SUPPLEMENTARY MATERIAL

Figure S1: Each plot shows instability of calibration curves for 1000 example models developed using a particular sample size (100, 200, 500, 888, 1000 or 5000) when each model is applied to the same population of 100000 individuals: each example model was produced from a logistic regression (LR) with either a full model with no penalisation ('unshrunk LR'), a full model followed by a uniform shrinkage ('shrunken LR'), or with a LASSO penalty fitted to a different random sample of individuals from a population with a true overall risk of 0.5, based on a true model with a linear prediction of LP = 0.5X1+0.3X2+0.3X3+0.25X4+0.25X5+0(Z1+...+Z10) where X1, ..., X5~N(0,1) and 10 noise variables (Z1, ..., Z10 ~ N(0,1)).

	(a) logistic regression with LASSO	(a) unpenalised logistic regression followed by uniform shrinkage of predictor effects	(c) Random forest (100 trees, unlimited depth)
Prediction instability plot	bedieved to the second	below the second	estimated risk from developed model
MAPE instability plot	appin Allingersui	Noper Allighters and the second secon	How the state of t
Average MAPE	0.019	0.018	0.047

Figure S2: Instability plots and measures for three prediction models developed using 752 participants (53 events) and 7 candidate predictors (see Sections 4.3 and 4.4)

Figure S3: Instability plots and measures for a prediction model developed using random forest (7 predictors) in 752 participants, using a variety of hyperparameter tuning options of (a) software defaults, (b) defaults but with tree depth of 3, and (c) allowing tuning to be tailored

Figure S4: Instability plots and measures for a prediction model developed using random forest (7 predictors, 100 trees, depth 3) in 452 participants, followed by recalibration in 300 participants

Figure S5: Instability plots and measures to examine fairness of a LASSO prediction model in males and females separately (see Section 5.1)

Figure S6: Histogram of C-statistics from applying the LASSO model in Section 5.2 to the bootstrap samples

Figure S7: Classification instability plots for various models from the case studies of Section 4.

