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Predictive modelling and machine learning in psychiatry 
 

Machine learning (ML) is a growing field, commonly referenced in biological psychiatry, 
where there is an increasing focus on generalizability (1). ML is defined by the use of algorithms 
to learn patterns in training data, which can be leveraged for automated decision-making on 
unseen data (2). There are several important decision points in choosing which algorithm suits 
your needs. Some of these decisions may include whether to use a supervised or unsupervised 
algorithm, using a regression or classification framework, and how complex a model to use.  

These decisions can be influenced by whether you wish to use the algorithm for 
explanation or prediction. Unsupervised methods (in which patterns are learned from unlabeled 
data—performing a clustering analysis to determine the number of subtypes in a dataset, for 
instance) can help to uncover previously unknown relationships in your dataset. However, if one 
then uses the relationship to automate a decision or predict an outcome, the approach falls within 
predictive modelling. Broadly speaking, one can be thought of having a predictive approach if 
you are building a model that can estimate a variable of interest from unseen data, whereas 
explanatory analyses often focus on deriving causal links, focusing more on interpretation than 
model performance (3). Many neuroimaging ML applications involve both predictive and 
explanatory aspects and they can be complementary (4).  

This paper has focused on predictive approaches in autism, which rely on supervised 
algorithms. Supervised approaches (in which data labels are known) can be used to leverage 
existing data for prediction of categorical variables using a classification approach (autism 
diagnosis in case-control studies) or prediction of continuous variables using regression (autism-
related phenotypes in dimensional studies). One of the benefits of supervised is using priors pre-
generated from previous studies. These priors can help ensure that models are less likely to 
overfit your dataset, due to added (favorable) bias and reduced variance (i.e., bias-variance 
tradeoff) (5). The downside is that these priors might not fit the dataset well, and you may miss 
some unique and useful information in the dataset leading to an underfit model which does not 
perform well enough. 

Returning to unsupervised approaches, these methods tend to be more well-suited to 
explanatory analyses. However, they can still be used as part of a predictive framework. Two 
prominent types of unsupervised algorithms are clustering and association. Clustering is 
analogous to classification in that it tends to produce a categorical output (subtyping of autism), 
while association is analogous to regression (new dimensions of brain variation), as it produces a 
dimensional output, along which the relationship is continually varying. Unsupervised models 
can benefit from a lack of bias, as they work with less stringent priors than supervised methods, 
and can uncover previously unknown relationships in the dataset. However, the lack of bias can 
also lead to increased variance in the estimated model parameters across different datasets, 
resulting in overfit models which capture more noise than signal. For a more in-depth discussion 
of issues associated with supervised and unsupervised learning in fMRI, see Khosla et al. (6). 
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Another important factor in model selection is model complexity. Simpler models may 
miss complex relationships in the data but can yield much more interpretable parameters. This 
may be important in the context of gaining biological insight. On the other hand, if the 
underlying biological relationships are of less concern, and one wishes to derive a model with the 
best possible performance (i.e. for accurate diagnosis of autism status), one could opt for a more 
complex algorithm. Complex algorithms tend to perform better on unseen data due to their 
capacity to capture complex patterns, but can hinder interpretability, (see Figure 1 of Bzdok et al. 
(7). The complexity of the model can also impact generalizability, as complex models are more 
likely to overfit a dataset due to the increased number of parameters that can be optimized. The 
balance of complexity and interpretability is a key consideration in selecting an algorithm for 
predictive modelling in functional neuroimaging.  
 
The ethics of predictive modelling in autism  
 
 The use and implementation of predictive models to diagnose autism requires careful 
ethical consideration (8). Recent research has revealed that brain-based changes in autism 
precede the development of behavioral symptoms (9), which has ushered in the creation of 
predictive models to forecast diagnosis before the emergence of symptoms. Moreover, it may 
become possible to identify the likelihood of autism in utero. These studies open the possibility 
for pre-symptomatic intervention, which could potentially alter developmental trajectories 
sufficiently to prevent the development of autism (9). However, in these scenarios, several 
ethical matters should be considered. 

Autism is an extremely heterogeneous condition with a complex phenotype. Individuals 
with autism can range from having profound difficulties and disabilities to being highly 
successful and independent. Autism can manifest with significant intellectual difficulties with no 
or minimal functional language capabilities or with extremely high intelligence and highly 
articulate language capacities. However, our current predictive models are not able to identify 
which infants will develop which phenotype later in life. Further, neurodevelopment in the 
perinatal period has tremendous plasticity, and it is likely that autism emerges as a sequala of 
numerous genetic and environmental effects acting in concert (10). Therefore, there is risk for 
inaccuracy and imprecision in models that could have devastating effects on families. 

Additionally, infants who are identified with a high likelihood of developing autism 
through MRI or other tools incorporated into predictive models will not yet have developed the 
core features of autism. Thus, existing interventions that focus on addressing autism-associated 
difficulties would not yet be suitable for this population and new interventions would need to be 
developed (9). This raises the question: is earlier diagnosis beneficial if it is not possible to 
provide support services? Current guidelines for newborn screening for other disorders, such as 
phenylketonuria and hypothyroidism, suggest that a diagnosis should only be made if there is a 
known and accepted treatment (11). When applying these principles to predictive models for 
early identification of autism, a key difference arises. While pre-symptomatic interventions do 
not currently exist for autism and it will initially be unlikely to begin intervention as soon as a 
diagnosis is made, during this initial period the infants’ development can be carefully tracked 
and existing early intervention services can be provided to optimize developmental outcomes, 
until new interventions can be developed. 

In addition, for many individuals with a diagnosis, autism is a core tenet of their identity 
and being “atypical” does not equate to impairment. The neurodiversity movement maintains 
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that autism should be conceptualized as a difference rather than a disability (12). Some have 
contended that efforts to predict and prevent development of autism are attempts to eliminate 
neurodiversity (13, 14). Further, rather than focusing on early childhood diagnostic tools, many 
adults with autism would prefer research funding to be directed towards programs and services 
for individuals living with autism (15). However, the goal of pre-symptomatic intervention is not 
to eliminate neurodiversity, but rather to provide opportunities to achieve developmental 
milestones that are critical for subsequent adaptive functioning and independence (9).  
 
Some issues for consideration with dense scanning and prediction in autism 
 

An approach that has proven useful in neurotypical young adults is dense scanning (16-
18), in which the same individuals are scanned many times. Such studies have led to exciting 
insights, including the fact that participants exhibit remarkable stability of individual-specific 
networks (16) and such individualized networks exhibit brain state-dependent organization (19). 
Using a dense scanning paradigm and prediction-based approaches could similarly inform our 
understanding of autism neurobiology and symptom expression. For example, do models 
generalize to predict fluctuations in individual patients over time, as has been shown in attention 
(20)?  The large amounts of data from dense-scanning studies have been used to obtain 
exquisitely detailed areal parcellations within individual participants (e.g., (16)). Would similar 
participant-specific parcellations help increase the utility of dimensional predictions in autism? 
Could these large amounts of scanning data be combined with other data types to better subtype 
individuals with autism and construct more specific clinical models?  

A major hurdle that has to be overcome if dense scanning studies are to be conducted is 
ensuring the data are of high quality, as participants with autism can be difficult to scan (21). 
Another barrier is determining whom to scan—given the heterogeneity of autism, what type of 
symptom profile will allow the research community to draw generalizable conclusions? Should 
we aim for a broad array of individuals (22), or should we instead focus on a single symptom 
dimension? Based on the work of Byrge and Kennedy (23), more data per participant reduced 
classification accuracy of autism status to around chance levels. Thus, large numbers of 
participants are possibly needed in dense scanning studies to achieve discriminative utility. What 
does this mean for predictive modelling studies--how many participants do we need to densely 
scan to help us build useful models, and is this feasible?  

Furthermore, what sort of scanning data should we collect—simply resting-state scans or 
a variety of task-based scans covering as many aspects of the Research Domain Criteria (RDoC) 
matrix as possible? How do we motivate participation? Would an individual with autism be open 
to weekly scans over the course of a year, if they stand to gain little beyond financial 
compensation?  
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