Supporting Information

Dehydration of Niclosamide Monohydrate Polymorphs: Different Mechanistic Pathways to the Same Product

Jen E. Mann, Renee Gao, and Jennifer A. Swift*

Georgetown University, Department of Chemistry, Washington, DC 20057-1227

Table of Contents Page

Figure S1. Optical images of (left) H_A and (right) H_B taken at the same magnification. Both monohydrates exhibit a needle-like morphology. H_A crystallizes as fine needles, while H_B crystallizes as clusters of thick needles. Scale bars = 500 μ m. **3**

Figure S2. DSC curves of heat flow vs. temperature for H_A samples that were (A) ground with a mortar and pestle and (B) unground. DSC samples were heated at 5 ℃/min to 250 ℃ in aluminum pans with unsealed lids. **3**

Figure S3. Change in peak intensity for (130), (042), (113), and (112) diffraction lines with temperature. From 22 to 75 °C, the peaks decrease by 5.0%, 6.1%, 6.4% and 18.5%, respectively. **4**

Figure S4. Change in cell volume and beta angle of the H_A (and/or H^*) lattice from 22 to 150 °C determined from Pawley refinement of sPXRD data. **4**

Figure S5. Contour plots of two additional H_A dehydration experiments performed under similar heating conditions. (Left) H_A was heated to 150 °C and held isothermally for 30 minutes. H^* remained stable. (Right) The H^* to F1 conversion occurred below 150 ℃. **5**

Table S1. Regression parameters associated with different solid state reaction models for isothermal TGA data (40, 45, and 50 $^{\circ}$ C) for H_A (ground). Reaction models with the highest statistical fit are indicated, with $R^2 > 0.99$ in red. **6**

Figure S6. (A) Summary of *E*^a determination from three runner-up model-based kinetic analyses of isothermal TGA data on H_A collected at 40, 45 and 50 $^{\circ}$ C. (B) Arrhenius plot. All four models with the highest \mathbb{R}^2 coefficients yielded similar E_a values. (C) E_a vs. alpha calculated from the model-free Friedman analysis method. (D) *E*^a vs. alpha calculated using the standard model-free method. **7**

Figure S7. TGA of ground H_B in open pans heated at $5 \degree C/\text{min}$. **7**

Figure S8. Change in cell volume and beta angle of the H_B lattice from 25 to 120 °C determined from Pawley refinement of sPXRD data. **8**

Figure S9. Fraction dehydrated (α) vs. time plots for H_B based on triplicate isothermal TGA data collected at 40, 45 and 50 ℃. Inset plot is an expanded view of the data from $0 - 100$ min. All samples were ground and heated at 5 °C/min. **8**

Table S2. Regression parameters associated with different solid state reaction models for isothermal TGA data (40, 45, and 50 $^{\circ}$ C) for H_B (ground). Reaction models with the highest statistical fit are indicated, with $R^2 > 0.99$ in red. Ones with $R^2 > 0.999$ are in bold. **9**

Figure S10. (A) Summary of E_a determination from two runner-up model-based kinetic analyses of isothermal TGA data on H_B collected at 40, 45 and 50 $^{\circ}$ C. (B) Arrhenius plot. All models with $R^2 > 0.99$ coefficients yielded similar E_a values. (C) E_a vs. alpha calculated from the model-free Friedman analysis method. (D) E_a vs. alpha calculated using the standard model-free method. **10**

Figure S11. sPXRD of three different ground batches of H_B compared against the PXRD patterns of HB and F1 simulated from the single crystal structures. (left) A zoomed view of the region where high intensity peaks would be expected if F1 was present in the samples. **11**

Figure S12. Hot-stage microscopy optical images of H_B ramped at 5 ℃/min from room temperature to 150 ℃. At approximately 95 ℃ dark spots begin to appear across the surface until 140 °C whereupon optical changes can no longer be observed. Scale bar = $100 \mu m$. **11**

Figure S13. (left) Calculated BFDH morphology and (right) top ten slip planes calculated using the CSD-Particle module in the Cambridge Structural Database. None of the calculated slip planes correspond to the natural faces. **12**

Figure S14. Schematic of packing in H_B and F1. Each NCL molecule is colored so that the nitrophenyl ring is orange and the phenol ring is light blue. Water molecules in H_B are dark blue. **12**

Figure S1. Optical images of (left) H_A and (right) H_B taken at the same magnification. Both monohydrates exhibit a needle-like morphology. H_A crystallizes as fine needles, while H_B crystallizes as clusters of thick needles. Scale bars = 500 μm.

Figure S2. DSC curves of heat flow vs. temperature for H_A samples that were (A) ground with a mortar and pestle and (B) unground. DSC samples were heated at 5 ℃/min to 250 ℃ in aluminum pans with unsealed lids.

Figure S3. Change in peak intensity for (130), (042), (113), and (112) diffraction lines with temperature. From 22 to 75 °C, the peaks decrease by 5.0%, 6.1%, 6.4% and 18.5%, respectively.

Figure S4. Change in cell volume and beta angle of the H_A (and/or H^{*}) lattice from 22 to 150 °C determined from Pawley refinement of sPXRD data.

Figure S5. Contour plots of two additional H^A dehydration experiments performed under similar heating conditions. (Left) H_A was heated to 150 °C and held isothermally for 30 minutes. H* remained stable. (Right) The H* to F1 conversion occurred below 150 ℃.

	40 °C	45 °C	50 °C
Nucleation Models			
1D growth of nuclei (Avrami-Erofeyev Eq, $n = 2$) (A2)	0.99525	0.99487	0.99584
2D growth of nuclei (Avrami-Erofeyev Eq, $n = 3$) (A3)	0.98554	0.98414	0.98482
3D growth of nuclei (Avrami-Erofeyev Eq, $n = 4$) (A4)	0.97760	0.97573	0.97624
Random nucleation (Prout-Tompkins Eq) (B1)	0.98836	0.98719	0.98794
Power law $(n = 1/2)$ (P2)	0.93286	0.92775	0.92840
Power law $(n = 1/3)$ (P3)	0.91164	0.90591	0.90649
Power law $(n = 1/4)$ (P4)	0.89966	0.89360	0.89415
Geometrical Contraction Models			
2D phase boundary (Contracting area) $(R2)$	0.99701	0.99687	0.99800
3D phase boundary (Contracting volume) (R3)	0.99688	0.99788	0.99906
Diffusion Models			
1D diffusion (D1)	0.99194	0.99307	0.99419
2D diffusion (D2)	0.97794	0.98209	0.98305
3D diffusion (Jander Eq) (D3)	0.93565	0.94428	0.94470
3D Diffusion (Ginstling-Brounshtein Eq) (D4)	0.96644	0.97206	0.97287
Reaction Order Models			
Zero-order $(R1)$	0.97565	0.97243	0.97339
First-order (F1)	0.98393	0.98746	0.98865
Second-order $(F2)$	0.85251	0.86649	0.86627
Third-order $(F3)$	0.66572	0.69136	0.68855

Table S1. Regression parameters associated with different solid state reaction models for isothermal TGA data (40, 45, and 50 °C) for H_A (ground). Reaction models with the highest statistical fit are indicated, with $R^2 > 0.99$ in red.

Figure S6. (A) Summary of *E*^a determination from three runner-up model-based kinetic analyses of isothermal TGA data on H_A collected at 40, 45 and 50°C. (B) Arrhenius plot. All four models with the highest \mathbb{R}^2 coefficients yielded similar E_a values. (C) E_a vs. alpha calculated from the model-free Friedman analysis method. (D) *E*^a vs. alpha calculated using the standard model-free method.

Figure S7. TGA of ground H_B in open pans heated at 5 \degree C/min.

Figure S8. Change in cell volume and beta angle of the H_B lattice from 25 to 120 °C determined from Pawley refinement of sPXRD data.

Figure S9. Fraction dehydrated (α) vs. time plots for H_B based on triplicate isothermal TGA data collected at 40, 45 and 50 °C. Inset plot is an expanded view of the data from $0 - 100$ min. All samples were ground and heated at 5 °C/min.

40 °C 45 °C 50 °C **Nucleation Models** 1D growth of nuclei (Avrami-Erofeyev Eq, $n = 2$) (A2) 0.99551 0.98342 0.98556 2D growth of nuclei (Avrami-Erofevev Eq. $n = 3$) (A3) 0.98544 0.96816 0.97131 3D growth of nuclei (Avrami-Erofeyev Eq, $n = 4$) (A4) 0.97800 0.95825 0.96199 Random nucleation (Prout-Tompkins Eq) (B1) 0.98756 0.97473 0.97178 Power law $(n = 1/2)$ (P2) 0.93163 0.95525 0.92620 Power law $(n = 1/3)$ (P3) 0.93763 0.90561 0.91217 Power law $(n = 1/4)$ (P4) 0.92753 0.89409 0.90125 **Geometrical Contraction Models** 2D phase boundary (Contracting area) $(R2)$ 0.99919 0.99180 0.99289 3D phase boundary (Contracting volume) $(R3)$ 0.99909 0.99573 0.99642 **Diffusion Models** 1D diffusion (D1) 0.98996 0.99368 0.99312 2D diffusion (D2) 0.97509 0.98915 0.98804 3D diffusion (Jander Eq) (D3) 0.94598 0.97205 0.97073 3D Diffusion (Ginstling-Brounshtein Eq) (D4) 0.96649 0.98471 0.98349 **Reaction Order Models** Zero-order $(R1)$ 0.98851 0.96955 0.97224 First-order (F1) 0.99300 0.99786 0.99794 Second-order $(F2)$ 0.92988 0.95964 0.95921 Third-order (F3) 0.82239 0.87390 0.87413

Table S2. Regression parameters associated with different solid state reaction models for isothermal TGA data (40, 45, and 50 °C) for H_B (ground). Reaction models with the highest statistical fit are indicated, with $R^2 > 0.99$ in red. Ones with $R^2 > 0.999$ are in bold.

Figure S10. (A) Summary of *E*^a determination from two runner-up model-based kinetic analyses of isothermal TGA data on H_B collected at 40, 45 and 50°C. (B) Arrhenius plot. All models with $R^2 > 0.99$ coefficients yielded similar E_a values. (C) E_a vs. alpha calculated from the model-free Friedman analysis method. (D) *E*^a vs. alpha calculated using the standard model-free method.

Figure S11. sPXRD of three different ground batches of H_B compared against the PXRD patterns of HB and F1 simulated from the single crystal structures. (left) A zoomed view of the region where high intensity peaks would be expected if F1 was present in the samples.

Figure S12. Hot-stage microscopy optical images of H**^B** ramped at 5 ℃/min from room temperature to 150 ℃. At approximately 95 ℃ dark spots begin to appear across the surface until 140 °C whereupon optical changes can no longer be observed. Scale bar = 100 μ m.

Figure S13. (left) Calculated BFDH morphology and (right) top ten slip planes calculated using the CSD-Particle module in the Cambridge Structural Database. None of the calculated slip planes correspond to the natural faces.

Figure S14. Schematic of packing in H_B and F1. Each NCL molecule is colored so that the nitrophenyl ring is orange and the phenol ring is light blue. Water molecules in H_B are dark blue.