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Additional Results 
 
KRT10/ACTA2 Clusters 

The KRT10/ACTA2(1) and (2) clusters were enriched for endometriosis tissues and depleted for eutopic 

endometrium, by contrast, nearly all the cells in KRT10/ACTA2(3) were derived from eutopic endometrium 

(Fig. 3b, c). KRT10 expression is typical of stratified epithelium and is expressed by vaginal epithelium during 

development 1 with reported temporal fluctuations in endometrial expression throughout the menstrual cycle 2. 

Since squamous epithelium is not typical of endometriosis or eutopic endometrium and KRT10 expression was 

relatively low, we explored whether these cells may represent mesenchymal cell types. None of the 3 clusters 

exhibited a robust smooth muscle, endometrial-type stroma or mesenchymal marker signature (Supplementary 

Fig. 2a). KRT10/ACTA2 clusters 1 and 2 exhibited a weak signature of proliferative endometrial-type stroma (in 

the case of cluster 2, without any detectable MME). Cluster 3 lowly expressed genes characteristic of secretory 

endometrial-type stroma; together these data suggest that these subsets may in fact represent less 

differentiated subsets of endometrial-type stroma. When we contrasted gene expression in KRT10/ACTA2 

cells from eutopic endometrium, endometriosis and endometriomas, eutopic endometrial KRT10/ACTA2 cells 

were enriched for steroid hormone signaling (HSP90 chaperone cycle for steroid hormone receptors in the 

presence of ligand, adjusted P = 3.3x10-6) and autophagy pathways (Supplementary Fig. 2b, c; Supplementary 

Tables 11 and 12). By contrast, the KRT10/ACTA2 cells associated with endometriosis were enriched for 

secretory-associated pathways (such as peptide chain elongation, adjusted P = 9.7x10-27) (Supplementary Fig. 

2b). 

 

Mesothelial cells proximal to endometriomas upregulate proinflammatory and stress response genes  
Mesothelial cells are a specialized epithelial cell lining of the peritoneum, the pleurae, pericardium and ovary 3. 

Re-clustering of mesothelial cells resulted in clusters driven largely by tissue type, although we noted 

heterogeneity in cell quality, with a tendency towards higher mitochondrial reads in endometrioma-associated 

cells (Supplementary Fig. 3a, b). Mesothelial cluster (1) (1,620 cells) comprised cells proximal to peritoneal 

lesions and comprised more differentiated mesothelia. Ovarian mesothelial cells, both from ovaries with and 

without endometrioma, dominated mesothelial cluster (2) (791 cells) and (3) (404 cells). Mesothelial cluster (2) 

was less differentiated than mesothelial cluster (1), with lower expression of keratins -7, 8 and 18, and 

mesothelial markers such as CALB2, WT1 and MSLN (Figure 3b,b). Mesothelial cluster (3) were partially 

differentiated mesothelial cells with negligible keratin expression, low expression of WT1 and CALB2, and 

modest CD44 expression (Supplementary Fig. 3b, c). Mesothelial cells in specimens with no endometriosis 

detected upon pathologic review upregulated stress response pathways including ‘cytoprotection by HMOX1’ 



(adjusted P = 4.9 x 10-5), a pathway for heme degradation, perhaps suggesting occult endometriosis existed in 

those specimens. Mesothelia associated with endometriomas upregulated growth arrest and DNA damage 

inducible alpha (GADD45A), likely an indicator of cellular responses to the hypoxic microenvironment imposed 

by the endometriotic cyst (Supplementary Fig. 3c-f; Supplementary Tables 15 and 16). Compared to 

endometriosis-free ovary tissues, mesothelium proximal to endometriomas overexpressed inflammatory 

modulators including macrophage migration inhibitory factor (MIF, log2 FC = 1.1, adjusted P = 6.7x10-136), a 

proposed biomarker for endometriosis 4,5 (Supplementary Fig. 3e-f; Supplementary Tables 15 and 16). MIF can 

interact with multiple receptors (CD74/CD44, CXCR2, CXCR4, and CXCR7) 6. CD74 was expressed by 

endothelial cells, B-cells/plasma cells and myeloid cells; CXCR4 was expressed by myeloid cells, T/NK cells 

and B-cells/plasma cells (Supplementary Fig. 3g). Expression of CXCR2 and ACKR3 (CXCR7) plus CCL2 

receptor CCR2, was not detected in any of the cell types surveyed. B-cells/plasma cells are enriched 2.6-fold 

in endometriomas (Figure 1f), and MIF is important for B-cell chemotaxis and B-cell survival and activation 7 8, 

raising the possibility that mesothelial cells proximal to an endometrioma contribute to the recruitment of B-

cells.  

 

Mesenchymal cells in endometriosis and control tissues 

GAS5+ cells were the dominant mesenchymal cell type in unaffected ovaries. Four clusters of fibroblasts 

exhibited heterogeneous expression of canonical fibroblast markers (DCN, THY1, CFD), three clusters of C7-

positive fibroblasts and two clusters of activated fibroblasts expressing FAP, ITGB1, COL1A1 and ACTA2 - 

one C7 positive, the other C7 negative (Fig. 5b). C7-positive fibroblast clusters (1) and (3) and C7-positive 

activated fibroblasts were overrepresented in ovarian tissue adjacent to endometriomas. Two PDGFRA+ 

clusters - the Fibro(4) and C7 Fibroblast cluster (2), plus the C7-negative activated fibroblast cluster, were 

exclusively comprised of cells from peritoneal endometriosis specimens. Both these clusters expressed 

extracellular matrix and immune modulator Coiled-Coil Domain Containing 80 (CCDC80)33. We verified that 

mesenchymal markers but not in epithelial markers were expressed by mesenchymal clusters (Supplementary 

Fig. 4a). We noted evidence of coordinated transcriptional signatures in endometrial-type epithelium and 

stroma, which was most pronounced in ectopic endometrium - with 9, 41 and 20 genes commonly upregulated 

in endometrial-type stroma and epithelium across eutopic endometrium, endometrioma and endometriosis, 

respectively (Supplementary Fig. 4b). Epithelial and stromal cells in endometriosis upregulated secretory 

genes (ribosomal proteins e.g. RPL13A, RPS18), whereas the same cell types in the context of endometrioma 

upregulated complement signaling pathways (C3, C7, C1S, CFH; Supplementary Fig. 4c) and genes involved 

in responses to the heme-laden cytotoxic and hypoxic microenvironment (HMOX1, SOD2), reflected also by a 

tendency for higher percentages of mitochondrial RNA in endometrioma samples (Supplementary Figs. 3b, 

4b). 

 

The cellular composition of deep and superficial peritoneal lesions 

Eleven peritoneal lesions were categorized as deep infiltrating endometriosis and 12 were classified as 

superficial endometriosis, comprising a total of 69,131 individual cells. Within these 23 lesions, the abundance 



of fibroblasts negatively correlated with the proportion of T/NKT cells (r=-0.95, P < 0.01, Pearson's correlation), 

B/Plasma cells (r=-0.60, P < 0.01, Pearson's correlation) and mast cells (r=-0.43, P < 0.05, Pearson's 

correlation) (Supplementary Fig. 5a). B/plasma cells, T/NKT and mast cells were modestly enriched in deep 

lesions, and endothelial cells, epithelial cells and fibroblasts were moderately enriched in superficial lesions 

(Supplementary Fig. 5b). To test whether these enrichments indicated that an overall cellular signature was 

associated with lesion subtype, we simulated a background data set based on the frequencies of the different 

cell types in the actual data and measured Euclidian distance between deep and superficial lesions, based on 

frequencies of all cell types (Supplementary Fig. 5c). Using this alternative approach there was no significant 

difference in the cellular composition of deep and superficial lesions (P = 0.85, compared to a background of 

1,000 randomly generated data sets, pnorm R function using mean and standard deviation from background) 

(Supplementary Fig. 5d, e), suggesting that, when considering major cell types, there is no specific cellular 

signature associated with deep versus superficial lesions. Hemorrhage and fibrosis were also not associated 

with cellular composition (P = 0.53 and P = 0.40, respectively) (Supplementary Fig. 5f).  
 
 
Supplementary Methods 
Pathology 

A protocol was created and implemented in the pathology laboratory to ensure collection of endometriosis 

samples from consented patients without risk of compromising the ability to provide clinical histopathologic 

diagnoses on resected tissue (Supplementary Fig. 6) 

 

 

Supplementary Figure Legends 
 
Supplementary Figure 1. Histologic and macroscopic features of lesions from the endometriosis 
cohort. (a) Images from surgeries during which the specimens were collected (not to scale). (b) Hematoxylin 

and eosin-stained sections of specimens profiled in this study. Scale bars (5mm) apply to all images shown in 

(b). Surgical and pathology images for specimens from Patient 9 are shown in Fig. 1b.  

 

Supplementary Figure 2. KRT10/ACTA2 cells in eutopic and ectopic endometrium. (a) Expression of 

mesenchymal, smooth muscle and endometrial-type stromal (proliferative and secretory) gene expression in 

KRT10/ACTA2 clusters. Mesenchymal and smooth muscle clusters from Fig. 2 are shown for context. (b) 
Pathway analysis, performed in Reactome, with p-values calculated based on a hypergeometric model and a 

Bonferroni correction applied. (c) Differential gene expression in the three clusters that comprise the 

KRT10/ACTA2 subset, in the context of endometrioma, eutopic endometrium or extra-ovarian endometriosis (p 

value < 0.05 and log2 FC > 1), two-sided differential expression tests performed using MAST.  
 



Supplementary Figure 3. The impact of endometriomas on ovarian mesothelial cells. (a, b) Quality 

metrics across mesothelial, endometrial-type epithelium and endometrial-type stroma clusters. (c) UMAP of 

mesothelial cell clusters, by major class (d) Feature UMAPs illustrating expression of genes overexpressed in 

endometriosis or endometrioma. (e) Differential gene expression in mesothelial cells adjacent to endometrioma 

compared to mesothelial cells in unaffected ovary (labeled genes are those where adjusted P < 0.05 and 

absolute log2 FC > 0.8). (f) Pathway analysis in mesothelial cells in the context of endometrioma, 

endometriosis, unaffected ovary or peritoneum without pathologic confirmation of endometriosis. Pathway 

analysis was performed using the Reactome R package, with p-values calculated based on a hypergeometric 

model and a Bonferroni correction applied. (g) Dotplot, expression of MIF and CCL2 receptors across all major 

cell types. 

 

Supplementary Figure 4. Coordinated transcriptional responses of endometrial-type stroma and 
epithelium in eutopic endometrium, endometriosis and endometrioma. (a) Epithelial markers are not 

expressed by mesenchymal clusters and vice versa. (b) Heatmap, coordinated expression of genes in 

endometrial-type epithelium and stroma across eutopic endometrium, endometrioma and endometriosis. 

Ordering of columns are supervised, ordering of rows unsupervised and clustered using hierarchical clustering 

(method = complete). n, number of genes in each category; common denotes genes changing in both the 

epithelial and stromal compartments. (c) Pathway analysis for genes in each of the 3 groups in panel (b). 
Pathway analysis was performed using the Reactome R package, with p-values calculated based on a 

hypergeometric model and a Bonferroni correction applied. 
 
Supplementary Figure 5. Molecular signatures of deep and superficial peritoneal endometriosis and 
testing for associations between cellular composition and clinical features of endometriosis. (a) 

Cellular components of peritoneal endometriosis, correlations between abundance of different cell types in 

each lesion. Significant associations from two-sided Pearson correlation tests – 1p = 0.022; 2p = 0.044; 3p = 

3.7x10-11; 4p = 3.6x10-3; 5p = 0.025; 3.7x10-11; 6p = 4.2x10-3; 7p = 2.1x10-5; 8p = 9.1x10-3; 9p = 0.03; 10p = 5.8x10-

3. SM, smooth muscle cells. The grey area represents the 95% confidence level interval for predictions from a 

linear model. (b) Proportional bar plot showing frequencies of major cell types in deep and superficial lesions, 

relative to the null distribution denoted in the Total row. (c) Euclidean distance between samples, compared to 

a simulated background distribution of 1000 random samples. Deep/superficial status, presence/absence of 

hemorrhage or fibrosis were all surveyed. Box and whisker plots, boxes denote the interquartile range, bar 

denotes median value. The limits of the whiskers represent 1.5 * IQR (interquartile range) and outlier values 

are indicated with individual dots. (d) Cell type composition of extra-ovarian endometriosis samples, (e) 

Schematic of the approach to compare Euclidian distances between samples, compared to a simulated 

background data set. (f) Cell type composition across the simulated data set. 

 

Supplementary Figure 6. Pathology protocols for collecting endometriosis tissues for research 
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Supplementary Figure 6. Pathology protocols for collecting endometriosis 
tissues for research 
 
 

Ovarian Endometrioma 
- Serially section the ovarian cyst  

- Randomly select multiple areas from the cyst wall including predominantly the inner lining to for 

research 

- Aim to select 3 different areas if cyst is < 3 cm in largest dimension  

- Aim to select 5 different areas if cyst is > 3 cm in largest dimension 

- The remaining tissue is entirely submitted for permanent sections 

Extra-ovarian Endometriosis (Superficial Peritoneal and Deep Infiltrating) 
Patients undergoing surgery for recurrent endometriosis: 

• Tissue fragment ≤ 1 cm: Bisect and submit half for research and half for permanent sections. 

• Tissue fragment > 1 cm: Serially section and submit half of alternating sections for research and 

half for permanent sections. 

Patients undergoing first surgery for endometriosis: 

- Tissue fragment ≤ 1 cm: Submit all tissue for permanent sections. No tissue given for research. 

- Tissue fragment >1 cm and grossly hemorrhagic area: submit half of hemorrhagic area for 

research and half for permanent sections. Likewise, the non-hemorrhagic areas are submitted half 

for research and half for permanent sections. 

- Tissue fragment >1 cm and no grossly visible hemorrhagic area: Submit all tissue for permanent 

sections. No tissue given for research. 

Extra-ovarian Endometriosis (Visceral) 
For small biopsies, the same rules above as peritoneal/soft tissue apply. 

 

For larger resections, for example colon: 

- Open and/or serially section the organ fresh to identify grossly abnormal areas (hemorrhagic, 

cystic, fibrotic) 

- If only a few small foci are present, submit half of these areas for research and half for permanent 

sections 

- If extensive areas are grossly abnormal, randomly select abnormal tissue for research and 

permanent sections 

 




