 1000 Yes Yes 0.0169 0.0068 0.4393
1 10000 1000 No No 0.0236 0.0076 0.5509
1 10000 1000 No Yes 0.0207 0.0075 0.4837
1 10000 2000 Yes No 0.0105 0.0038 0.3004
1 10000 2000 Yes Yes 0.0074 0.0035 0.1517
1 10000 2000 No No 0.0099 0.0038 0.2179
1 10000 2000 No Yes 0.0084 0.0038 0.1759
1 10000 5000 Yes No 0.0038 0.0019 0.0747
1 10000 5000 Yes Yes 0.0031 0.0019 0.0502
1 10000 5000 No No 0.0038 0.0020 0.0775
1 10000 5000 No Yes 0.0033 0.0019 0.0570
1 100000 1000 Yes No 0.0304 0.0080 0.8595
1 100000 1000 Yes Yes 0.0219 0.0072 0.4252
1 100000 1000 No No 0.0289 0.0080 0.6763
1 100000 1000 No Yes 0.0246 0.0077 0.6526
1 100000 2000 Yes No 0.0144 0.0039 0.3403
1 100000 2000 Yes Yes 0.0101 0.0035 0.2738
1 100000 2000 No No 0.0140 0.0039 0.4126
1 100000 2000 No Yes 0.0118 0.0037 0.2674
1 100000 5000 Yes No 0.0052 0.0015 0.1492
1 100000 5000 Yes Yes 0.0037 0.0014 0.0800
1 100000 5000 No No 0.0057 0.0015 0.1481
1 100000 5000 No Yes 0.0045 0.0015 0.1092

0 10000 1000 Yes No 0.0257 0.0073 0.2766
0 10000 1000 Yes Yes 0.0559 0.0083 1.8462
0 10000 1000 No No 0.0213 0.0074 0.2304
0 10000 1000 No Yes 0.0280 0.0077 0.4209
0 10000 2000 Yes No 0.0103 0.0039 0.1136
0 10000 2000 Yes Yes 0.0179 0.0042 0.2624
0 10000 2000 No No 0.0100 0.0039 0.1151
0 10000 2000 No Yes 0.0129 0.0040 0.1892
0 10000 5000 Yes No 0.0039 0.0019 0.0449
0 10000 5000 Yes Yes 0.0061 0.0021 0.0921
0 10000 5000 No No 0.0038 0.0020 0.0407
0 10000 5000 No Yes 0.0047 0.0020 0.0570
0 100000 1000 Yes No 0.0308 0.0080 0.4596
0 100000 1000 Yes Yes 0.0808 0.0091 1.5679
0 100000 1000 No No 0.0336 0.0078 0.5078
0 100000 1000 No Yes 0.0442 0.0082 0.7170
0 100000 2000 Yes No 0.0152 0.0039 0.1992
0 100000 2000 Yes Yes 0.0308 0.0043 0.5804
0 100000 2000 No No 0.0143 0.0038 0.1700
0 100000 2000 No Yes 0.0258 0.0040 0.4181
0 100000 5000 Yes No 0.0055 0.0015 0.0732
0 100000 5000 Yes Yes 0.0144 0.0018 0.5480
0 100000 5000 No No 0.0052 0.0016 0.0640
0 100000 5000 No Yes 0.0084 0.0016 0.1516

In the column titled Balanced, Yes denotes scenarios in which the trials had on average
equal sample sizes; No denotes scenarios with unequal trial sample sizes. In the column
titled TxAM varies, Yes denotes scenarios in which the treatment assignment mechanism
varied across trials; No denotes scenarios in which the mechanism did not vary.
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Web Appendix G Additional HALT-C results

Table S5: Baseline characteristics in the HALT-C trial, stratified by R.

R = 0 R = 1

Number of individuals 199 749
Baseline platelets 171.30 (66.10) 163.44 (65.09)
Age in years 50.06 (7.53) 50.77 (7.20)
Female 60 (30.2) 211 (28.2)
Received pegylated interferon 66 (33.2) 206 (27.5)
White 115 (57.8) 560 (74.8)
Baseline white blood cell count 5.81 (1.92) 5.72 (1.84)
Used recreational drugs 91 (45.7) 338 (45.1)
Received a transfusion 77 (38.7) 298 (39.8)
Body mass index, weight (kg)/height(m)2 29.93 (5.34) 29.92 (5.54)
Creatinine, mg/dl 0.84 (0.17) 0.85 (0.17)
Ever smoked 155 (77.9) 558 (74.5)
Received interferon and ribavirin 151 (75.9) 627 (83.7)
Reported diabetes 50 (25.1) 116 (15.5)
Serum ferritin, ng/ml 360.18 (378.14) 379.43 (442.94)
Ultrasound evidence of splenomegaly (%) 77 (38.7) 242 (32.3)
Ever drank alcohol 173 (86.9) 611 (81.6)
Hemoglobin, g/dl 14.97 (1.42) 14.98 (1.43)
Aspartate aminotransferase, U/L 92.72 (48.81) 86.88 (61.67)

Results reported as mean (standard deviation) for continuous variables and count (percent-
age) for binary variables.
kg, kilogram; m, meter; mg, milligram; dl, deciliter; ml, milliliter; g, gram; U/L, units per
liter.
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6Table S6: Baseline characteristics in the HALT-C trial, stratified by S.

Source of data, S 1 2 3 4 5

Number of individuals 48 97 130 66 76
Baseline platelets, × 1000/mm3 175.17 (77.85) 162.65 (67.50) 168.19 (68.58) 167.64 (58.12) 178.58 (64.82)
Age in years 51.33 (7.04) 50.23 (6.56) 51.34 (6.40) 50.83 (8.35) 49.86 (6.57)
Female 11 (22.9) 29 (29.9) 32 (24.6) 21 (31.8) 23 (30.3)
Received pegylated interferon 5 (10.4) 25 (25.8) 33 (25.4) 15 (22.7) 19 (25.0)
White 28 (58.3) 75 (77.3) 97 (74.6) 47 (71.2) 67 (88.2)
Baseline white blood cell count, × 1000/mm3 5.47 (1.78) 5.80 (1.92) 5.61 (1.81) 5.98 (2.08) 6.02 (1.57)
Used recreational drugs 25 (52.1) 46 (47.4) 66 (50.8) 31 (47.0) 33 (43.4)
Received a transfusion 16 (33.3) 41 (42.3) 52 (40.0) 24 (36.4) 22 (28.9)
Body mass index, weight (kg)/height(m)2 30.13 (6.20) 29.89 (6.19) 29.25 (4.66) 29.98 (6.09) 30.18 (5.38)
Creatinine, mg/dl 0.80 (0.19) 0.81 (0.13) 0.81 (0.15) 0.81 (0.16) 0.84 (0.17)
Ever smoked 37 (77.1) 73 (75.3) 100 (76.9) 48 (72.7) 60 (78.9)
Received interferon and ribavirin 44 (91.7) 81 (83.5) 111 (85.4) 45 (68.2) 64 (84.2)
Reported diabetes 10 (20.8) 25 (25.8) 13 (10.0) 8 (12.1) 11 (14.5)
Serum ferritin, ng/ml 429.42 (432.51) 303.35 (317.08) 436.21 (518.96) 294.06 (307.87) 289.01 (251.52)
Ultrasound evidence of splenomegaly 12 (25.0) 30 (30.9) 42 (32.3) 27 (40.9) 28 (36.8)
Ever drank alcohol 32 (66.7) 85 (87.6) 121 (93.1) 51 (77.3) 66 (86.8)
Hemoglobin, g/dl 14.91 (1.31) 14.80 (1.18) 15.64 (1.46) 14.93 (1.43) 14.88 (1.38)
Aspartate aminotransferase, U/L 92.94 (58.34) 96.32 (74.43) 85.11 (70.92) 97.33 (66.24) 81.11 (72.95)

Results reported as mean (standard deviation) for continuous variables and count (percentage) for binary variables.
A, indicates randomization to treatment with peginterferon alfa-2a (A = 1) versus no treatment (A = 0); kg, kilogram; m, meter;
mg, milligram; dl, deciliter; ml, milliliter; g, gram; U/L, units per liter.
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Table S7: Baseline characteristics in the HALT-C trial, stratified by S.

Source of data, S 6 7 8 9 0

Number of individuals 101 89 100 42 199
Baseline platelets, × 1000/mm3 154.53 (60.46) 160.08 (68.25) 152.68 (52.83) 157.31 (70.46) 171.30 (66.10)
Age in years 52.42 (8.35) 49.54 (6.73) 50.44 (7.38) 50.64 (7.54) 50.06 (7.53)
Female 30 (29.7) 24 (27.0) 32 (32.0) 9 (21.4) 60 (30.2)
Received pegylated interferon 35 (34.7) 19 (21.3) 40 (40.0) 15 (35.7) 66 (33.2)
White 64 (63.4) 75 (84.3) 72 (72.0) 35 (83.3) 115 (57.8)
Baseline white blood cell count, × 1000/mm3 5.61 (1.79) 5.79 (1.98) 5.63 (1.81) 5.58 (1.77) 5.81 (1.92)
Used recreational drugs 41 (40.6) 38 (42.7) 41 (41.0) 17 (40.5) 91 (45.7)
Received a transfusion 41 (40.6) 42 (47.2) 44 (44.0) 16 (38.1) 77 (38.7)
Body mass index, weight (kg)/height(m)2 29.65 (5.85) 30.67 (5.12) 29.88 (5.55) 30.44 (5.29) 29.93 (5.34)
Creatinine, mg/dl 0.91 (0.18) 0.92 (0.16) 0.83 (0.15) 0.90 (0.17) 0.84 (0.17)
Ever smoked 74 (73.3) 68 (76.4) 69 (69.0) 29 (69.0) 155 (77.9)
Received interferon and ribavirin 83 (82.2) 80 (89.9) 85 (85.0) 34 (81.0) 151 (75.9)
Reported diabetes 15 (14.9) 13 (14.6) 16 (16.0) 5 (11.9) 50 (25.1)
Serum ferritin, ng/ml 440.21 (671.90) 352.33 (307.69) 398.18 (399.88) 486.74 (498.72) 360.18 (378.14)
Ultrasound evidence of splenomegaly 31 (30.7) 26 (29.2) 33 (33.0) 13 (31.0) 77 (38.7)
Ever drank alcohol 80 (79.2) 62 (69.7) 78 (78.0) 36 (85.7) 173 (86.9)
Hemoglobin, g/dl 14.63 (1.54) 14.97 (1.51) 14.85 (1.28) 14.93 (1.44) 14.97 (1.42)
Aspartate aminotransferase, U/L 85.70 (46.81) 80.64 (51.68) 76.92 (44.07) 97.38 (57.20) 92.72 (48.81)

Results reported as mean (standard deviation) for continuous variables and count (percentage) for binary variables.
A, indicates randomization to treatment with peginterferon alfa-2a (A = 1) versus no treatment (A = 0); kg, kilogram; m, meter;
mg, milligram; dl, deciliter; ml, milliliter; g, gram; U/L, units per liter.
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Web Appendix H Code to reproduce the simulation

Stata code to reproduce the simulation is available on GitHub:

https://github.com/serobertson/EfficientCausalMetaAnalysis.

R code to reproduce the applied analyses is also provided on GitHub, along with a simulated

dataset on which the code can be run.

https://github.com/serobertson/EfficientCausalMetaAnalysis
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