
Supplementary Information Methods for: 
 

Transfer learning enables predictions in network biology 
 
 
Christina V. Theodoris*1-4, Ling Xiao2,5, Anant Chopra6, Mark D. Chaffin2, Zeina R. Al Sayed2, 
Matthew C. Hill2,5, Helene Mantineo2,5, Elizabeth M. Brydon6, Zexian Zeng1,7, X. Shirley Liu1,7,8, 
Patrick T. Ellinor*2,5 
 
 
Affiliations: 
1 Department of Data Science, Dana-Farber Cancer Institute, Boston MA, USA.  
2 Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT 
and Harvard, Cambridge, MA, USA. 
3 Division of Genetics and Genomics, Boston Children's Hospital, Boston MA, USA.  
4 Harvard Medical School Genetics Training Program, Boston, USA.  
5 Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. 
6 Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA.  
7 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. 
8 Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA. 
* Co-corresponding authors 
 
 
Correspondence to: christina.theodoris@gladstone.ucsf.edu, ellinor@mgh.harvard.edu  



Supplementary Information Methods 
 
Robustness of gene embeddings to batch-dependent technical artifacts 
To quantify the impact of common batch-dependent technical artifacts on Geneformer gene 
embeddings, we compared 1) the cosine similarity of embeddings from two randomly selected 
genes from the same cell (which we expect to have low cosine similarity), 2) the cosine 
similarity of embeddings from the same gene from two different cells of the same cell type from 
the same batch (which we expect to have high cosine similarity), and 3) the cosine similarity of 
embeddings from the same gene from two different cells of the same cell type from different 
batches (which we expect to have high cosine similarity if the gene embeddings are robust to 
batch-dependent technical artifacts). We performed the above procedure to quantify A) 
platform-related effects using 500 cells iPSCs assayed in parallel on the Drop-seq (single-cell) 
or DroNc-seq (single-nucleus) platform1, B) preservation-related effects using 330 fresh vs. 
frozen natural killer (NK) cells from the same donor2,3, and C) individual patient variability-
related effects using 344 aortic ECs cells from different control patients4. Distributions were 
statistically compared by Wilcoxon rank sums with Bonferroni correction.  

Of note, although we found that Geneformer was robust to the common batch-
dependent technical artifacts that we tested, Geneformer was not designed specifically for 
scRNA-seq batch integration. As such, users may elect to preprocess their limited task-specific 
data with alternative batch integration methods prior to using that data for fine-tuning 
Geneformer towards their downstream task if they find their dataset to be persistently affected 
by such batch-dependent artifacts. 

 
Robustness of cell embeddings to batch-dependent technical artifacts 
Geneformer cell embeddings were visualized in two dimensions with scanpy’s5 implementation 
of Uniform Manifold Approximation and Projection6 (UMAP). To contrast the robustness to 
batch-dependent technical artifacts compared to the original data, this UMAP of the Geneformer 
cell embeddings was compared to the UMAP of the original data generated according to the 
procedures outlined in the scanpy clustering tutorial, with or without normalization by ComBat7 
or Harmony8 methods as indicated. All cells were utilized for the UMAPs of the aortic dataset4; 
UMAPs for the iPSC to cardiomyocyte differentiation dataset1 were generated by randomly 
sampling 500 cells for memory efficiency.  

All Drop-seq cells without downsampling were used to train the cell type classification 
fine-tuning application, and all DroNC-seq cells were used to evaluate this trained model. The 
DroNc-seq (single-nucleus) platform detected significantly fewer genes than the Drop-seq 
(single-cell) platform (p<0.05, Wilcoxon rank sum test) in cells undergoing iPSC to 
cardiomyocyte differentiation1. Additionally, cardiomyocyte type 1 was significantly 
overrepresented in the Drop-seq data compared to the DroNC-seq data, where cardiomyocyte 
type 2 was significantly overrepresented (p<0.05, X2 test) (cell types from annotations by 
original authors). This may indicate that the distinction between these cardiomyocyte types is a 
technical artifact. Of note, the fine-tuned cell type classifier was least confident in distinguishing 
between these potentially artifactual two cardiomyocyte subtypes, and most inaccuracies were 
due to preferentially predicting the cardiomyocyte type 1, which was overrepresented in the 
Drop-seq training data and underrepresented in the DroNC-seq evaluation data. 



Context-dependence of gene embeddings 
Context dependence of gene embeddings was quantified by measuring standard error of 
embeddings of the same gene across variable cell types (fibroblasts, mesenchymal stem cells 
(MSCs), T cells, NK cells, monocyte/macrophage/dendritic cells (MonoMaphDC), smooth 
muscle cell (SMC) 1 and 2) within aortic tissue from control patients4. GAPDH, a known 
housekeeping gene, was used as a control gene expected to have low context-dependence 
compared to known highly context-dependent NOTCH receptors 1, 2, and 3, ligand DLL1, and 
RBPJ. Context dependence was also quantified by measuring the effect on the embeddings of 
the remaining genes in the transcriptome in response to in silico reprogramming fibroblasts9 by 
artificially adding OCT4, SOX2, KLF4, and MYC (OSKM) to the front of their rank value 
encodings. Gene embeddings were shifted from their original fibroblast state to be more cosine 
similar to that gene’s embedding in the iPSC state5,9. We also quantified context dependence of 
gene embeddings in response to in silico myoblast differentiation. Guo et al. eLife 2022 reported 
generation of iPSC-derived myoblasts that pass through an initial PAX3+/MYOD- stage (S1) 
towards the PAX3+/MYOD+ myogenic state (S2B)10. We tested in silico differentiation via 
artificially adding MYOD to the front of the rank value encodings of PAX3+/MYOD- (S1) cells 
and found the embeddings of the remaining genes significantly shifted towards the MYOD+ 
(S2B) myogenic cell state as measured by cosine similarity.  

Of note, in silico reprogramming/differentiation is only modeling the first step in the cell 
state transitions that occur in response to addition of the reprogramming/differentiation factors 
as the remainder of the gene context within the rank value encoding is equivalent to the original 
cell aside from the addition of these factors (e.g. OSKM or MYOD). The relevant measurement 
that is quantified in this approach is the directionality of the shift that occurs in response to 
addition of these factors. For example, while addition of random genes shifts the remaining 
genes’ embeddings in a random direction, addition of OSKM significantly shifts the remaining 
genes’ embeddings towards their embeddings within the context of the iPSC state, indicating 
that the directionality of the predicted shift is concordant with the true biological cell state 
transition from fibroblast to iPSC in response to the experimental addition of OSKM. 
 
Geneformer attention weight analysis 
When examining the mean attention weights of each gene in aortic ECs from control patients4, 
we found that 20% of attention heads significantly attended transcription factors11 more than 
other genes (p<0.05, Wilcoxon rank sum test, Benjamini-Hochberg (BH)-corrected), indicating 
that specific attention heads learned, in an entirely self-supervised manner, the relative 
importance of transcription factors in distinguishing cell states. We also found that specific 
attention heads attended the top 50 most central genes significantly more than the 50 most 
peripheral genes in the N1-dependent network12 (p<0.05, Wilcoxon rank sum test, BH-
corrected). Concordantly, these centrality-driven attention heads consistently attended to a 
significantly greater degree the highest ranked genes in each cell’s unique rank value encoding 
in aortic ECs, smooth muscle cells, T cells, and macrophage/monocyte/dendritic cells from 
control patients4 (p<0.05, Wilcoxon rank sum test, BH-corrected). Only cells with a full 2048 
input size were included for this analysis so that ranks would be comparable. Interestingly, 
attention heads in the earliest layers were consistently the most diverse in terms of gene ranks 
they attended, suggesting the model initially orients to the observed cell state through a joint 



survey of distinct portions of the input space. The middle layers were most broad in terms of 
gene ranks they attended, and the final layers focused on the highest ranked genes that 
uniquely define each cell state.  
 
In silico perturbation analysis 
We tested the impact on fetal cardiomyocytes from the Fetal Cell Atlas13 of in silico deleting 
genes known to be involved in cardiomyopathy, structural heart disease, and hyperlipidemia 
from the relevant clinical genetic testing panels from Blueprint Genetics. Genes in the 
hyperlipidemia panel that were also present in the cardiomyopathy or structural heart disease 
panels were excluded from the hyperlipidemia analysis. Impact of in silico deletion was 
correlated with that gene’s rank within the rank value encoding, which is expected given genes 
that uniquely distinguish cell state are encoded at higher ranks. However, impact of in silico 
deletion was not correlated with the number of detections of that gene, indicating single cell 
RNA-seq dropout rates were not significantly impacting the predicted deleterious effect of in 
silico deletion. Gene set enrichment of the top 500 genes whose in silico deletion in fetal 
cardiomyocytes was predicted to have the most deleterious effect was determined using 
ToppFun with a cut-off of 0.05 for p-values adjusted for multiple hypotheses. 
 We tested the impact on fetal cardiomyocytes from the Fetal Cell Atlas13 of in silico 
deleting GATA4, a known congenital heart disease gene, on housekeeping genes14 compared 
to genes known to be significantly dysregulated by GATA4 variants in a previously reported 
iPSC disease model of GATA4-related heart defects15. Target confidence was defined as false 
discovery rate (FDR) significance reported in the original study15 stratified into four bins (from 
least to most confident: <500, 500-1000, 1000-1500, >1500). Cosine similarity of gene 
embeddings with or without in silico deletion of GATA4 was compared between housekeeping 
genes14 and GATA4 targets in each of the aforementioned bins by Wilcoxon rank sums test with 
BH correction. We tested the impact of in silico deletion of GATA4 by the same method on 
GATA4 direct versus indirect target genes and NKX2-5 and NOTCH1 direct target genes. 
GATA4 direct target genes were defined as any gene significantly dysregulated in response to 
the GATA4 variant where GATA4 bound within 20kb of the gene’s TSS by ChIP-seq in the iPSC 
disease model15, whereas indirect target genes were genes significantly dysregulated in 
response to the GATA4 variant without GATA4 binding within 20kb of their TSS. NKX2-5 direct 
target genes were defined as genes significantly activated and bound by NKX2-5 in analysis of 
NKX2-5-/- vs. NKX2-5+/+ human embryonic stem cell-derived cardiomyocytes by bulk RNA-seq 
and endogenous NKX2-5 ChIP-seq16, removing those genes that were also GATA4 targets as 
defined above. NOTCH1 direct target genes were defined as genes significantly dysregulated in 
NOTCH1+/- vs. NOTCH1+/+ iPSC-derived ECs and bound by NOTCH1 in endogenous NOTCH1 
ChIP-seq as previously reported12. 
 Similarly, we tested the impact on fetal cardiomyocytes from the Fetal Cell Atlas13 of in 
silico deleting TBX5, a known congenital heart disease gene, on housekeeping genes14 
compared to known TBX5 direct and indirect target genes as previously reported in an iPSC 
disease model of TBX5-related heart defects17. TBX5 targets were defined as those significantly 
dysregulated in TBX5-/- vs. TBX5+/+ human iPSC-derived cardiomyocytes by single cell RNA-
seq; direct targets were also bound by TBX5 by ChIP-seq whereas indirect targets were not17. 



Then, we tested the effects of in silico deletion of GATA4, TBX5, or GATA4 + TBX5 on 
housekeeping genes14 compared to genes significantly dysregulated in response to the GATA4 
variant that had both GATA4 and TBX5 binding by ChIP-seq within 20kb of their TSS in the 
iPSC disease model15. Because the GATA4 variants studied in this model15 disrupt its co-
binding with TBX5, we compared the sum of the effect of individual deletion of GATA4 or TBX5 
to the effect of combination deletion of GATA4 and TBX5 to determine the model’s interpretation 
of cooperativity.  

 
Alternative models 
Geneformer fine-tuning performance for gene classification was compared to common 
alternative modeling methods from sklearn including support vector machines (SVM), random 
forest, and logistic regression trained with input features being either the ranks from the rank 
value encoding or transcript counts (normalized by total transcripts within that cell) of each 
labeled gene across the task-specific dataset as indicated in Supplementary Table 2. Default 
sklearn parameters were utilized aside from max depth of 2 for the random forest models. 
Performance was quantified as AUC +/- standard deviation and F1 score calculated based on a 
5-fold cross-validation strategy as described in the Methods section Geneformer fine-tuning.  
 For the dosage sensitive vs. insensitive fine-tuning application, we also compared to 
non-pretrained models with the same architecture as Geneformer (described in the Methods 
section Geneformer architecture and pretraining) or smaller versions of Geneformer with 
retained width-to-aspect ratio (as prior research18 indicates that the optimal width-to-aspect ratio 
is application-specific). The four layer model had 256 embedding dimensions, 4 attention heads 
per layer, and feed forward size of 512; the three layer model had 128 embedding dimensions, 
2 attention heads per layer, and a feed forward size of 256; and the one layer model had 64 
embedding dimensions, 2 attention heads per layer, and a feed forward size of 128. Fine-tuning 
of these non-pretrained models was accomplished by initializing the model with random weights 
(for the six layer model, we used the same initialization weights as Geneformer prior to 
pretraining), adding a final task-specific transformer layer, and fine-tuning all layers with the 
task-specific data as indicated in Supplementary Table 2 (no layers were frozen given the 
weights were randomly initialized). 
 We also quantified the impact of pretraining with smaller and less diverse pretraining 
corpuses than Genecorpus-30M. A six layer model with the same architecture as Geneformer 
was initialized with the same weights as Geneformer prior to pretraining and then pretrained 
with each of the downgraded corpuses. Smaller corpuses with retained diversity were generated 
by randomly downsampling Genecorpus-30M to 1 million, 100,000, or 10,000 cells. Corpuses 
with reduced diversity were generated from an esophagus tissue dataset19 using either the total 
~850K cells or randomly downsampling to 100,000 or 10,000 cells. Rank value encodings for 
the esophagus corpus were generated using gene transcript count distributions aggregated only 
from that dataset. These models pretrained with downgraded corpuses were all fine-tuned 
identically to Geneformer for the dosage sensitive vs. insensitive fine-tuning application as 
described in the Methods section Geneformer fine-tuning with performance quantified via AUC 
calculated based on a 5-fold cross-validation strategy. 
 
  



Cell type annotation fine-tuning application 
Although Geneformer is most focused on understanding network dynamics rather than cell-level 
annotations, we investigated Geneformer’s performance in cell type annotation given it is a 
common application for previously published models. We compared Geneformer to alternative 
XGBoost (CaSTLe20) and deep neural network-based (scDeepSort21) models. These methods 
train a new model from scratch for each separate tissue using the same supervised learning 
objective as is used for the final cell type predictions in that specific tissue. Therefore, these 
approaches do not take advantage of the large amounts of data available more broadly that are 
not specifically labeled for that task. Additionally, their learning objective is not meant to gain 
widely generalizable knowledge during the initial training, and they do not transfer knowledge to 
new tasks. 
 Labeled training data for cell type annotation was provided by the authors of scDeepSort 
(“human_cell_atlas.7z” at https://github.com/ZJUFanLab/scDeepSort/releases). Data from a 
diverse set of tissues (placenta, brain, spleen, blood, liver, kidney, pancreas, large intestine, and 
lung) with varying numbers of cell type classes were used for method comparisons. Both adult 
and fetal tissues were used within each category. Large intestine samples included those 
labeled as fetal intestine, ascending colon, transverse colon, sigmoid colon, and rectum; and 
blood samples included those labeled as peripheral blood and bone marrow. Following 
scDeepSort’s method, cells numbering more than 5% of the total cells in each tissue were 
included. Data from the provided samples was shuffled and randomly divided into training and 
evaluation data at a ratio of 80:20. All cell types present in the evaluation data were represented 
within the training data.  

The pretrained Geneformer was fine-tuned with zero frozen layers for 10 epochs, 
otherwise using the learning hyperparameters described in the Methods section Geneformer 
fine-tuning. scDeepSort was trained for each tissue using the provided default parameters for 
DeepSortClassifier except for setting the validation fraction to 0 so that the full training data was 
used. The default number of epochs for scDeepSort is 300. CaSTLe was trained for each tissue 
using the provided methodology except that the feature selection was performed only using the 
training data to avoid data leakage from the evaluation dataset (the default methodology uses 
both the training data and evaluation data for feature selection). After features are selected, 
CaSTLe expands them based on expression level bins to generate a one-hot encoding of the 
input data. Because this requires the same training features as will be used for inference, 
CaSTLe uses both the training and evaluation data to expand the features based on expression 
level bins. We used CaSTLe’s provided methodology for this feature expansion, but it is 
important to note that this method limits the use of the trained model to make predictions in data 
that was not available at the time of training as it is not possible to add new expression level 
bins for the selected features after the initial training. 

Predictive performance was evaluated using accuracy and macro F1 score, which 
averages the F1 score for each of the classes such that each class is equally weighted for 
multiclass predictions.  
 
Disease modeling 
We fine-tuned Geneformer using single-nuclei transcriptomic data to distinguish cardiomyocytes 
from non-failing hearts or hearts affected by hypertrophic or dilated cardiomyopathy using 



single-nuclei transcriptomic data from affected patients. Samples were randomly assigned as 
training or out-of-sample data by patient so that no single cells from the out-of-sample data were 
used for training. We only included non-failing heart samples that had a documented normal 
ejection fraction. Training data included 93,589 cardiomyocytes (non-failing n=9, hypertrophic 
n=11, dilated n=9); out-of-sample data included 39,006 cardiomyocytes (non-failing n=4, 
hypertrophic n=4, dilated n=2). Hyperparameters (max learning rate, learning scheduler, 
warmup steps, weight decay, seed, frozen layers) were tuned using the RayTune22 
implementation HyperOpt23, which uses a Tree-structured Parzen Estimators algorithm for 
parallel optimization over the search space. Tuning was distributed across 3 nodes each with 4 
Nvidia A100 40GB GPUs (total 12 GPUs). The final hyperparameters utilized for training were: 
max learning rate: 0.000804; learning scheduler: polynomial with warmup; optimizer: Adam with 
weight decay fix24; warmup steps: 1812.678558; weight decay: 0.258828; seed: 73.152431, 
batch size: 12, frozen layers: 2, epoch 0.9.  
 Predictive accuracy, precision, and recall were then quantified on the out-of-sample data 
as defined above, using a straight average of the predictions on all classes without weighting by 
occurrence. Having established the model had a high predictive accuracy (90%) on out-of-
sample data, we defined the non-failing versus hypertrophic or dilated cardiomyopathy states as 
the mean of the embeddings of cardiomyocytes from each of those conditions from the training 
data. We then investigated the genes that defined each state by performing in silico deletion or 
activation of each gene expressed within the transcriptome of each cardiomyocyte from the non-
failing hearts or hearts affected by hypertrophic or dilated cardiomyopathy from the training 
data. 

We first determined genes whose in silico deletion or activation in non-failing 
cardiomyocytes significantly shifted the non-failing embeddings towards the hypertrophic or 
dilated cardiomyopathy state in the 256-dimensional embedding space. For the in silico deletion 
analysis, we first delete random genes in each non-failing cardiomyocyte and determine where 
in the embedding space this deletion pushes the cell embedding, which defines the random 
distribution. Then, we determine genes whose deletion in every cardiomyocyte in which they are 
expressed statistically significantly shifts the embeddings towards the average hypertrophic or 
dilated cardiomyopathy position compared to the random distribution (p<0.05, Wilcoxon rank 
sum test, BH-corrected) (Fig. 6a). For the in silico activation analysis, we perform an analogous 
procedure except that instead of deleting each gene, we move the gene to the front of the rank 
value encoding to model overexpression of that gene. 

We then performed in silico treatment analysis in cardiomyocytes from hypertrophic 
cardiomyopathy patients to identify genes whose in silico deletion or activation in hypertrophic 
cardiomyocytes significantly shifted cell embeddings back towards the average non-failing 
embedding position compared to the distribution of deleting or activating random genes in 
hypertrophic cardiomyocytes (p<0.05, Wilcoxon rank sum test, BH-corrected) (Fig. 6a). We only 
considered genes that both shifted cell embeddings towards the non-failing state while also 
shifting embeddings away from the average dilated cardiomyopathy embedding position. We 
then performed the analogous in silico treatment analysis in cardiomyocytes from dilated 
cardiomyopathy patients to determine genes whose in silico deletion or activation significantly 
shifted cell embeddings towards the non-failing state while also shifting embeddings away from 
the average hypertrophic cardiomyopathy embedding position. 



Gene set enrichment was determined using the Gseapy implementation of Enrichr25 with 
a cut-off of 0.05 for p-values adjusted for multiple hypotheses. Gene and cell embeddings from 
the last layer of the model were used for disease modeling given the model was fine-tuned for 
the relevant objective. 
 
Visualization 
Seaborn26, Matplotlib27, and scanpy5 were used to generate data visualizations. 
 
Cardiomyopathy single nuclei RNA-seq sample collection and preprocessing 
Human tissue samples 
Adult human myocardial samples of European ancestry were collected from organ donors by 
the Myocardial Applied Genetics Network as previously described28. Non-failing samples were 
obtained from organ donors with no history of heart failure and hypertrophic or dilated 
cardiomyopathy samples were obtained from explanted hearts of donors receiving a heart 
transplant. Transmural cardiac tissue was collected from the left ventricular free wall of a non-
infarcted region excluding the septum (predominantly representing the anterior wall midway 
between the apex and base). Written informed consent for research use of donated tissue was 
obtained from next of kin in all cases. Research use of tissues was approved by the relevant 
institutional review boards at the Gift-of-Life Donor Program, the University of Pennsylvania, 
Massachusetts General Hospital, and the Broad Institute. 
  
Single nuclei RNA-seq and data processing 
Single nucleus suspensions were generated as previously described28. Cells were loaded into 
the 10x Genomics microfluidic platform (Single cell 3’ solution, v3) for an estimated recovery of 
5000 cells per device. Libraries were generated according to manufacturer protocols with 
modifications as previously described29. Libraries were multiplexed at an average of 4 libraries 
per flow cell on an Illumina Nextseq550 in the Broad Institute’s Genomics Platform. Single 
nuclei RNA-seq data were processed with quality control, alignment, cell type identification, and 
differential expression analysis as previously described29. 
 
Experimental testing of Geneformer-predicted targets in engineered cardiac microtissues 
We tested whether targeting TEAD4, a top Geneformer-predicted dosage-sensitive gene in 
cardiomyocytes, would damage the ability of WT iPSC-derived cardiomyocytes to generate 
contractile stress. We also tested whether targeting Geneformer-predicted candidate 
therapeutic candidates for dilated cardiomyopathy would restore normal levels of contractile 
stress in engineered cardiac microtissues generated from iPSC-derived cardiomyocytes 
harboring a TTN truncating mutation in the A-band known to cause dilated cardiomyopathy in 
humans. Experiments measured contractile force and stress (force per unit area) in engineered 
cardiac microtissues derived from TTN+/+ iPSCs exposed to empty lentivirus, isogenic CRISPR-
edited TTN+/- iPSCs (cN22577fs+/− as previously described30) exposed to empty lentivirus or 
lentivirus expressing CRISPR-CAS9 and guides with a control target sequence 
(AGAACCGACCCGGCAATCCG), TTN+/+ iPSCs exposed to lentivirus expressing CRISPR-
CAS9 and guides with a TEAD4 (TTGCCCGCTACATCAAGCTC) target sequence, 
or TTN+/- iPSCs exposed to lentivirus expressing CRISPR-CAS9 and guides with 



a PLN (TGCTTGTTGAGGCATTTCAA), GSN (TGCAGTATGACCTCCACTAC), ESRRG (TGAT
CCTTGGTGTCGTATAC), or HMGB1 (ATTTGAAGATATGGCAAAAG) target sequence for 
knockout of the respective genes by CAS9 co-expressed in each iPSC line.  

For CRISPR-mediated knockout of target genes, lentiviral vectors (pLentiCRISPR_V2) 
carrying CRISPR-CAS9 and single guide RNAs targeting the aforementioned genes were 
purchased from GenScript and were packaged into lentiviruses with Dharmacon Trans-Lentiviral 
packaging kits (Horizon, TLP5913). Lentiviruses were transduced into iPSC-derived ventricular 
cardiomyocytes and transduced cells were purified with 5-day puromycin (1 µg/ml) selection on 
day 3 post-transduction. After 14 days, cells were dissociated for generating engineered cardiac 
microtissues as described below. CRISPR-mediated knockout was quantified by QPCR in the 
same batch of cells used for generating engineered cardiac microtissues for each condition 
(with 3 technical replicates). Total RNA was extracted with the QIAGEN RNeasy Mini Kit 
(74106) according to the manufacturer’s instructions. cDNA was synthesized with the iScript kit 
(Bio-Rad 1708891). qPCR was performed with the SsoAdvanced Universal probes supermix 
(Bio-Rad 1725284) on a Bio-rad CFX384 Real-time system with TaqMan probes (Life 
Technologies 4331182) of TEAD4 (Hs01125032_m1), PLN (Hs01848144_s1), GSN 
(Hs00609272_m1), ESRRG (Hs00976243_m1), or HMGB1 (Hs01923466_g1). 

Cardiac microtissues were generated as previously described31. Briefly, PDMS 
microfabricated tissue gauges (µTUG) substrates were molded from the SU-8 masters with 
embedding fluorescent microbeads (Fluoresbrite 17147; Polysciences, Inc.) onto the 
cantilevers. μTUG substrates were treated with 0.2% pluronic F127 for 30 minutes. iPSC-CMs 
were dissociated after trypsin digestion and mixed with stromal cells (human ventricular 
fibroblasts (FBs)) to enable tissue compaction. The amount of stromal cells added was 6% of 
the total myocyte population. A suspension of ~1,300,000 cells within reconstitution mixture, 
consisting of 2mg/mL liquid neutralized collagen I (BD Biosciences) and 0.5mg/mL human 
fibrinogen (Sigma-Aldrich), was added to the substrate. The device was centrifuged to drive the 
cells into the micropatterned wells. Within 24 hours, FBs compacted the tissues. Force readouts 
were taken after 4 days in culture. 

The displacement of fluorescent microbeads at the top of the cantilevers was then 
tracked using the SpotTracker plug-in in ImageJ (NIH). Displacement values were run through a 
custom MATLAB script to compute twitch force (dynamic tension), static force, and 
instantaneous velocity. Electrical field stimulation of biphasic square pulses of 1ms was given by 
placing two carbon electrodes (Ladd Research laboratories) separated by 2cms on the sides of 
the samples connected through platinum wires to a stimulator. Effects of each condition were 
quantified by contractile force and stress (force per unit area) generated by the engineered 
cardiac microtissues.  
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