Supplemental Material:

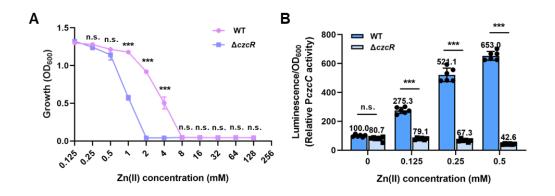


Figure S1. Growth of the PAO1 WT and $\Delta czcR$ strains and the activity of the PczcC promoter during treatments with different concentrations of Zn. (A) Final values of OD₆₀₀ were measured for the PAO1 WT and $\Delta czcR$ strains when they were cultured in the presence of Zn at different concentrations. (B) Expression of the PczcC-lux was measured in the WT and $\Delta czcR$ strains when they were cultured in the presence of Zn at different concentrations. Statistical significance was calculated compared to the WT group based on two-way ANOVA (n.s., not significant; ***, P< 0.001).

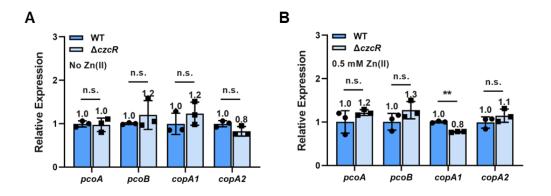


Figure S2. CzcS/CzcR did not cause obvious expression changes of other major genes involved in Cu tolerance besides *ptrA* and *PA2807*. Relative expression of the *pcoA*, *pcoB*, *copA1*, and *copA2* in the \triangle *czcR* strain compared to the WT strain when they were cultured in the absence (A) or presence (B) of Zn. Statistical significance was calculated compared to the WT group based on Student's *t*-test (n.s., not significant; **, *P*< 0.01).

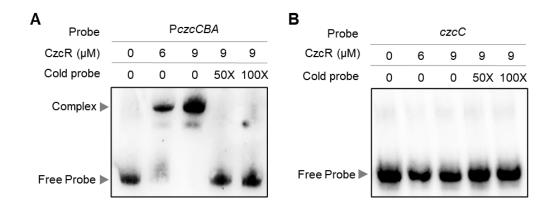


Figure S3. Positive and negative controls to determine specific interactions between CzcR and target DNA probes. EMSAs showed the binding ability of CzcR at the promoter of czcCBA (A) but not the coding region of czcC (B).

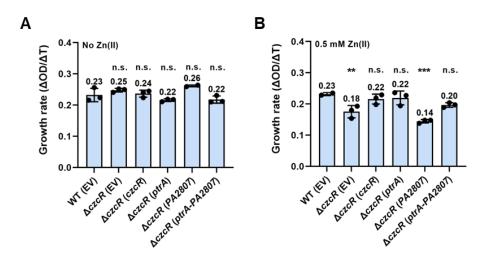


Figure S4. CzcS/CzcR maintained bacterial tolerance to Cu via PtrA during Zn excess. (A) Growth rates of the WT strain, $\triangle czcR$ mutant, and the $\triangle czcR$ mutant with the overexpression of *ptrA*, *PA2807*, or *ptrA-PA2807* in the presence of 2 mM CuSO₄ when the strains were not pretreated with Zn. (B) Growth rates of the WT strain, $\triangle czcR$ mutant, and the $\triangle czcR$ mutant with the overexpression of *ptrA*, *PA2807*, or *ptrA-PA2807*, or *ptrA-PA2807* in the presence of 2 mM CuSO₄ when the strains were pretreated with Zn. (B) Growth rates of the WT strain, $\triangle czcR$ mutant, and the $\triangle czcR$ mutant with the overexpression of *ptrA*, *PA2807*, or *ptrA-PA2807* in the presence of 2 mM CuSO₄ after the strains were pretreated with Zn. Statistical significance was calculated compared to the WT (EV) group based on one-way ANOVA (n.s., not significant; **, *P*< 0.01; ***, *P*< 0.001).

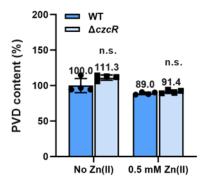


Figure S5. Production of pyoverdine (PVD) was measured in WT and $\Delta czcR$ strains when they were cultured in the absence or presence of Zn. Statistical significance was calculated compared to the WT group based on Student's *t*-test (n.s., not significant).

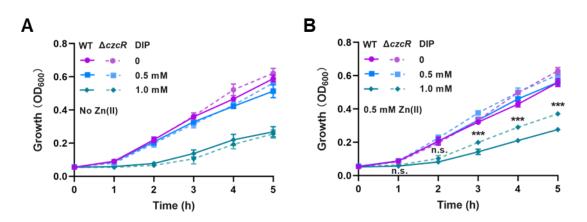


Figure S6. Deletion of *czcR* promoted cell growth under Fe depletion and Zn excess conditions. (A) Growth of the WT strain and the $\Delta czcR$ mutant in the absence or presence of 0.5 mM and 1.0 mM DIP when two strains were not pretreated with Zn. (B) Growth of the WT strain and the $\Delta czcR$ mutant in the absence or presence of 0.5 mM and 1.0 mM DIP when two strains were pretreated with Zn. Statistical significance was calculated compared to the WT group based on two-way ANOVA (n.s., not significant; ***, P < 0.001).

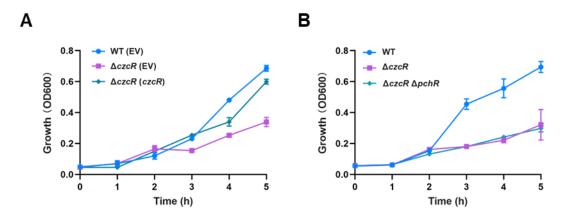
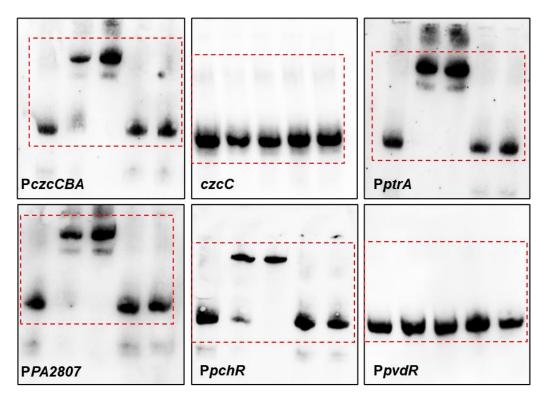



Figure S7. Deletion of *czcR* increased cell susceptibility to exogenous H₂O₂. (A) Growth of the WT strain, $\Delta czcR$ mutant, and the $\Delta czcR$ mutant with the complementation of *czcR* in the presence of 0.75 mM H₂O₂ when the strains were pretreated with Zn. (B) Growth of the WT strain, $\Delta czcR$ and $\Delta czcR$ $\Delta pchR$ mutants in the presence of 0.75 mM H₂O₂ when the strains were pretreated with Zn. (B) Growth of the WT strain, $\Delta czcR$ and $\Delta czcR$ $\Delta pchR$ mutants in the presence of 0.75 mM H₂O₂ when the strains were pretreated with Zn. (B) Growth of the WT strain, $\Delta czcR$ and $\Delta czcR$ $\Delta pchR$ mutants in the presence of 0.75 mM H₂O₂ when the strains

Figure S8. Uncropped gel images of the EMSA results obtained from this study. PczcCBA and czcC were used in Figure S3A and Figure S3B, PptrA and PPA2807 were used in Figure 2C, PpchR and PpvdR were used in Figure 5F.

1. Strains	al strains, plasmids, and primers used in this stud	2
Name	Description	
DH5a	<i>E. coli</i> strain used for plasmid construction and propagation	
BL21(DE3)	<i>E. coli</i> strain used for protein expression and purification	
SM10	<i>E. coli</i> strain used for protein expression and parmetation	
PAO1 WT	<i>P. aeruginosa</i> PAO1 wild-type strain from lab collection	
$\Delta czcR$	PAO1 with the deletion of <i>czcR</i>	
$\Delta czcR$ (czcR)	PAO1 $\triangle czcR$ with the <i>in trans</i> expression of $czcR$	
$\Delta pchR$	PAO1 with the deletion of <i>pchR</i>	
$\Delta czcR \Delta pchR$	PAO1 with the double deletion of <i>czcR</i> and <i>pchR</i>	
$\Delta czcR$ (ptrA)	PAO1 $\triangle czcR$ with the <i>in trans</i> expression of <i>ptrA</i>	
$\Delta czcR$ (2807)	PAO1 $\triangle czcR$ with the <i>in trans</i> expression of <i>PA2807</i>	
$\Delta czcR$ (ptrA-2807)	PAO1 $\triangle czcR$ with the <i>in trans</i> expression of <i>ptrA</i> and <i>PA2807</i>	
$\Delta pchR$ (pchR)	PAO1 $\Delta pchR$ with the <i>in trans</i> expression of <i>pchR</i>	
$\Delta czcR \Delta pchR (pchR)$	PAO1 $\triangle czcR \ \triangle pchR$ with the <i>in trans</i> expression of <i>pchR</i>	
2. Plasmids		
Name	Description	
mini-CTX-PptrA-lux	mini-CTX-lux containing promoter of ptrA	
mini-CTX-PPA2807-lux	mini-CTX- <i>lux</i> containing promoter of <i>PA2807</i>	
mini-CTX-PpchD-lux	mini-CTX- <i>lux</i> containing promoter of <i>pchD</i>	
mini-CTX-PpchR-lux	mini-CTX-lux containing promoter of pchR	
mini-CTX-PpchE-lux	mini-CTX-lux containing promoter of pchE	
pBBR1-czcR	pBBR1-MCS5 to express the <i>czcR</i> gene	
pBBR1-ptrA	pBBR1-MCS5 to express the <i>ptrA</i> gene	
pBBR1-PA2807	pBBR1-MCS5 to express the PA2807 gene	
pBBR1-ptrA-PA2807	pBBR1-MCS5 to express the <i>ptrA</i> and <i>PA2807</i> genes	
pBBR1-pchR	pBBR1-MCS5 to express the <i>pchR</i> gene	
pET28a-czcR	For CzcR expression and purification	
3. Primer seque		
Name	Sequence (5' to 3')	Description
lux-PptrA-F	GGTCGACGGTATCGATAAGCTTGAAGCCTGCCTCGGCG TCTAAAGAAGAATTGGGGATCCGGGAAGTCTCCTCGAA	Amplify the <i>ptrA</i> promoter to
lux-PptrA-R		construct PptrA-lux reporter
<i>lux</i> -PPA2807-F	GGTCGACGGTATCGATAAGCTTCGACGAAGAAGGACAAGG	Amplify the PA2807 promoter to
lux-PPA2807-R lux-PpchD-F	TCTAAAGAAGAATTGGGGATCCTACATCTTTGTCAGCTTGCCG GGTCGACGGTATCGATAAGCTTCAGGTTTTCCTGTAGCCCGG	construct PPA2807-lux reporter
lux-PpchD-R	TCTAAAGAAGAATTGGGGATCCGCGATCTCCGTGGATGCGGT	Amplify the <i>pchD</i> promoter to
lux-PpchE-F	GGTCGACGGTATCGATAAGCTTCCGCTGAGTCTCCGCG	construct PpchD-lux reporter
lux-PpchE-R	TCTAAAGAAGAATTGGGGATCCGGGGGCTCCCTAGGGC	Amplify the <i>pchE</i> promoter to construct <i>PpchE-lux</i> reporter
lux-PpchR-F	GGTCGACGGTATCGATAAGCTTATTGTTGGGAAATGAGATTT	construct <i>PpcnL-tux</i> reporter
lux-PpchR-R	TCTAAAGAAGAATTGGGGATCCCAGGTTTTCCTGTAGCCC	Amplify the <i>pchR</i> promoter to construct <i>PpchR-lux</i> reporter
lux-PpvdR-F	GGTCGACGGTATCGATAAGCTTGTGGACCTGGAACATCGCGA	
lux-PpvdR-R	TCTAAAGAAGAATTGGGGATCCCGTCTCATTCGGGAATCCGG	Amplify the <i>pvdR</i> promoter to construct <i>PpvdR-lux</i> reporter
CTX-lux-veri-F	CGCGCGTAATACGACTCACTA	Verify the construction of promoter- <i>lux</i> reporter
CTX-lux-veri-R	GCAATCTAATTTTTACCGGCAG	
PpchR-F	TCAGGTTTTCCTGTAGCCCGG	
PpchR-R	GGAAGTCATGCGATCTCCGT	For EMSA assay
		I

Table S2. Bacterial strains, plasmids, and primers used in this study

PpvdR-F	CATCCGCAGCCTGGT	
PpvdR-R	GGTTCGTCTCATTCGGGA	For EMSA assay
PczcC-F	GTTCCGCTCCTCGTCT	- For EMSA assay
PczcC-R	CGTGAGGGGCAATGCC	
PptrA-F	GGTACGCATGGGAAGTCTCC	For EMSA assay
PptrA-R	GAAGCCTGCCTCGGCG	
PPA2807-F	CGGGAGCATTACATCTTTGT	For EMSA assay
PPA2807-R	CGACGAAGAAGGACAAGGAA	
PczcC(in)-F	CCAGGGAGGTCTTCGCCA	For EMSA assay
PczcC(in)-R	CCAGACCAGCGTCAGCAT	
pBBR-czcR-F	GGTCGACGGTATCGATAAGCTTATGCGCATCCTTATTATC	Construct pBBR1-czcR
pBBR-czcR-R	GCCGCTCTAGAACTAGTGGATCCTCATCGGCGCGCGCTTCCAG	
pBBR-ptrA-F	GGTCGACGGTATCGATAAGCTTATGCGTACCTTCACTG	Construct pBBR1-ptrA
pBBR-ptrA-R	GCCGCTCTAGAACTAGTGGATCCTCAGCAGTTTTCCTTGT	
pBBR-PA2807-F	GAGGTCGACGGTATCGATAAGCTTATGCTCCCGACAGCCA	Construct pBBR1-P42807
pBBR-PA2807-R	GCCGCTCTAGAACTAGTGGATCCTCAGGGCTGCACGGTC	
pBBR-ptrA-PA2807-F	AGGTCGACGGTATCGATAAGCTTATGCGTACCTTCACTGC	Construct pBBR1-ptrA-PA2807
pBBR-ptrA-PA2807-R	GGCCGCTCTAGAACTAGTGGATCCTCAGGGCTGCACGGTC	
pBBR-pchR-F	AGGTCGACGGTATCGATAAGCTTATGACCATCACCATCA	Construct pBBR1-pchR
pBBR-pchR-R	CCGCTCTAGAACTAGTGGATCCTCAGCGGATCTCGCTG	
pBBR-veri-F	TACGCAAACCGCCTCTCCCC	Verify the construction of plasmids
pBBR-veri-R	GCTGCGCAACTGTTGGGAAG	for in trans expression
pET28a-czcR-F	ACAGCAAATGGGTCGCGGATCCATGCGCATCCTTATTATCGAAG	Construct the plasmid pET28a-
pET28a-czcR-R	GGTGGTGGTGGTGGTGCTCGAGTCATCGGCGCGCTTCC	czcR for CzcR expression
pET28a-veri-F	CGAAGCAGCGCAACGATAT	Verify the construction of pET28a-
pET28a-veri-R	TTCCAGTGCGCCATCGC	czcR
czcB-RT-F	GCGCAGAGCACCTACAA	
czcB-RT-R	GATCTCGGCTTCCTGCAAA	qPCR
ptrA-RT-F	CATCGTCTTCGAGCGCAT	qPCR
<i>ptrA</i> -RT-R	TTGTCCTTCTTCGTCGCTTC	
PA2807-RT-F	GGCGATATGTACTTCAAGCCT	qPCR
PA2807-RT-R	CATCTCCAGCATCTCCTTCTG	
pcoA-RT-F	ACACCTATACCTACCTGCTCAA	qPCR
pcoA-RT-R	GGAATGCGGACGTCGAAATA	
pcoB-RT-F	TGAACAGCTTCTTCCTGCTC	qPCR
pcoB-RT-R	CCACAGGCGGTTGATGT	
copA1-RT-F	GTTCTGGGCCTTCATCTACAA	qPCR
copA1-RT-R	CGCTGACGCTGGAGAAG	
copA2-RT-F	CTGATGATCGAAGGCATCAGTT	qPCR
copA2-RT-R	CGATGGTTGGACAGGTTGAG	
czcR-UF	CCCTTTCGTCTTCACAGTATCGGCATGTTCCGCTC	
czcR-UR	GACAGTCGGCCTGGTGGCGGTTCGCCCCTATATAAAGTA	Amplify upstream and downstream
czcR-DF	TACTTTATATAGGGGCGAACCGCCACCAGGCCGACTGTC	donor sequences for <i>czcR</i> deletion
czcR-DR	GGATCAGGAATACCCCAATGGCAGGAGGAAGGGCAG	1
pchR-UF	CCCTTTCGTCTTCACGCAGGTCTCGACGAAGGCGA	Amplify upstream and downstream donor sequences for <i>pchR</i> deletion
pchR-UR	TCGGGGGTCGTCGCGGAGACCAGGTTTTCCTGTAGCCCGG	
pchR-DF	CCGGGCTACAGGAAAACCTGGTCTCCGCGACGACCCCCGA	
pchR-DR	GGATCAGGAATACCCCGCACGGAAGACAGCTCGAAC	

czcR-T	AGGGCCTGACCGAAAGCGGCTACATCGTCGAC	Spacer sequence for czcR deletion
pchR-T	GAACATGAAGCTGGTGACCGGAACCTTCTGTT	Spacer sequence for <i>pchR</i> deletion