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Reviewer #1 (Remarks to the Author):

The authors propose an openly available model of cerebellar development in childhood and 

adolescence. The authors found an antero-posterior gradient related to age improvement. Finally 

they propose a clinical application of their model and propose to detect cerebellar abnormalities 

related to social abilities.

This work is very interesting and significant for the field. The cerebellum remains an understudied 

region of the brain. A large part of the cerebellum is involved in cognitive functions and might be 

involved in several psychiatric disorders with an onset during childhood or adolescence. Thus, 

understanding the growth of the cerebellum is important. This paper relies on the analysis of a 

large (n = 4 862) longitudinal cohort, acquired in only two MRI scanners. Previous papers on 

normative modeling did not study the cerebellum and this paper addresses a gap in the literature.

The methods are detailed and well explained. I think that this paper would be very interesting to 

the scientific community and I recommend this paper for publication. I only have minor remarks.

1°) The authors conducted 2 different analyses with the Maget Brain atlas and with the MDTB 

atlas. The MNI-aligned version of the MDTB atlas was used. Could the authors explain why they 

use this version instead of the SUIT-aligned version of the MDTB atlas, given that SUIT space 

might be more suited for analyses in the cerebellum ?

2°) I think that it might be interesting for the reader to have just one visual example of a scan 

rated as “good”, “sufficient” or “bad”. This information could be included in the supplementary 

material.

3°) Line 565, “autistic traits” should be replaced by “autism”

4°) Line 525 : the authors discuss the absence of antero-posterior growth in the vermis. They 

suggest that this could be related to the role of the vermis in “lower-order” function. However 

several studies suggested that the vermis might be involved in emotion regulation and connected 

to limbic regions (see Fastenrath et al. 2022) : 

https://www.pnas.org/doi/10.1073/pnas.2204900119

5°) The authors propose a clinical application to this work and detect cerebellar abnormalities 

related to social abilities (measured with the SRS scale). I think it might be interesting to provide a 

plot (histogram) describing the distribution of the SRS score in the population (which is, I believe, 

a non-clinical cohort). It would be interesting to know how many individuals had a high SRS-score 

in the cohort.

6°) Although this analysis could be optional, I think it might be interesting to provide additional 

data on the effect of IQ on cerebellar structure. For instance, I think that it might be interesting to 

study (i) if deviations from the normative models would be associated with either lower or higher 

IQ - most likely in the cognitive regions of the cerebellum and / or (ii) how the cerebellar growth 

during the development is associated with IQ score. I think the authors could report the min / max 

IQ scores in the cohort

Reviewer #2 (Remarks to the Author):

This study takes advantage of a large dataset (n=4862) of children and adolescents aged ~6-17 

years to produce “growth curves” for the cerebellum. Both structural (segmentation into lobules) 

and functional (based on King et al. 2019) parcellations of the cerebellum were examined. This 

study fills a gap left by other studies that have investigated brain growth over the lifespan (e.g. 

Bethlehem et al. 2022) which did not evaluate cerebellar growth. Strengths include a focus on a 

sometimes-neglected neural structure that is implicated in various neurodevelopmental disorders 

and a wide range of functions, the use of both structural and functional parcellation approaches, 

and the availability of the models to other researchers. Limitations include a somewhat restricted 

age span (the earliest scans are from ~7 yrs old, after extensive brain growth has already 

occurred) and lack of clarity on aspects of the methods. The study uses an example of individuals 

with high vs. low scores on the Social Responsiveness Scale as a metric for evaluating the clinical 

utility of the models, but a dimensional approach may be a more rigorous test of how individual 

growth scores relate to behavioral metrics. A final limitation is that the authors did not take the 

opportunity to test the models with the longitudinal data to determine whether individuals stay on 



their growth curve throughout the 3 timepoints measured during the study. This would 

demonstrate the utility of these models for tracking individual development, which is one 

argument for establishing such growth curves in the first place. Overall, there is certainly a need 

for better metrics regarding cerebellar development, particularly given cerebellar findings in a 

range of neurodevelopmental disorders and those with a history of preterm birth. Clarification of 

the methodological approach and testing of the models would strengthen the impact of this study.

- Title: (Very) minor suggestion: change “Large data” to “Big data” to match the more commonly 

used term for large datasets

- Abstract: Add in number of participants and the age range, since this study does not sample very 

early in development. This will be useful when researchers are searching for studies in particular 

age groups.

Methods:

- Aside from T1 image quality, were there any exclusion criteria for participants? E.g. preterm 

birth, neurodevelopmental diagnosis (ADHD, autism)?

- How were the 7 “unique and representative” images chosen from each time point?

- How was developmental age factored into the segmentation? Were the MAGeT images that were 

manually segmented from adults or pediatric populations?

- Note in the methods what the 35 parcellations refer to (e.g. hemispheric lobules III-VI, lobule VII 

(Crus I, Crus II, VIIB), VIIIA and B, etc.). It looks like there is a core WM parcellation as well, but 

that GM and WM are combined in the lobules?

- Were the functional parcellations performed in native space for each individual participant or in 

MNI space?

- It is not clear why the SRS scores were not evaluated (or also evaluated) as a continuous 

measure, or why there was not a “mid range” group as well as the high- and low-scoring group.

- In section 3.6, should “subsets” be “subtests”?

- The authors acknowledge the limitations of the gradient analysis. There are other gradient-based 

tools that could be used within the cerebellum, e.g. Guell et al. 2019 PlosOne “Little Brain”.

Results

- The anterior lobe is lobules I-V, and VI is in the posterior lobe of the cerebellum

- Which of the regions show statistically significant changes with age in the age range examined?

- Fig 4 legend – I think this should read “Effect of age on volume in the functional parcellation”?

- Fig 4 – it is difficult to visualize the findings with the lobular boundaries in bold and the functional 

boundaries not demarcated. It would be clearer to either just demarcate the functional boundaries 

(given Fig 3 shows the lobular boundaries in the context of the functional boundaries) or lighten 

the lobular boundaries and demarcate the functional boundaries. As it is, it is difficult to see which 

functional regions show differential effects.

- Fig 4 – given the lobules are often labeled with roman numerals, perhaps use lowercase a, b, c 

etc for the individual panels.

- The authors aim to evaluation the clinical significance of the cerebellar growth curves by looking 

at the z-scores of individuals with the highest and lowest SRS scores. However, growth models are 

useful because they reveal the dimensionality of data and place individuals in this context. If SRS 

scores are used as a continuous variable, is there a relationship between z scores and SRS scores 

in any regions (structural or functional parcellation)?

Other comments

- The authors could acknowledge prior studies of cerebellar growth e.g. Tiemeier et al. 2010, Shaw 

et al. 2018 and others that have discussed functional gradients in the cerebellum e.g. Guell et al. 

2018

- The authors acknowledge the limitations of the quantitative testing of the anterior-to-posterior 

gradient. An alternative would to compare the growth coefficients between pairs of lobules (for 

anatomical parcellation) or motor vs. higher-order cognitive regions (e.g. right-hand presses and 

verbal fluency) in the functional parcellation.

- The data for waves 2 and 3 are heavily enriched in two age bands (wave 1 seems more evenly 

distributed between y and 10 yrs). How might this impact the accuracy of the growth curves for 



ages where there is relatively little data available?

- It seems like a missed opportunity not to examine the subset of individuals with longitudinal data 

(scans at all 3 timepoints). Do these individuals stay on their growth curves over time?

Reviewer #3 (Remarks to the Author):

Here the authors examine normative developmental trajectories of the cerebellum and its 

constituent regions, something that has been lacking within human neuroscience for many years. 

The authors use a large neuroimaging dataset collected in the Netherlands whose longitudinal 

nature allows for powerful developmental analyses. They show that subsections of the cerebellum, 

whether defined anatomically or functionally, show distinct maturational rates, with interesting sex 

differences as well. Having created normative growth charts for regions of the cerebellum, the 

authors then go onto show that individuals with autism-related behavioral traits show significant 

deviation in several regions of the cerebellum, generally showing less cerebellar tissue. The 

authors provide a nice code-based framework for future researchers to take advantage of this 

large dataset. Overall these results are novel, statistically rigorous, and will be of interest to the 

field.

Figure 2, it would be helpful here to maybe have a bar graph or something similar showing the 

actual growth or %-change for each lobule. I like the renderings of the cerebellum, but having 

more quantitative representation alongside it so the reader can see what each lobule is doing 

would be useful. I don't think a bar graph would take up too much space and could be fit alongside 

the volume renderings. I ask because in Fig 2B, it seems as if Crus II and CM are increasing by 

almost 25% in volume from 7 to 17 years old, that seems like a lot! I think it’s generally 

interpreted in the field that the brain (probably the cortex) has reached about 80% of its volume 

by the age of 5, so to show the cerebellum (or parts of it) is exceeding this would be something 

worth highlighting.

Individual images were linearly then nonlinearly aligned to a shared space. It later says that 

parcellations were done in native space. Can the author’s clarify? After reading the methods 

section “Anatomical Parcellation” a few times, I think I finally understood what was happening. 

Five hand-segmented images are nonlinearly aligned to 21 representative brains spanning the 

age-range to create a small library of 105 segmented cerebella. Then an individual’s brain is 

aligned to each of these 105 segmentations, and then a compression step happens (through voxel-

wise majority voting) to get a final segmentation in an individual’s brain. Is that correct? If not 

then this section might benefit from more explanation.

It would help to have a more intuitive description of what gray/white matter density are. Is it 

essentially how gray or white a given voxel is? Is it derived from the inherent voxel intensity within 

the individual’s image, or is it derived by aligning the individual to the MNI space and is it 

extracted from some probability map there? This can be useful for interpretation. For example in 

Fig 4B it seems that GMD decreases and WMD increases, which might be in line with the 

interpretation that myelin content is increasing (thus whitening most voxels).

Figure 5 is nice. However, when ranking functional parcels onto the AP axis, the authors write that 

the volumetric/spatial centroid was used to determine in which anatomical lobule a given 

functional parcel falls. As the authors note, most functional parcels have two components (left-

hand presses show representation in anterior and posterior lobules) and if the centroid falls outside 

of a lobule they hand-assign it to the nearest lobule. For the case of left-hand presses, that might 

be a lobule that doesn’t actually have any left-hand press representation. Does that happen? The 

authors acknowledge that this approach isn’t perfect. Maybe they could also just try a binary test 

comparing motor versus non-motor representations to test for gradient difference in development? 

Related to this point, Guell and colleagues in their “functional gradients of the cerebellum” article 

find an A-P gradient (gradient 1) from functional connectivity, maybe using those values to assign 

your functional parcels a better sensory-cognitive score (rather than a spatial centroid) would 



help? The sex difference flatmaps in Figure 4A for GMD and WMD seem to map onto the Guell 

gradient 1 map quite well (peaks near Crus1/2, low values in anterior lobules like LobI-III and IX) 

so it could be a worthwhile endeavor. Also, and perhaps this is just a semantic difference, but isn’t 

lobule IX as anterior as lobule I-III? Isn’t Crus I/II the most posterior?

Within the field of neuroimaging, the volumetric findings from autism cohorts on the brain and 

cerebellum are a little all over the place, so in some sense the authors’ findings using this massive 

dataset (the largest study of the cerebellum to date) stand to add a lot of clarity. I think the 

authors could increase their discussion on this point, pointing out which studies they replicate, and 

perhaps discussing that their parcellated approach (rather than treating the cerebellum is a single 

structure) perhaps allowed for better sensitivity.

Minor Comments:

CCM is used as the unit for volume analyses (e.g., Figure 2B). What does it stand for? Is it cubic 

centimeters? I’m not sure the acronym is defined anywhere.

Seems like Fig 3 could be added as an inset into Fig 4 given how related they are (and that 3 is 

just a reproduction).

Reviewer #4 (Remarks to the Author):

1. What are the noteworthy results?

Comment: The first normative model of anatomical and functional subregions of the cerebellum 

was established from a large pediatric population, and revealed an anterior-posterior gradient of 

human cerebellum.

2. Will the work be of significance to the field and related fields? How does it compare to the 

established literature? If the work is not original, please provide relevant references.

Comment: The present work is highly novel and holds great significance to the field of human 

brain mapping as well as related fields such a s brain disorders and public health. Some novel 

results (e.g., the A-P gradient of brain growth is hlighly implicated with previous literature on brain 

maturation such as cortical gradient development).

3. Does the work support the conclusions and claims, or is additional evidence needed?

Comment: Over speaking, the work has been done in a very solid way. But, it would be more 

informative if the authors can demonstrate some valid usage of the proposed normative models, 

for example, the association studies on the cerebellum and behavior/cognition.

4. Are there any flaws in the data analysis, interpretation and conclusions? Do these prohibit 

publication or require revision?

Is the methodology sound? Does the work meet the expected standards in your field?

Comment: A problematic point is about the uneuqal distribution of sample ages, which could be 

the driving force of the overall linear trajectories modeled. The authors need to be carefull for the 

interpretation on their findings while they can do some validation based on some smaller-scale 

cohorts such as Healthy Brain Network or Chinese Color Nest. These cohorts are openly shared to 

the community.

5. Is there enough detail provided in the methods for the work to be reproduced?

Comment: Yes.

6. Other Comments: The scientific finding of the A-P growth gradient is very interesting while can 

be further informed with recent advances on developmental shifts of cortical connectivity gradient 



from childhood to adolecence, please refer to https://pubmed.ncbi.nlm.nih.gov/34260385.



Response to the Reviewers 

We are grateful to the editor and reviewers for their constructive and helpful comments. We feel the 

changes and additions as a result of these suggestions have helped to improve the manuscript 

considerably. 

Reviewer #1 (Remarks to the Author): 

The authors propose an openly available model of cerebellar development in childhood and 

adolescence. The authors found an antero-posterior gradient related to age improvement. Finally they 

propose a clinical application of their model and propose to detect cerebellar abnormalities related to 

social abilities.  

This work is very interesting and significant for the field. The cerebellum remains an understudied region 

of the brain. A large part of the cerebellum is involved in cognitive functions and might be involved in 

several psychiatric disorders with an onset during childhood or adolescence. Thus, understanding the 

growth of the cerebellum is important. This paper relies on the analysis of a large (n = 4 862) 

longitudinal cohort, acquired in only two MRI scanners. Previous papers on normative modeling did not 

study the cerebellum and this paper addresses a gap in the literature.  

The methods are detailed and well explained. I think that this paper would be very interesting to the 

scientific community and I recommend this paper for publication. I only have minor remarks. 

1) The authors conducted 2 different analyses with the Maget Brain atlas and with the MDTB atlas. The 

MNI-aligned version of the MDTB atlas was used. Could the authors explain why they use this version 

instead of the SUIT-aligned version of the MDTB atlas, given that SUIT space might be more suited for 

analyses in the cerebellum ? 

It is indeed correct, that normalization to the SUIT atlas compared to the former linear MNI 

template has been shown to improve overlap of cerebellar regions across individuals 

(Diedrichsen, 2006). However, there are several reasons why we decided that using the MNI-

aligned version of the MDTB atlas outweighs the added benefit of better alignment of some of 

the cerebellar anatomy (mainly cerebellar fissures).  

First and foremost, the primary aim of this study is to provide openly available, large-scale 

cerebellar growth models that, we hope, increase and facilitate cerebellar neuroimaging 

research, also outside of the cerebellar research community. By using the MNI template, future 

research groups can potentially utilize the cerebellar models without having to apply additional 

image processing steps. This is because commonly used pre-processing tools (i.e. FMRIprep, FSL, 

SPM) already include normalization to standard MNI space, which clears the way to incorporate 

the MNI-aligned version of the MDTB atlas in a straightforward way. Second, we used SMRIPREP 

(and ANTs) to conduct the nonlinear registration given it is a.) open source (i.e., no Matlab 

license required) and b.) the ANTs registration methods are used widely in the field given their 



superior performance with structural image co-registration. Importantly, the better alignment 

with the linear MNI space had to do with the non-linear morphs used in the atlas generation of 

SUIT. However, alignment to the MNI152NLin (the non-linear template MNI template published 

since) has greatly improved MNI normalization. Further, MNI space is very similar to SUIT space 

and coordinates can be used in both spaces interchangeably with only very minor morphs 

(Diedrichsen, 2006).  

We have addressed this in the manuscript: 

Methods, Functional parcellation (lines 703-708)  

The MNI-aligned atlas was chosen over the SUIT space aligned atlas, since it allows to use the 

current models without adding an additional processing step to transform images into SUIT 

space. Furthermore, while normalization to SUIT space compared to the former linear MNI 

template has been shown to improve overlap of cerebellar regions across individuals 

(Diedrichsen, 2006), alignment to the MNI152NLin (the non-linear template MNI template 

published since) has greatly improved MNI normalization since then.   

2) I think that it might be interesting for the reader to have just one visual example of a scan rated as 

“good”, “sufficient” or “bad”. This information could be included in the supplementary material. 

Thank you for the suggestion. We included a figure in the supplementary material showing 

examples of scans rated as either “Good”, “Sufficient”, or “Bad”. 

We added in the manuscript: 

Methods, Image Quality Control (lines 671-672) 

Visual examples of scans rated on the 3-point scale can be found in Supplementary Figure 6.  

Supplementary Figures (lines 980-983) 

Supplementary Figure 6: Visual examples of segmented scans rated as either “good”, “sufficient”, or “bad”. Inaccuracies of only 

a few voxels were rated as “sufficient” (e.g., vasculature was captured), whereas marked inaccuracies throughout several 

parcels were rated as “bad” and therefore excluded from analysis. 

3) Line 565, “autistic traits” should be replaced by “autism” 

Thank you, we changed the manuscript accordingly. 



We changed in the manuscript: 

Discussion (lines 471-473) 

Recently, however, no differences in cerebellar anatomy in individuals with autism were 

reported when using normative models on cerebellar growth based on a smaller control sample 

(N=219) (Laidi et al., 2022).  

4) Line 525 : the authors discuss the absence of antero-posterior growth in the vermis. They suggest that 

this could be related to the role of the vermis in “lower-order” function. However several studies 

suggested that the vermis might be involved in emotion regulation and connected to limbic regions (see 

Fastenrath et al. 2022) : https://www.pnas.org/doi/10.1073/pnas.2204900119 

While the vermis has been found to be predominantly involved in somatosensory, ocular, and 

vestibular functions with strong connections with the spinal cord, it is indeed correct that 

functionally, the vermis is not exclusively involved in lower-order functions only. Thank you for 

raising that point, we now specify this in the manuscript. 

 We added in the manuscript: 

Discussion (lines 413-415) 

The vermis receives sensorimotor afferents coming from the spinal cord, and is predominantly 

involved in lower-order functions, such as postural control, locomotion, and gaze (Kandel et al., 

2000), but also plays an important role in emotion processing (Baumann & Mattingley, 2012; 

Fastenrath et al., 2022; Sacchetti et al., 2009). 

5) The authors propose a clinical application to this work and detect cerebellar abnormalities related to 

social abilities (measured with the SRS scale). I think it might be interesting to provide a plot (histogram) 

describing the distribution of the SRS score in the population (which is, I believe, a non-clinical cohort). It 

would be interesting to know how many individuals had a high SRS-score in the cohort.  

Thank you for the suggestion. The Generation R cohort is indeed a non-clinical cohort, therefore 

most of the participants do not have high SRS scores. We now also include a histogram of the 

distribution of all available SRS scores in the cohort to give the reader a better insight into the 

data, and we also include the number of children with a high SRS score (defined as being above 

the 90th percentile) in the methods section. 

 We added in the manuscript: 

Results, Large normative model deviations and clinical or behavioral phenotypes (lines 331-334) 



For each ROI, we contrast the z-scores between children likely to fall on the Autism spectrum 

(raw score on SRS >= 90th percentile, N = 198) to the remainder of the cohort (N = 2,012; 

children without SRS information excluded). The distribution of SRS scores can be found in 

Supplementary Figure 4.  

Supplementary Figures (lines 822-835) 

Supplementary Figure 4: Distribution of SRS scores in the Generation R cohort (N = 2,210; participants without SRS information 

excluded). The dotted line illustrates the 90th percentile (raw score >= 9 [N = 198]), triangles draw attention to high SRS scores of 

single participants. 

6) Although this analysis could be optional, I think it might be interesting to provide additional data on 

the effect of IQ on cerebellar structure. For instance, I think that it might be interesting to study (i) if 

deviations from the normative models would be associated with either lower or higher IQ - most likely in 

the cognitive regions of the cerebellum and / or (ii) how the cerebellar growth during the development 

is associated with IQ score. I think the authors could report the min / max IQ scores in the cohort  

The association between IQ scores and cerebellar deviations is definitely an interesting analysis, 

specifically in the functional parcellation where several parcels represent cognitive influences. 

We therefore added an analysis contrasting cerebellar deviations in the functional parcellation 

between children with high (above 130) and low (below 70) IQ. We found that children with 

lower IQ have lower cerebellar volumes, specifically in anterior and posterior parcels of the right 

cerebellar hemisphere, as well as more deviations in GMD and WMD in posterior attention and 

language parcels. We thank the reviewer for this valuable suggestion and have added the 

analysis in the supplement. 



We added in the manuscript: 

Methods, Relating normative model deviations in the functional parcellation to IQ (lines 731-

743) 

Next to the clinical validation, we used the same approach to illustrate how IQ correlates with 

cerebellar deviations in the functional parcellation, which contains motor and cognitive 

subregions, in a supplementary analysis. Results were stratified based on IQ scores obtained 

from Snijders-Oomen Nonverbal Intelligence Test (SON-IQ) (please refer to 3.6. Non-response 

analysis for details): Low IQ (< 70; N=40), and high IQ (>130; N=64). We again defined data as 

having large deviations in the normative model if the value of their normative estimate was 

larger 1.96 or smaller -1.96 (i.e., upper and lower tails of the distribution, critical z for 95% 

confidence interval) and significance of the percentage of children with large deviations at the p 

= 0.05 and p = 0.01 level was evaluated using Binomial testing (see Methods: Clinical validation 

of models using Social Responsiveness Scores (SRS) for details).We find global effects of lower 

volumes in children with low IQ along with large positive and negative deviations in GMD and 

WMD in posterior cognitive subregions (please see Supplementary Figure 8 for details). 

Supplementary Figures (lines 991-1006) 

Supplementary Figure 8: Percentage of individuals with large negative (z-score < -1.96) and large positive (z-score > 

1.96) deviations in volume, Grey Matter Density (GMD), and White Matter Density (WMD) in functional ROIs stratified 

by IQ (low IQ <70 [N=40] and high IQ >130 [N=64]). As sample sizes differ between IQ groups, and thus expected 

proportions of extreme deviations under the null hypothesis differ as well, significance of the percentage of children 

with large deviations at the p = 0.05 and  p = 0.01 level were evaluated using Binomial testing (observed vs. expected 

number of participants with z > 1.96 / z < -1.96 in low, typical, and high IQ children, given a null hypothesized probability 

of p0 = 0.025, one-sided). Asterisks (p<0.05) and stars (p<0.01) indicate ROIs in which children have a significantly higher 

percentages of large deviation than expected (low IQ > 5.00% (p<0.05) and > 7.50% (p<0.01), high IQ > 3.12% (p<0.05) 

and > 6.25% (p<0.01)). Children in the low IQ group present with lower volumes than expected throughout several ROIs 

particularly on the right hemisphere (negative deviations (at p<0.01 level): 2 Right-hand (motor) presses, 3 Saccades, 4 

Action observation, 6 Divided attention (right hemisphere), 8 Word comprehension, and 9 Verbal fluency). Lower IQ was 

further associated with more negative as well as positive deviations in GMD (negative deviations (at p<0.01 level): 5 

Divided attention (left hemisphere); positive deviations (at p<0.01 level): 8 Word comprehension, and 9 Verbal fluency) 

and WMD (negative deviations (at p<0.01 level): 8 Word comprehension, and 9 Verbal fluency; positive deviations (at 

p<0.01 level): 1 Left-hand (motor) presses, 5 Divided attention (left hemisphere), 6 Divided attention (right hemisphere)) 

specifically in posterior ROIs relating to cognitive function. 



Reviewer #2 (Remarks to the Author): 

This study takes advantage of a large dataset (n=4862) of children and adolescents aged ~6-17 years to 

produce “growth curves” for the cerebellum. Both structural (segmentation into lobules) and functional 

(based on King et al. 2019) parcellations of the cerebellum were examined. This study fills a gap left by 

other studies that have investigated brain growth over the lifespan (e.g. Bethlehem et al. 2022) which 

did not evaluate cerebellar growth. Strengths include a focus on a sometimes-neglected neural structure 

that is implicated in various neurodevelopmental disorders and a wide range of functions, the use of 

both structural and functional parcellation approaches, and the availability of the models to other 

researchers. Limitations include a somewhat restricted age span (the earliest scans are from ~7 yrs old, 

after extensive brain growth has already occurred) and lack of clarity on aspects of the methods. The 

study uses an example of individuals with high vs. low scores on the Social Responsiveness Scale as a 

metric for evaluating the clinical utility of the models, but a dimensional approach may be a more 

rigorous test of how individual growth scores relate to behavioral metrics. A final limitation is that the 

authors did not take the opportunity to test the models with the longitudinal data to determine whether 

individuals stay on their growth curve throughout the 3 timepoints measured during the study. This 

would demonstrate the utility of these models for tracking individual development, which is one 

argument for establishing such growth curves in the first place. Overall, there is certainly a need for 

better metrics regarding cerebellar development, particularly given cerebellar findings in a range of 

neurodevelopmental disorders and those with a history of preterm birth. Clarification of the 

methodological approach and testing of the models would strengthen the impact of this study.  

1) Title: (Very) minor suggestion: change “Large data” to “Big data” to match the more commonly used 

term for large datasets 

Thank you for the comment, we have changed the title accordingly. 

We changed in the manuscript: 

Title (line 1) 

Big Data on the Small Brain: Population-wide Cerebellar Growth Models of Children and 

Adolescents  

2) Abstract: Add in number of participants and the age range, since this study does not sample very early 

in development. This will be useful when researchers are searching for studies in particular age groups.  

Thank you for the suggestion, we added the number of participants and age range in the 

abstract. 

We added in the manuscript: 

Abstract (lines 46-48) 



Using a total of 7,240 neuroimaging scans from 4,862 individuals, we describe and provide 

detailed, openly available models of cerebellar development in childhood and adolescence (age 

range: 6-17 years), an important time period for brain development and onset of 

neuropsychiatric disorders.  

Methods: 

3) Aside from T1 image quality, were there any exclusion criteria for participants? E.g. preterm birth, 

neurodevelopmental diagnosis (ADHD, autism)? 

No, we only applied the exclusion criteria stated in the manuscript. Scans were excluded if 1) the 

T1-weighted scan was incomplete, 2) no consent form was present, 3) incidental finding was 

present, and/or 4) quality rating was insufficient. We chose to not exclude children born 

preterm and/or with neurodevelopmental disorders in order to have models that are 

representative and cover the heterogeneity of the general population. Therefore, we restricted 

our exclusion criteria to only remove scans, if they are likely to result in segmentation errors 

(incomplete/low quality, incidental findings like increased ventricles or large cysts) or due to 

ethical reasons (incomplete consent forms).  

We added in the manuscript: 

Methods, Participants (lines 593-595) 

Scans were only excluded based on technical or ethical considerations, but not based on clinical 

phenotypes (i.e. pre-existing conditions) in order to capture the heterogeneity of the general 

population.  

4) How were the 7 “unique and representative” images chosen from each time point?  

Thank you for the comment. This is indeed useful for the reader to know, so we have adapted 

the text as follows: 

We added in the manuscript: 

Methods, Anatomical parcellation (lines 682-687)

Seven unique and representative images from the three study time points were selected, by a) 

excluding scans with dental implants, b) pre-selecting the top 20 scans with the highest quality 

ratings based on automatic FreeSurfer quality assurance (Rosen et al., 2018), and c) thoroughly 

inspecting the top 20 scans per time point for artifacts, inhomogeneities, full coverage of the 

cerebellum, and (cerebellar) cysts. Based on this evaluation, the 7 scans with the highest quality 

ratings were selected per time point, resulting in 21 study-specific template images.  

5) How was developmental age factored into the segmentation? Were the MAGeT images that were 

manually segmented from adults or pediatric populations?  



The five manually segmented MAGeT atlases stem from a healthy adult population without 

neurological/neuropsychiatric disorders (2 male, 3 female, aged 29–57) (Park et al., 2014). The 

strength of the MAGeT algorithm lies in its ability to create a multi-atlas based segmentation, 

tailored to your specific cohort (template images) using only a limited amount of manually 

segmented atlases (here: five). The resulting template library, allows for improved modeling of 

individual differences in morphology (in native space), which could be present in a pediatric 

compared to an adult population, by taking advantage of the morphological variations in the 

representative template images. This approach has been used successfully in a pediatric cohort 

before (Shaw et al., 2018) and visual inspection showed high accuracy of lobular segmentations 

in our cohort (94.8% useable). We now emphasize this strength in the methods section but also 

added the use of adult atlases as a potential limitation for consideration, since this is an 

important and recurring theme in (developmental) neuroimaging studies. 

We added in the manuscript: 

Methods, Anatomical parcellation (line 697-700) 

This computationally intensive approach has been shown to have better test-retest reliability 

than other segmentation techniques and results in high segmentation accuracy by creating a 

customizable template segmentation library, thereby being able to take advantage of existing 

morphological variances in the cohort (Park et al., 2014).  

Discussion, Limitations (lines 548-552) 

Another potential limitation is related to how the MRI data were processed, namely the use of 

an adult template space and adult atlases. This is a recurring theme in human neuroimaging, 

which has yet to be fully resolved. Importantly, the MAGeTBrain framework is likely able to 

improve modelling of individual differences in morphology, possibly present in a developing 

cohort compared to an adult population, through the use of study-specific template 

propagation.  

6) Note in the methods what the 35 parcellations refer to (e.g. hemispheric lobules III-VI, lobule VII (Crus 

I, Crus II, VIIB), VIIIA and B, etc.). It looks like there is a core WM parcellation as well, but that GM and 

WM are combined in the lobules? 

Thank you for the comment, we now provide a better overview of the anatomical subdivisions 

in the manuscript. The corpus medullare is segmented as the core white matter for each 

hemisphere. The white matter branching out into the lobules was included in the segmentation 

of the lobules, since ultra-high resolution scans are needed to reliably segment the fine white 

matter branches reaching out into the cerebellar folia (Marques et al., 2010). 

We added in the manuscript: 



Methods, Anatomical parcellation (line 696-697) 

Supplementary Figure 7 shows a representative automatically labelled segmentation from one 

individual and gives an overview of all 35 anatomical subdivisions.  

Supplementary Figures (lines 985-989) 

Supplementary Figure 7: Example scan that was automatically segmented in anatomical ROIs using the MAGeT algorithm. Labels 

for each ROI in their respective colors are shown. The MAGeT algorithm subdivides the cerebellum into 11 vermal and 22 

hemispheric lobules (11 on each hemisphere). Additionally, the central white matter, the corpus medullare, is segmented in each 

hemisphere. White matter that extends into the folia of the lobules was segmented as part of the lobules. 

7) Were the functional parcellations performed in native space for each individual participant or in MNI 

space?  

Functional parcels of the MDTB atlas were performed in MNI space. We now emphasize this in 

the manuscript. 

We added in the manuscript: 

Methods, Functional parcellation (lines 702&703) 

We parcellated functional subregions of the cerebellum in MNI space, using the MNI-aligned 

version of the MDTB atlas (King et al., 2019).  

8) It is not clear why the SRS scores were not evaluated (or also evaluated) as a continuous measure, or 

why there was not a “mid range” group as well as the high- and low-scoring group. 

The normative modeling concept has been proposed as a route for individual-level inferences to 

be made, and thus we focused on highlighting this in the manuscript by including example 

applications of such (i.e., percentage if children with extreme deviations). Given the non-normal 



distribution of the SRS scores, we decided not to create a mid-range group. However, we agree 

that the dimensional nature of ASD traits and brain structure is generally of interest and have 

added an analysis of continuous SRS scores. We refer to question 16 below on the incorporation 

of continuous scores. 

9) In section 3.6, should “subsets” be “subtests”? 

This should indeed be subtests. Thank you for bringing it to our attention, we have corrected 

this typo. 

10) The authors acknowledge the limitations of the gradient analysis. There are other gradient-based 

tools that could be used within the cerebellum, e.g. Guell et al. 2019 PlosOne “Little Brain”.  

We thank the reviewer for this suggestion and valuable addition to the manuscript. We added 

an comparison between the gradient found with the gradients described by Guell and 

colleagues (Guell et al., 2019). We refer to comment 18 for details.

Results 

11) The anterior lobe is lobules I-V, and VI is in the posterior lobe of the cerebellum 

Apologies, for this typographical error. Thank you for making us aware of this mistake. 

We changed the manuscript to remedy this: 

Results, Anatomical parcellation (lines 194-197)  

Interestingly, we see a growth gradient, starting with smaller age-related effects on volume in 

the anterior cerebellum (Lobules III – V), and increasingly larger age-related effects in the 

posterior cerebellum (Lobules VI – IX) with the largest effects, besides the corpus medullare, 

found in the flocculus (Lobules X).  

12) Which of the regions show statistically significant changes with age in the age range examined?  

2<8 @84A EF4A74D7=L87 O 4:8P BD E?BC8EP B9 4?? 0.)E 4D8 EF4F=EF=64??K E=:A=9=64AF 4E F<8 6BA9=78A68

interval does not include 0 for any of the ROIs (please refer to Supplementary Tables 3&4). 

However, given the large sample size and high precision in measurements, it is also crucial to 

take the effect sizes into account (Marek et al., 2022). Standardized coefficients provide a 

measure for investigating the magnitude of the effect across different atlases (anatomical vs. 

functional), modalities (volume vs. GMD vs. WMD), and can also be used to compare effects 

across different studies. We therefore advice to judge the age related changes based on the 

standardized age coefficient.  



We added in the manuscript: 

Supplementary Table 3, Legend  

While all slopes are significantly different from 0, some effects (standardized coefficients) are 

small. 

Supplementary Table 4, Legend  

While all slopes are significantly different from 0, some effects (standardized coefficients) are 

very small (e.g. GMD hand presses). 

13) Fig 4 legend – I think this should read “Effect of age on volume in the functional parcellation”? 

Thank you for pointing this out, this is indeed an oversight on our part. Please see response to 

comment 1 of reviewer 3 for the updated figure legend of figure 3 (previously figure 4). 

14) Fig 4 – it is difficult to visualize the findings with the lobular boundaries in bold and the functional 

boundaries not demarcated. It would be clearer to either just demarcate the functional boundaries 

(given Fig 3 shows the lobular boundaries in the context of the functional boundaries) or lighten the 

lobular boundaries and demarcate the functional boundaries. As it is, it is difficult to see which 

functional regions show differential effects. 

We thank the reviewer for this suggestion. We have implemented this by removing the lobular 

boundaries from the figures showing the functional cerebellar flatmap, in order not to mask the 

functional regions. See now main figures 3 and 5 as well as supplementary figures 5 and 8 in the 

manuscript, or also in our response to the a) 6th comment of reviewer 1 and b) first comment of 

reviewer 3.

15) Fig 4 – given the lobules are often labeled with roman numerals, perhaps use lowercase a, b, c etc 

for the individual panels.  

We thank the reviewer for this suggestion, and we changed the panel numbers to lowercase 

letters. The updated figure can be found in the manuscript, and also in our response to  

comment 1 of reviewer 3. 

16) The authors aim to evaluation the clinical significance of the cerebellar growth curves by looking at 

the z-scores of individuals with the highest and lowest SRS scores. However, growth models are useful 

because they reveal the dimensionality of data and place individuals in this context. If SRS scores are 

used as a continuous variable, is there a relationship between z scores and SRS scores in any regions 

(structural or functional parcellation)? 



Thank you for this comment. As the reviewer correctly points out, the great strength of the 

normative growth models is that conclusions on morphological differences can be drawn on a 

single-subject basis - an approach particularly useful in disorders that present with great 

heterogeneity in the population, like, for example, autism. However, the reviewer also points 

out the interest in the dimensional nature of autistic traits, and whether or not they covary with 

neuroanatomical phenotypes, which has been shown previously.  We have thus added new 

analysis where a linear regression was used to probe such associations. Interestingly, we find 

that none of the initial associations between deviation scores in posterior lobules and SRS scores 

survive multiple testing correction (multiple testing correction was applied separately for 

anatomical ROIs (N=35) and functional ROIs (N=30)). Yet, when using the current approach of 

investigating z-scores in children likely to fall on the autism spectrum, deviation patterns that 

are corroborated by previous findings (see Discussion) emerge. We added the linear regression 

results in the revised manuscript. 

We added in manuscript: 

Methods, Clinical validation of models using Social Responsiveness Scores (SRS) (lines 729&730) 

We additionally tested the effect of SRS score as a continues variable on the deviation scores 

using linear regression.  

Results, Large normative model deviations and clinical or behavioral phenotypes (lines 369-374) 

When the effect of SRS scores on normative deviation scores in both the anatomical and the 

functional parcellation was tested using linear regression models, volumes in anatomical lobules 

Crus II (hemispheric right) , VIIB (hemispheric left and right), VIIIA (hemispheric left) , and VIIIB 

(vermal) as well as functional parcels action observation, word comprehension and 

autobiographical recall were associated with SRS scores. However, these associations did not 

survive multiple testing correction (Supplementary Table 6). 



SRS score Square-root transformed SRS score 

ROI Estimate SE p-value FDR corrected  

p-value 

Estimate SE p-value FDR corrected 

 p-value 

R2 

adjusted 

Vermis I & II -0.223 0.220 0.309 0.994 0.055 0.217 0.799 0.874 0.001 

Lobule III (left) -0.199 0.214 0.353 0.994 -0.007 0.211 0.973 0.973 0.002 

Lobule IV (left) -0.261 0.214 0.223 0.994 0.040 0.211 0.851 0.903 0.002 

Lobule V (left) -0.005 0.217 0.982 0.994 -0.242 0.214 0.258 0.437 0.003 

Lobule VI (left) -0.115 0.220 0.600 0.994 -0.217 0.217 0.317 0.462 0.005 

Lobule Crus 1 (left) -0.089 0.218 0.682 0.994 -0.283 0.215 0.188 0.391 0.007 

Lobule Crus 2 (left) 0.128 0.214 0.551 0.994 -0.412 0.211 0.052 0.208 0.004 

Lobule VIIB (left) 0.229 0.213 0.281 0.994 -0.650 0.210 0.002* 0.068 0.011 

Lobule VIIIA (left) 0.141 0.214 0.511 0.994 -0.602 0.211 0.004* 0.077 0.013 

Lobule VIIIB (left) 0.006 0.222 0.979 0.994 -0.311 0.219 0.156 0.389 0.004 

Lobule IX (left) -0.187 0.212 0.379 0.994 -0.106 0.210 0.613 0.716 0.004 

Lobule X (left) 0.087 0.220 0.692 0.994 -0.371 0.217 0.087 0.277 0.004 

Corpus medullare (left) -0.050 0.216 0.816 0.994 -0.184 0.213 0.388 0.543 0.002 

Vermis III -0.188 0.214 0.379 0.994 0.067 0.211 0.752 0.849 0.000 

Vermis IV 0.202 0.222 0.363 0.994 -0.421 0.219 0.054 0.208 0.003 

Vermis V -0.180 0.217 0.408 0.994 0.127 0.214 0.552 0.666 -0.001 

Vermis VI -0.002 0.223 0.994 0.994 -0.221 0.220 0.316 0.462 0.002 

Vermis VIIA 0.330 0.224 0.141 0.994 -0.440 0.221 0.047 0.208 0.001 

Vermis VIIB 0.212 0.221 0.337 0.994 -0.339 0.218 0.121 0.352 0.001 

Vermis VIIIA -0.080 0.215 0.712 0.994 -0.317 0.212 0.136 0.365 0.008 

Vermis VIIIB 0.044 0.214 0.837 0.994 -0.459 0.211 0.030* 0.208 0.009 

Vermis IX -0.051 0.215 0.813 0.994 -0.270 0.212 0.202 0.393 0.005 

Vermis X -0.147 0.218 0.502 0.994 -0.011 0.215 0.959 0.973 0.000 

Lobule III (right) -0.013 0.214 0.953 0.994 -0.216 0.211 0.308 0.462 0.002 

Lobule IV (right) -0.068 0.221 0.759 0.994 -0.174 0.218 0.425 0.572 0.002 

Lobule V (right) -0.147 0.220 0.504 0.994 -0.141 0.217 0.515 0.654 0.003 

Lobule VI (right) -0.075 0.218 0.732 0.994 -0.282 0.215 0.190 0.391 0.006 

Lobule Crus 1 (right) 0.016 0.213 0.939 0.994 -0.281 0.210 0.182 0.391 0.003 

Lobule Crus 2 (right) 0.248 0.213 0.244 0.994 -0.527 0.210 0.012* 0.142 0.005 

Lobule VIIB (right) 0.028 0.217 0.899 0.994 -0.454 0.214 0.034* 0.208 0.010 

Lobule VIIIA (right) -0.071 0.215 0.741 0.994 -0.400 0.212 0.059 0.208 0.012 

Lobule VIIIB (right) 0.027 0.220 0.901 0.994 -0.418 0.217 0.055 0.208 0.008 

Lobule IX (right) -0.215 0.217 0.323 0.994 -0.137 0.214 0.524 0.654 0.006 

Lobule X (right) -0.080 0.221 0.717 0.994 -0.261 0.218 0.231 0.426 0.005 

Corpus medullare (right) -0.058 0.218 0.791 0.994 -0.241 0.215 0.262 0.437 0.004 

left hand presses (VOL) -0.145 0.217 0.503 0.994 -0.240 0.214 0.262 0.576 0.007 

right hand presses (VOL) -0.110 0.217 0.612 0.994 -0.237 0.214 0.269 0.576 0.006 

saccades (VOL) -0.123 0.222 0.580 0.994 -0.264 0.219 0.229 0.576 0.007 

action observation (VOL) 0.041 0.214 0.849 0.994 -0.516 0.211 0.014* 0.164 0.013 

divided attention (left) (VOL) 0.023 0.218 0.915 0.994 -0.382 0.215 0.076 0.327 0.006 

divided attention (right) (VOL) -0.002 0.216 0.994 0.994 -0.392 0.213 0.066 0.327 0.008 

narrative (VOL) -0.069 0.214 0.748 0.994 -0.196 0.212 0.355 0.592 0.003 

word comprehension (VOL) 0.200 0.215 0.351 0.994 -0.509 0.212 0.016* 0.164 0.006 

verbal fluency (VOL) 0.041 0.216 0.850 0.994 -0.375 0.213 0.078 0.327 0.006 

autobiographical recall (VOL) 0.146 0.215 0.496 0.994 -0.577 0.212 0.007* 0.164 0.011 

left hand presses (GMD) -0.105 0.217 0.630 0.994 -0.088 0.214 0.682 0.854 0.001 

right hand presses (GMD) -0.150 0.215 0.483 0.994 0.052 0.212 0.804 0.909 0.000 

saccades (GMD) -0.066 0.222 0.768 0.994 0.009 0.219 0.966 0.966 -0.001 

action observation (GMD) -0.011 0.224 0.961 0.994 -0.187 0.220 0.396 0.626 0.001 

divided attention (left) (GMD) 0.027 0.219 0.902 0.994 -0.223 0.216 0.302 0.582 0.001 

divided attention (right) 

(GMD) 

-0.122 0.217 0.572 0.994 -0.016 0.214 0.942 0.966 0.000 

narrative (GMD) 0.041 0.222 0.853 0.994 -0.075 0.219 0.734 0.880 -0.001 

word comprehension (GMD) 0.234 0.223 0.294 0.994 -0.254 0.220 0.248 0.576 0.000 

verbal fluency (GMD) -0.024 0.221 0.913 0.994 -0.089 0.218 0.683 0.854 0.000 

autobiographical recall (GMD) 0.078 0.229 0.734 0.994 -0.217 0.225 0.335 0.591 0.000 

left hand presses (WMD) 0.052 0.220 0.814 0.994 0.147 0.217 0.499 0.712 0.001 

right hand presses (WMD) 0.052 0.218 0.812 0.994 0.037 0.215 0.864 0.926 0.000 

saccades (WMD) -0.004 0.220 0.986 0.994 0.050 0.217 0.819 0.909 -0.001 

action observation (WMD) -0.149 0.221 0.501 0.994 0.368 0.218 0.092 0.327 0.002 

divided attention (left) 

(WMD) 

-0.152 0.220 0.490 0.994 0.359 0.217 0.098 0.327 0.002 

divided attention (right) 

(WMD) 

0.021 0.220 0.924 0.994 0.156 0.217 0.474 0.711 0.001 

narrative (WMD) -0.081 0.222 0.716 0.994 0.125 0.219 0.570 0.777 -0.001 

word comprehension (WMD) -0.241 0.224 0.281 0.994 0.282 0.221 0.201 0.576 0.000 

verbal fluency (WMD) -0.069 0.225 0.761 0.994 0.225 0.222 0.310 0.582 0.001 

autobiographical recall 

(WMD) 

-0.297 0.225 0.186 0.994 0.419 0.222 0.059 0.327 0.001 

Supplementary Table 6: Linear regression results investigating the effect of SRS score (continuous) on deviation scores. SRS 

scores and square-root transformed SRS scores (given the skewed distribution, see Supplementary Figure 4) were used as the 



independent variables. To account for the multiple tests, we applied the false discovery rate – Benjamini Hochberg (FDR-BH) 

correction within each parcellation separately. 

Other comments  

17) The authors could acknowledge prior studies of cerebellar growth e.g. Tiemeier et al. 2010, Shaw et 

al. 2018 and others that have discussed functional gradients in the cerebellum e.g. Guell et al. 2018 

Thank you for the comment. We have included a discussion on previous studies of typical 

cerebellar development of Tiemeier (2010) and Shaw (2018). We further added additional 

information and an extra analysis covering the functional gradients proposed by Guell (2018). 

For additions concerning Guell (2018), please refer to comment 18. 

We added in manuscript: 

Discussion (lines 503-507) 

Previous investigations into the typical volumetric development of the cerebellum during 

childhood and adolescence, although conducted with smaller sample sizes and employing less 

detailed anatomical parcellations, have revealed similar growth patterns. Increases were most 

pronounced in the corpus medullare and superior posterior lobe, while the anterior lobe and 

vermal regions showed stagnation or decline (Shaw et al., 2018; Tiemeier et al., 2010) 

18) The authors acknowledge the limitations of the quantitative testing of the anterior-to-posterior 

gradient. An alternative would to compare the growth coefficients between pairs of lobules (for 

anatomical parcellation) or motor vs. higher-order cognitive regions (e.g. right-hand presses and verbal 

fluency) in the functional parcellation.  

We think this is an excellent addition to the manuscript.  We have added an additional analysis 

using the LittleBrain toolbox (https://xaviergp.github.io/littlebrain/) to investigate the anterior-

posterior growth gradient based on the reviewer’s previous suggestion (comment #10). Using 

this toolbox, we illustrate the anterior-posterior growth along two principal functional gradients 

(Guell et al., 2018). The first functional gradient is essentially mapping cerebellar voxels along a 

continuum from motor to non-motor (mainly default mode and language) functions. While the 

reported anterior-posterior growth follows gradient 1 to some extent as well, it maps more 

closely onto gradient 2 which ranges from task unfocused areas with low cognitive load (motor, 

default parcels) to task focused areas with higher cognitive load (working memory) (see Figure 

4B). We now consider the results of this analysis in the discussion as well. 

We have adapted the manuscript as follows: 

Results, Anterior-posterior growth gradient (lines 296-325) 

Lastly, we compared and visualized the gradients found using LittleBrain, a gradient-based tool 

to aid interpretation of topological neuroimaging findings of the cerebellum (Guell et al., 2019). 



LittleBrain creates a two-dimensional representation of all voxels in the cerebellum, with each 

axis representing one of the principal functional gradients described by Guell and colleagues 

(Guell et al., 2018). Gradient 1 stretches from primary motor to non-motor areas, such as 

language and default regions. This is analogous to functional organization principles previously 

reported in the cerebral cortex that extend from primary unimodal sensory to transmodal 

regions (Margulies et al., 2016). Gradient 2 can be understood as a characterization of task focus 

or cognitive load. This gradient ranges from the two extremes of gradient 1 (motor and default 

regions) to areas involved in focused cognitive processing, such as working memory or 

attention.   

We mapped standardized age coefficient from the anatomical and functional parcellation using 

the LittleBrain toolbox and found that cerebellar growth follows mostly gradient 2, and might 

thus be related cognitive demands during development (Figure  4B). Cerebellar regions with 

small age-related effects are mainly localized in task unfocused regions with low cognitive 

demand (low gradient 2 values), such as motor processing and default networks. Regions with 

larger age-effects can be found in task focused regions (high gradient 2 values), likely to overlap 

with frontoparietal networks  (Guell et al., 2018). Volumetric patterns, principally from the 

anatomical parcellation, show a more diffuse gradient pattern, possibly due to little overlap 

between functional activity and macroscopic anatomy (Brett et al., 2002).     

Figure 4: Visualizations of growth gradients. A) ,=A84D 9=F ?=A8E F<DBG:< F<8 EF4A74D7=L87 4:8 O 6B899=6=8AFE B9

anatomical (vermal and mean of both hemispheres) and functional (volume, GMD, and WMD) ROIs in anterior-to-

posterior order. Shaded areas indicate the 95% prediction intervals of the linear fit lines. Asterisks in the legend 



indicate significant AP growth coefficients (slopes of linear fit lines). Anatomical location of functional parcellation 

centroids are indicated by numbers in the first panel and listed in Supplementary Table 5. B) Growth gradients 

visualized along two functional gradients using the LittleBrain tool (Guell et al., 2019). Gradient 1 (y-axis) ranges from 

motor (negative values) to non-motor areas (positive values); Gradient 2 (x-axis) from low (negative values) to high 

(positive values) task focus/cognitive load. Each dot in the scatterplot represents a voxel in the cerebellum. The color 

@4C SE64?87 C8D @B74?=FK FB 84E8 6B@C4D=EBAET E<BJE EF4A74D7=L87 4:8 O 6B899=6=8AFE B9 F<8 68D858??4D C4D68??4F=BA

a given voxel belongs to. 

Discussion (lines 429-456) 

Interestingly, the anterior-posterior growth trends in the cerebellum mirror a previously 

reported cerebellar functional gradient and maturation patterns found in the cerebrum. In the 

cerebral cortex, similar patterns of earlier maturation of sensorimotor compared to higher-order 

cognitive areas can be observed in myelination (Deoni et al., 2015; Elston & Fujita, 2014) and 

grey matter maturation (Giedd et al., 2015; Gilmore et al., 2012; Gogtay & Thompson, 2010; 

Tamnes et al., 2017), pointing towards directly related growth trajectories of the cerebellum and 

the cerebrum. Considering the two principle functional gradients that have been described by 

Guell and colleagues, our reported growth gradients might not only be reflective of motor vs. 

non-motor involvement but might also pertain to cognitive load. The first gradient extends from 

motor to non-motor areas, while the second gradient stretches from areas involved in task 

focused to task unfocused processing (Guell et al., 2018). The growth gradients in both 

parcellations and over different modalities (volume, GMD, WMD) map best onto gradient two, 

although volumetric gradient patterns seem to be more diffuse (Figure 4B). This implies earlier 

maturation of areas involved in task unfocused cognitive processing, like motor function and 

default mode networks, and later or prolonged maturation of regions likely to share 

involvement in working memory processing and frontoparietal networks. In the cerebrum, 

frontoparietal networks are known to mature later as, for example, sensorimotor networks. 

However, recently age-dependent maturation patterns paralleling the first, but not the second 

functional cerebellar gradient have been reported, with default networks reaching maturation 

last in a very similarly aged cohort (Dong et al., 2021). An alternative explanation for this result 

could have to do with the interplay between default mode and frontoparietal networks. 

Recently, the default mode network has been proposed to serve as a compensatory scaffold to 

support executive functions in children and young adults with immature frontoparietal network 

(Chen et al., 2023). Importantly, while there are suggestions of the growth patterns resembling 

gradient 2 proposed by Guell and colleagues, the depiction of the gradients using the LittleBrain 

toolbox in the current study is inconclusive, mainly due to divergent patterns in the anatomical 

parcellations. The issue of age related changes in cerebellar functional networks remains to be 

closely examined and could be explored in future studies using large-scale, longitudinal 

functional neuroimaging data. Together with similar maturation patterns in myelination and 

grey matter density, these findings provide additional support for developmental interactions 

between the cerebellum and cerebrum.      



Conclusion (line 566-568) 

The anterior/sensorimotor-posterior/cognitive growth gradient resembles a recently proposed 

functional gradient related to cognitive load and follows cerebral maturation patterns, thus 

providing evidence for directly related cerebello-cortical developmental trajectories.  

19) The data for waves 2 and 3 are heavily enriched in two age bands (wave 1 seems more evenly 

distributed between y and 10 yrs). How might this impact the accuracy of the growth curves for ages 

where there is relatively little data available?  

In general it is true that the estimated normative model will have reduced precision in regions of 

the age range having small numbers of data points, particularly when such regions are narrow. 

However, in this study we use an HBR framework which approximates the nonlinear age 

trajectory with a piecewise linear trajectory, (i.e. linear within every site) and is therefore less 

susceptible to this problem than more complex nonlinear models. It is also important to note 

that waves 2 and 3 were acquired on the same scanner, which effectively anchors the trajectory 

to interpolate these time points, thereby further reducing the uncertainty in the estimated 

centiles. 

20) It seems like a missed opportunity not to examine the subset of individuals with longitudinal data 

(scans at all 3 timepoints). Do these individuals stay on their growth curves over time? 

The question on longitudinal changes is very important and the focus of ongoing research 

efforts. Generally, differences in normative model deviation scores over time can be due to 

measurement error or biological changes. To separate these effects, specialized analyses are 

needed where uncertainty in the centiles and variance at the given time point are estimated. 

This is currently a very active, yet ongoing, area of research in the field. In a recent preprint, 

Rehak Buckova et al. propose a pipeline to achieve this and introduce a z-diff score to 

quantitatively describe longitudinal within-subject changes (Rehak Buckova et al., 2023). Given 

that these methods are still being developed, and that we believe that trying to validate such a 

technique in our cohort is beyond the scope of the current manuscript, we agree that this is a 

topic of great interest for the reader, which is why we now mention the approach in the 

discussion.

We added in manuscript: 

Discussion (lines 525-528) 

Furthermore, an approach to quantitatively evaluate within-subject changes in longitudinal 

designs using normative modeling has been proposed recently (Rehak Buckova et al., 2023), 

which promises great utility for individual-level data as it allows to estimate whether individual 

participants or patients follow their expected centiles. 



Reviewer #3 (Remarks to the Author): 

Here the authors examine normative developmental trajectories of the cerebellum and its constituent 

regions, something that has been lacking within human neuroscience for many years. The authors use a 

large neuroimaging dataset collected in the Netherlands whose longitudinal nature allows for powerful 

developmental analyses. They show that subsections of the cerebellum, whether defined anatomically 

or functionally, show distinct maturational rates, with interesting sex differences as well. Having created 

normative growth charts for regions of the cerebellum, the authors then go onto show that individuals 

with autism-related behavioral traits show significant deviation in several regions of the cerebellum, 

generally showing less cerebellar tissue. The authors provide a nice code-based framework for future 

researchers to take advantage of this large dataset. Overall these results are novel, statistically rigorous, 

and will be of interest to the field.  

1) Figure 2, it would be helpful here to maybe have a bar graph or something similar showing the actual 

growth or %-change for each lobule. I like the renderings of the cerebellum, but having more 

quantitative representation alongside it so the reader can see what each lobule is doing would be useful. 

I don't think a bar graph would take up too much space and could be fit alongside the volume 

renderings. I ask because in Fig 2B, it seems as if Crus II and CM are increasing by almost 25% in volume 

from 7 to 17 years old, that seems like a lot! I think it’s generally interpreted in the field that the brain 

(probably the cortex) has reached about 80% of its volume by the age of 5, so to show the cerebellum 

(or parts of it) is exceeding this would be something worth highlighting.  

We thank the reviewer for highlighting this important point, and agree it deserves more 

attention in the manuscript.  We have incorporated new graphs into the manuscript that show 

the growth of regions-of-interest (ROIs) in 2 ways. First, we included bar graphs of standardized 

age coefficients in the main figures 2 and 3. Standardized coefficients allow for effect 

comparisons across atlases (anatomical vs. functional), modalities (volume vs. GMD vs. WMD), 

and can also be employed when comparing effects across studies. Second, we included 

percentage changes of the mean linear trajectories for each ROI in the supplement.  

We added in manuscript: 

Figure 2 (lines 208-217) 



Figure 2: Effect of age on volume in the anatomical parcellation. A) Mean posterior distribution for the standardized 

4:8 O 6B899=6=8AF SE?BC8T 9BD 846< 4A4FB@=64? 0.) 4A7 45EB?GF8 7=998D8A68E =A 89986F E=L8E SEF4A74D7=L87 OT 58FJ88A

males and females are illustrated. B) Trajectories of males (in yellow) and females (in green in 3 example ROIs: left 

Lobule V (anterior cerebellum), left Crus II (posterior cerebellum), and left corpus medullare (white matter tract). 

The bold lines represent the mean trajectories, shaded areas represent what is within 2 standard deviations of the 

mean. Volume is shown in cubic centimeters (ccm). C) #4D :D4C<E B9 4?? EF4A74D7=L87 4:8 O 6B899=6=8AFE SE?BC8ET B9

males and females. Error bars depict 95% confidence interval of the mean. Exact numbers can be found in 

Supplementary Table 3 and the percentage change of mean trajectories for each anatomical ROI is illustrated in 

Supplementary Figure 3A. 

Figure 3 (lines 255-264) 





Figure 3: Effect of age on volume in the functional parcellation. A) MDTB functional atlas regions. Figure from King et 

al. 2019. B) -84A CBEF8D=BD 7=EFD=5GF=BA 9BD F<8 EF4A74D7=L87 4:8 O 6B899=6=8AF SE?BC8T 9BD 846< 9GA6F=BA4? 0.) B9 F<8

-%2# 4F?4E S4R9T 4A7 45EB?GF8 7=998D8A68E =A 89986F E=L8 SEF4A74D7=L87 OT 58FJ88A @4?8E 4A7 98@4?8E 4D8 =??GEFD4F87 S:R

i). C) Trajectories of males (in yellow) and females (in green) for 2 example ROIs. 1: Left hand presses (anterior 

cerebellum) and 5: Divided attention (left) (posterior cerebellum). The bold lines represent the mean trajectories, 

shaded areas represent what is within 2 standard deviations of the mean. D) #4D :D4C<E B9 4?? EF4A74D7=L87 4:8 O

coefficients (slopes) of males and females. Error bars depict 95% confidence interval of the mean. Exact numbers can 

be found in Supplementary Table 4 and the percentage change of mean trajectories for each functional ROI is 

illustrated in Supplementary Figure 3B. 

Supplementary Figure 3 (lines 961-966) 

Supplementary Figure 3: Percentage change of the mean linear trajectory of males and females between the ages of 

6 and 17 for the A) anatomical and B) functional parcellation. Horizontal lines depict the mean percentage change 

over ROIs, error bars represent percentage change with +/- 1 standard deviation of the mean trajectory. Important to 

note: percentage change is highly sensitive to initial values. The more extreme the initial value, the more likely is a 

high percentage change (e.g.: WMD autobiographical recall where initial values are very low (see Supplementary 

Figures 2C-D)). 

2) Individual images were linearly then nonlinearly aligned to a shared space. It later says that 

parcellations were done in native space. Can the author’s clarify? After reading the methods section 

“Anatomical Parcellation” a few times, I think I finally understood what was happening. Five hand-



segmented images are nonlinearly aligned to 21 representative brains spanning the age-range to create 

a small library of 105 segmented cerebella. Then an individual’s brain is aligned to each of these 105 

segmentations, and then a compression step happens (through voxel-wise majority voting) to get a final 

segmentation in an individual’s brain. Is that correct? If not then this section might benefit from more 

explanation.  

The reviewer is indeed correct, as this is precisely the anatomical image analysis. However, we 

agree that this section can benefit from adaptations to improve the clarity. 

We changed he following in the manuscript: 

Methods, Anatomical parcellation (lines 678-694) 

The MAGeTBrain framework uses an automated labeling algorithm based on five manually 

segmented MR images from healthy participants. Non-linear registration is used to align the five 

manually segmented images (in MAGeTBrain referred to as “atlases”) to a series of individual 

study-specific “template” images (referred to as “templates” here).  

Seven unique and representative images from the three study time points were selected, by a) 

excluding scans with dental implants, b) pre-selecting the top 20 scans with the highest quality 

ratings based on automatic FreeSurfer quality assurance (Rosen et al., 2018), and c) thoroughly 

inspecting the top 20 scans per time point for artifacts, inhomogeneities, full coverage of the 

cerebellum, and (cerebellar) cysts. Based on this evaluation, the 7 scans with the highest quality 

ratings were selected per time point, resulting in 21 study-specific template images.  

Each of the five manually segmented atlases were then applied to the 21 study-specific 

templates, resulting in 105 cerebellar atlas-template segmentations. This allows for the manual 

segmented atlases to be propagated to each of the template images. Next, each individual scan 

in the dataset was non-linearly registered to each of the 105 cerebellar template segmentations, 

resulting in 105 segmentations for each input image, and enabling the template-atlas labels to 

be propagated to each individual participant space (Chakravarty et al., 2013). In the final step, 

for each individual input image, the 105 co-registered atlas-template labels were then fused 

using voxel-wise majority voting to create a final segmentation.  

3) It would help to have a more intuitive description of what gray/white matter density are. Is it 

essentially how gray or white a given voxel is? Is it derived from the inherent voxel intensity within the 

individual’s image, or is it derived by aligning the individual to the MNI space and is it extracted from 

some probability map there? This can be useful for interpretation. For example in Fig 4B it seems that 

GMD decreases and WMD increases, which might be in line with the interpretation that myelin content 

is increasing (thus whitening most voxels).  

SMRIPrep, the automated tool we used for preprocessing all images, calls the FAST tissue 

segmentation tool from FSL. FSL FAST outputs tissue-type probability map for each tissue type 

(here: GMD,WMD, and CSF). That is, given the inherent voxel intensity of a (brain extracted) 

scan (in the context of the other voxels and distribution of intensities), the probability of a given 



voxel being grey matter or white matter (or CSF). We now clarify this in the manuscript and 

mention the tissue segmentation tool (FSL FAST) specifically. 

We added in the manuscript: 

Methods, Image pre-processing (lines 639-642) 

The tissue segmentation procedure (FSL FAST: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST) 

resulted not only in binary classifications of voxels, but also in per-voxel tissue class probability 

estimates. These probability estimates can be interpreted as the likelihood of a given voxel 

being grey matter, white matter, or cerebrospinal fluid. 

4) Figure 5 is nice. However, when ranking functional parcels onto the AP axis, the authors write that the 

volumetric/spatial centroid was used to determine in which anatomical lobule a given functional parcel 

falls. As the authors note, most functional parcels have two components (left-hand presses show 

representation in anterior and posterior lobules) and if the centroid falls outside of a lobule they hand-

assign it to the nearest lobule. For the case of left-hand presses, that might be a lobule that doesn’t 

actually have any left-hand press representation. Does that happen? The authors acknowledge that this 

approach isn’t perfect. Maybe they could also just try a binary test comparing motor versus non-motor 

representations to test for gradient difference in development? Related to this point, Guell and 

colleagues in their “functional gradients of the cerebellum” article find an A-P gradient (gradient 1) from 

functional connectivity, maybe using those values to assign your functional parcels a better sensory-

cognitive score (rather than a spatial centroid) would help? The sex difference flatmaps in Figure 4A for 

GMD and WMD seem to map onto the Guell gradient 1 map quite well (peaks near Crus1/2, low values 

in anterior lobules like LobI-III and IX) so it could be a worthwhile endeavor. Also, and perhaps this is just 

a semantic difference, but isn’t lobule IX as anterior as lobule I-III? Isn’t Crus I/II the most posterior?  

Thank you for the comment. In the following, we will answer the points concerning centroid 

locations, gradient difference in motor vs. non-motor parcels, and anterior/posterior labelling of 

lobules separately. 

� The centroid for the left-hand presses falls within the left lobule 5 which does contain functional 

representations of left-hand presses. However, the centroid of the right-hand presses falls 

outside the right lobule 5 by just one or two voxels. Please see attached image for illustration. 

The same is true for the only other centroid (parcel 5: divided attention (left) – centroid just 

outside of Crus I) that did not fall inside lobular boundaries. 



� Thank you for the suggestion of using the functional gradients proposed by Guell as a 

comparison (Guell et al., 2018). We added an analysis using the LittleBrain gradient toolbox 

(Guell et al., 2019) – please refer to comment 18 of reviewer 2. 

� Concerning the description of lobules as anterior or posterior, this can indeed be misleading as 

there is a difference between what is anterior/posterior in the cerebrum compared to the what 

is commonly referred to as anterior/posterior in the cerebellum. Lobules III – V together make 

up the anterior lobe of the cerebellum (lobules I and II are located in the midline [anterior 

vermis]). The primary fissure separates the anterior from the posterior lobe (lobules VI-IX), 

which is why lobules IX are referred to as posterior while lobule III as anterior. Lobule III is 

therefore the most anterior, and lobule IX the most posterior lobule of the cerebellar 

hemispheres, despite the fact that they are both located in the same (or adjacent) coronal 

plane. 

5) Within the field of neuroimaging, the volumetric findings from autism cohorts on the brain and 

cerebellum are a little all over the place, so in some sense the authors’ findings using this massive 

dataset (the largest study of the cerebellum to date) stand to add a lot of clarity. I think the authors 

could increase their discussion on this point, pointing out which studies they replicate, and perhaps 

discussing that their parcellated approach (rather than treating the cerebellum is a single structure) 

perhaps allowed for better sensitivity.  

Thank you, we agree that our large scale approach will allow for better characterizations of 

disease patterns in autism but also in other pathologies. Importantly, we use the example of 

children with high social responsiveness score (SRS) in our general cohort to illustrate the utility 

of the approach. We expanded our discussion on previous findings and highlight the parcellated 

approach. 

We added in the manuscript: 

Discussion (lines 477-495) 

In accordance with previous research, we find smaller cerebellar volumes in children with 

autistic traits. In the anatomical parcellation smaller volumes can be seen throughout various 



regions, particularly in vermal and lobular parts of the anterior and superior posterior 

cerebellum (Figure 5A). This corroborates findings of hypoplasia in posterior vermal and lobular 

regions which have been reported consistently before in clinical samples (D'Mello et al., 2015; 

Kaufmann et al., 2003; McKinney et al., 2022; Pierce & Courchesne, 2001; Stanfield et al., 2008). 

While the functional parcellation also reveals smaller volumes throughout almost all ROIs, with 

significant differences in MDTB components 1) Left-hand presses and 6) Divided attention 

(right), the MDTB components 7) Narrative and 8) Word comprehension seem to not follow the 

same trend (Figure 5B). Given the overlap of MDTB components 7 and 8 with the cerebellar 

default mode regions described by Buckner and colleagues (Buckner et al., 2011), a network 

found to be among the most disrupted in ASD patients, this might relate to previously reported 

heterogeneity in default mode network connectivity in children on the Autism spectrum 

(Padmanabhan et al., 2017). Clear differences can also be observed in GMD with a high 

percentage of individuals with autistic traits exhibiting increased GMD in the anterior 

sensorimotor parcels, particularly on the left hemisphere, and decreased GMD in the superior 

posterior parcels involved in language processing (Figure 5C). In view of the heterogeneity in 

brain morphology between individuals across a multitude of pathologies, it is noteworthy that 

the current approach does not depend on group-level inferences but can be used at an 

individual level to uncover within-group heterogeneity. Furthermore, the availability of a very 

detailed anatomical as well as a functional parcellation allow for more sensitive approaches 

when investigating pathological deviations from typical development. 

Minor Comments: 

6) CCM is used as the unit for volume analyses (e.g., Figure 2B). What does it stand for? Is it cubic 

centimeters? I’m not sure the acronym is defined anywhere.  

This is correct. We now define ccm as cubic centimeters in the figure legends. 

We added in the manuscript: 

Figure 2, Legend (line 214) 

Volume is shown in cubic centimeters (ccm). 

Supplementary Figure 2A&B, Legend (lines 933-934 & 941-942) 

The y-axis shows volume in cubic centimeters (ccm). 

7) Seems like Fig 3 could be added as an inset into Fig 4 given how related they are (and that 3 is just a 

reproduction). 

Thank you for the comment. To have a better overview, the reproduction of the functional 

parcellations (King et al., 2019) is now included in Figure 3 (before: Figure 4). Please see the 

response to comment 1. 



Reviewer #4 (Remarks to the Author):

1. What are the noteworthy results? 

Comment: The first normative model of anatomical and functional subregions of the cerebellum was 

established from a large pediatric population, and revealed an anterior-posterior gradient of human 

cerebellum. 

2. Will the work be of significance to the field and related fields? How does it compare to the established 

literature? If the work is not original, please provide relevant references. 

Comment: The present work is highly novel and holds great significance to the field of human brain 

mapping as well as related fields such a s brain disorders and public health. Some novel results (e.g., the 

A-P gradient of brain growth is hlighly implicated with previous literature on brain maturation such as 

cortical gradient development). 

3. Does the work support the conclusions and claims, or is additional evidence needed? 

Comment: Over speaking, the work has been done in a very solid way. But, it would be more informative 

if the authors can demonstrate some valid usage of the proposed normative models, for example, the 

association studies on the cerebellum and behavior/cognition. 

Thank you for your comments on points 1 and 2. 

Besides illustrating the how the models can be used in a clinical phenotype (autistic traits), we 

additionally added a supplementary analysis on associations between cerebellar functional 

regions of interest and IQ. Please refer to comment 6 of reviewer 1 for full details.  

4. Are there any flaws in the data analysis, interpretation and conclusions? Do these prohibit publication 

or require revision? Is the methodology sound? Does the work meet the expected standards in your 

field? 

Comment: A problematic point is about the uneuqal distribution of sample ages, which could be the 

driving force of the overall linear trajectories modeled. The authors need to be carefull for the 

interpretation on their findings while they can do some validation based on some smaller-scale cohorts 

such as Healthy Brain Network or Chinese Color Nest. These cohorts are openly shared to the community.  

Thank you for raising the point of an external validation. We fully agree that generalizability is an 

important issue in modeling approaches, which is why we used a 50% train / 50% test split in 

our cohort, and therefore utilizing half of the data for validation on a holdout set. The 

computational time and the resources needed to run the anatomical parcellation (MAGeTBrain) 

in addition to the ensuing quality control, would not allow us to the include a new cohort within 

a short timeframe. Furthermore, a recent paper on comparisons of normative models suggest 

that model parameters become highly stable with N>3,000 (Ge et al., 2023). Nevertheless, we 

agree with the reviewer on the importance of external validation steps, and therefore included 

this suggestion in the limitation section of the discussion. 



Concerning the effect of having peaked distributions in 2 measurement waves of the model 

estimates, we kindly refer to comment 19 of reviewer 2.  

We added in the manuscript: 

Discussion, Limitations (lines 540-547) 

While normative models were found to be highly stable with N > 3,000 (Ge et al., 2023), it is 

noteworthy that the current models can easily be updated within the PCNtoolkit framework. 

This can also include new data points outside of our age range and from diverse backgrounds, or 

from clinical cohorts. As a consequence, the cerebellar normative models can be extended and 

refined as new information becomes available while new, possibly smaller cohorts can benefit 

from informed priors based on our models. In such a way, the current models and our results on 

deviations in children likely to fall on the autism spectrum can be validated in an external 

(clinical) cohort in the future.  

5. Is there enough detail provided in the methods for the work to be reproduced? 

Comment: Yes.  

We are happy the reviewer agrees our methods are comprehensively presented.

6. Other Comments:  

The scientific finding of the A-P growth gradient is very interesting while can be further informed with 

recent advances on developmental shifts of cortical connectivity gradient from childhood to adolecence, 

please refer to https://pubmed.ncbi.nlm.nih.gov/34260385.

Thank you for this valuable addition. We now compare results of the suggested paper with the 

growth gradients reported in the current manuscript in the discussion section.  

We added in the manuscript: 

Discussion (lines 442-454) 

In the cerebrum, frontoparietal networks are known to mature later as, for example, 

sensorimotor networks. However, recently age-dependent maturation patterns paralleling the 

first, but not the second functional cerebellar gradient have been reported, with default 

networks reaching maturation last in a very similarly aged cohort (Dong et al., 2021). An 

alternative explanation for this result could have to do with the interplay between default mode 

and frontoparietal networks. Recently, the default mode network has been proposed to serve as 

a compensatory scaffold to support executive functions in children and young adults with 

immature frontoparietal network (Chen et al., 2023). Importantly, while there are suggestions of 

the growth patterns resembling gradient 2 proposed by Guell and colleagues, the depiction of 

the gradients using the LittleBrain toolbox in the current study is inconclusive, mainly due to 



divergent patterns in the anatomical parcellations. The issue of age related changes in cerebellar 

functional networks remains to be closely examined and could be explored in future studies 

using large-scale, longitudinal functional neuroimaging data.  
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Reviewer #1 (Remarks to the Author):

The authors have answered in great details to my remarks. In general, I think that the quality of 

the manuscript have improved.

I would still have a question regarding the interpretation of the new data presented in 

supplementary material 8.

For the volume (left panel), I think that the results are coherent. In the low IQ vs high IQ group, 

there seems to be an opposite pattern. However for GMD (middle panel), there are regions of 

interest in the cognitive right cerebellum where the pattern is identical in the low vs high IQ group. 

Does that mean the children with low and high IQ have higher GMD than expected in the same 

ROIs ? I think that it would be interesting if the authors could elaborate on these results.

Reviewer #2 (Remarks to the Author):

The authors have adequately addressed most of my questions and comments. The new analyses 

address the open questions that I had and more solidly ground this study in the context of the 

existing literature. The description of the methods is greatly improved and much clearer.

I only have minor comments at this stage:

- I recommend that the authors incorporate the information from the legend for Supplementary Fig 

7 into the main text: “The MAGeT algorithm subdivides the cerebellum into 11 vermal and 22 

hemispheric lobules (11 on each hemisphere). Additionally, the central white matter, the corpus 

medullare, is segmented in each hemisphere. White matter that extends into the folia of the 

lobules was segmented as part of the lobules.” This way the information is readily available in the 

main Methods section. This is important given that different parcellation methods deal with 

cerebellar lobules (particularly I-II, III) in different ways.

- Figs 2 and 3 – the error bars are impossible to see, can this be remedied?

- I think it is important that the authors continue to emphasize throughout the manuscript that the 

age range they are studying (6+ years) is one in which you would expect the most developmental 

changes in association / not sensorimotor regions. In other words, the findings don’t mean that 

there are not age-related changes in the core motor regions of the cerebellum, just that they are 

not captured in this particular age range. It would be helpful to add “in ages 6-17 years” or “in the 

age range measured here” or “during childhood and adolescence” similar statements for clarity and 

to capture this nuance throughout the manuscript.

- P. 14, line 306-308 “We mapped standardized age coefficient from the anatomical and functional 

parcellation using the LittleBrain toolbox and found that cerebellar growth follows mostly gradient 

2, and might thus be related to cognitive demands during development (Figure 4B).” Another 

interpretation might be that the growth is not necessarily related to cognitive demands changing 

(which suggests the direction is cognitive demands --> driving the growth) and could instead be 

related to the typical maturation patterns that are seen in the cerebral cortex, where the 

development of areas associated with higher-level cognitive processes emerge later. The authors 

do note this elsewhere in the manuscript. A minor edit might be something like “… cerebellar 

growth follows mostly gradient 2 and might thus be related to the documented later maturation of 

brain regions supporting higher-level cognitive processes”.

- P. 16, line 348 “… in verbal and lobular regions”. Recommended change to “… in vermal and 

hemisphere regions”

- P. 19, lines 413-415. There are functional differences throughout the vermis, e.g. the oculomotor 

vermis, and the posterior vermis is more associated with emotional regulation / processing than 

the anterior vermis. The authors might want to rephrase this sentence to reflect those nuances.

- P. 20. Another caveat in terms of the anterior-posterior gradient is that there is more than one 

representation of the functional connectivity networks (e.g. motor to cognitive networks, then 

cognitive to motor, with a shift in lobule VII – see Buckner et al. 2011), so it may not be linear as 

you move from lobules I-X

Reviewer #3 (Remarks to the Author):

The authors have performed a number of analyses and textual changes that have significantly 



improved the manuscript and addressed any minor concerns I may have add. I am satisfied with 

the manuscript in its new state and congratulate the authors on a nice collection of findings.



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have answered in great details to my remarks. In general, I think that the quality of the 

manuscript have improved.  

I would still have a question regarding the interpretation of the new data presented in supplementary 

material 8.  

For the volume (left panel), I think that the results are coherent. In the low IQ vs high IQ group, there 

seems to be an opposite pattern. However for GMD (middle panel), there are regions of interest in the 

cognitive right cerebellum where the pattern is identical in the low vs high IQ group. Does that mean the 

children with low and high IQ have higher GMD than expected in the same ROIs ? I think that it would be 

interesting if the authors could elaborate on these results. 

We thank the reviewer and have addressed the last remaining point in the supplement due to space 

constraints in the main text. We indeed show somewhat similar trends in GMD and WMD in children 

with high and low IQ. It is important to note that IQ might not relate linearly to brain structure. Using 

the current approach, future studies could investigate how such patterns might differ on an individual 

level, or how comorbidities might influence such relationships i.e. high IQ with or without ASD. 

We added in the supplement: 

Supplementary information, Supplementary Figure 8 (lines 96-98) 

Interestingly, high deviations in the same ROIs can be seen in the low and high IQ group in GMD 

and WMD. This might relate to non-linear effects of IQ on brain structure. Source data are 

provided as a Source Data file. 

Reviewer #2 (Remarks to the Author): 

The authors have adequately addressed most of my questions and comments. The new analyses address 

the open questions that I had and more solidly ground this study in the context of the existing literature. 

The description of the methods is greatly improved and much clearer. 

I only have minor comments at this stage: 

- I recommend that the authors incorporate the information from the legend for Supplementary Fig 7 

into the main text: “The MAGeT algorithm subdivides the cerebellum into 11 vermal and 22 hemispheric 



lobules (11 on each hemisphere). Additionally, the central white matter, the corpus medullare, is 

segmented in each hemisphere. White matter that extends into the folia of the lobules was segmented 

as part of the lobules.” This way the information is readily available in the main Methods section. This is 

important given that different parcellation methods deal with cerebellar lobules (particularly I-II, III) in 

different ways. 

We thank the reviewer for his/her time and valuable comments. Regarding the first point, we have 

added the information in the methods section. 

We added in the manuscript: 

Methods, Anatomical parcellation (lines 651-656) 

The MAGeT algorithm subdivides the cerebellum into 11 vermal and 22 hemispheric lobules (11 

on each hemisphere). Additionally, the central white matter, the corpus medullare, is 

segmented in each hemisphere. White matter that extends into the folia of the lobules was 

segmented as part of the lobules. Volumes for each of these 35 anatomical parcellations are 

generated in mm3 by the MAGeT pipeline. Supplementary Figure 7 shows a representative 

automatically labelled segmentation from one individual and gives an overview of all 35 

anatomical subdivisions. 

- Figs 2 and 3 – the error bars are impossible to see, can this be remedied? 

We agree and chose to show the standard deviation instead of the 95% confidence interval of the mean 

in the updated figures 2 and 4 (formerly figure 3):  



Figure 2: Effect of age on volume in the anatomical parcellation.  
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in 3 example ROIs: left Lobule V (anterior cerebellum), left Crus II (posterior cerebellum), and left corpus medullare (white matter 

tract). The bold lines represent the mean trajectories, shaded areas represent what is within 2 standard deviations of the mean. 
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found in Supplementary Table 3 and the percentage change of mean trajectories for each anatomical ROI is illustrated in 

Supplementary Figure 3A. Source data are provided as a Source Data file. 



Figure 4: Effect of age on volume, Grey Matter Density (GMD), and White Matter Density (WMD) in the functional parcellation.  
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Trajectories of males (in yellow) and females (in green) for 2 example ROIs. 1: Left hand presses (anterior cerebellum) and 5: 

Divided attention (left) (posterior cerebellum). The bold lines represent the mean trajectories, shaded areas represent what is 
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Table 4 and the percentage change of mean trajectories for each functional ROI is illustrated in Supplementary Figure 3B. Source 

data are provided as a Source Data file. 



- I think it is important that the authors continue to emphasize throughout the manuscript that the age 

range they are studying (6+ years) is one in which you would expect the most developmental changes in 

association / not sensorimotor regions. In other words, the findings don’t mean that there are not age-

related changes in the core motor regions of the cerebellum, just that they are not captured in this 

particular age range. It would be helpful to add “in ages 6-17 years” or “in the age range measured 

here” or “during childhood and adolescence” similar statements for clarity and to capture this nuance 

throughout the manuscript. 

We adjusted the manuscript as follows: 

Results, Functional parcellation (lines 220-225) 

While it is well-documented that GMD decreases and WMD increases in the brain during this 

age range, we again see a clear distinction between anterior motor regions and posterior 

cognitive regions in 6 to 17 year olds. This is further illustrated by the growth trajectories of an 

example anterior motor (1: Left hand presses) and posterior cognitive (5: Divided attention 

(left)) ROI. Steeper slopes, and thus more developmental changes, are observed in posterior 

cognitive regions compared to anterior motor regions during childhood and adolescence (Figure 

4B a, b & c).  

Results, Anterior-posterior growth gradient (lines 274-276) 

We mapped standardized age coefficient from the anatomical and functional parcellation using 

the LittleBrain toolbox and found that cerebellar growth during childhood and adolescence 

follows mostly gradient 2, and might thus be related to cognitive demands during development 

(Figure 5B).  

Discussion (lines 353-356) 

Between ages 6 and 17, anterior sensorimotor areas show smaller age-related effects compared 

to posterior cognitive areas, possibly reflecting protracted growth trajectories for higher-order 

cognitive compared to sensorimotor regions in the cerebellum.  

- P. 14, line 306-308 “We mapped standardized age coefficient from the anatomical and functional 

parcellation using the LittleBrain toolbox and found that cerebellar growth follows mostly gradient 2, 

and might thus be related to cognitive demands during development (Figure 4B).” Another 

interpretation might be that the growth is not necessarily related to cognitive demands changing (which 

suggests the direction is cognitive demands --> driving the growth) and could instead be related to the 

typical maturation patterns that are seen in the cerebral cortex, where the development of areas 

associated with higher-level cognitive processes emerge later. The authors do note this elsewhere in the 

manuscript. A minor edit might be something like “… cerebellar growth follows mostly gradient 2 and 

might thus be related to the documented later maturation of brain regions supporting higher-level 

cognitive processes”.  



Thank you for raising this point. We do agree and that the growth changes seem to follow age-related 

improvements of underlying function (higher-level functions in late childhood and adolescence) and 

cover this point in the discussion. However, we politely disagree that the LittleBrain tool is an 

appropriate approach to prove this assumption. Both gradients in the LittleBrain toolbox (Gradient 1: 

non-motor to motor areas; Gradient 2: low to high task focus/cognitive load) could in theory support the 

later maturation of high-level area theory. Therefore, the LittleBrain toolbox, if a pattern can be 

observed, would always support such a trend but is not able to prove the absence of it. 

- P. 16, line 348 “… in verbal and lobular regions”. Recommended change to “… in vermal and 

hemisphere regions” 

We changed the manuscript accordingly: 

Results, Large normative model deviations and clinical or behavioral phenotypes (lines 302-306) 

In the anatomical parcellation, a higher percentage of participants with high SRS scores 

presented with large negative z-scores (smaller volume than expected) throughout various ROIs 

(Figure 6A), specifically in vermal and hemispheric regions of the anterior and superior posterior 

cerebellum (significant percentage with large deviations binomial test at p<0.05: Crus I (left), 

VIIIB (left), vermal region III, Lobule VI (right)). 

- P. 19, lines 413-415. There are functional differences throughout the vermis, e.g. the oculomotor 

vermis, and the posterior vermis is more associated with emotional regulation / processing than the 

anterior vermis. The authors might want to rephrase this sentence to reflect those nuances. 

Thank you for the comment. We adjusted the manuscript to include the information on localized 

differences in function in the cerebellar vermis. 

We changed in the manuscript: 

Discussion (lines 365-370) 

The possible absence of an anterior-posterior growth gradient in vermal areas is interesting, 

since functional differences are also present throughout the vermis. However, these are 

functionally distinct from the hemispheres of the cerebellum as the vermis receives 

sensorimotor afferents from the spinal cord, and is predominantly involved in lower-order 

functions, such as postural control, locomotion, and gaze [31], but also plays an important role 

in emotion processing [32-34]. 

- P. 20. Another caveat in terms of the anterior-posterior gradient is that there is more than one 

representation of the functional connectivity networks (e.g. motor to cognitive networks, then cognitive 

to motor, with a shift in lobule VII – see Buckner et al. 2011), so it may not be linear as you move from 

lobules I-X 



Thank you for the suggestion. We agree and added this information to the caveats of the anterior-

posterior gradient discussion. 

We added in the manuscript: 

Discussion (lines 382-383) 

However, results should be interpreted with caution given the complex geometry of the 

cerebellum and the possibility of non-linear functional gradients (Buckner et al., 2011). 

Reviewer #3 (Remarks to the Author): 

The authors have performed a number of analyses and textual changes that have significantly improved 

the manuscript and addressed any minor concerns I may have add. I am satisfied with the manuscript in 

its new state and congratulate the authors on a nice collection of findings. 

We thank the reviewer for his/her time and feedback. 


