
Hunter et al, Supplemental Notes 

S2: Expanded Methods 

S2.1 Tissue Section Preparation and Regions of Interest Selection 

Formalin-fixed paraffin-embedded 2mm human tonsil tissue cores were obtained from the Novopath 

Tissue Biobank (Royal Victoria Infirmary, Newcastle upon Tyne) and embedded into a 3 core Tissue 

Microarray (TMA). TMA blocks were constructed manually using PFM Medical biopsy punches. Cores 

were selected using haematoxylin and eosin-stained slides to guide suitable areas in the donor blocks. 

Cores were places in a paraffin embedding mould, heated to 65°C and embedded in molten wax before 

cooling to set.  8µm serial sections were using HM 325 Rotary Microtome (Fisher Scientific, USA) and 

mounted onto SuperFrost Plus™ Adhesion slides (Epredia, CAT#10149870).   

S2.2 Panel Design and Antibody Validation 

A 27-plex antibody panel was designed to identify the immune, signalling and stromal components in 

the surrounding microenvironment of the human tonsil (See Figure S1 and Table S1). CD3 was 

purchased pre-conjugated to the assigned metal (Table S1). For all other targets of interest, carrier 

free antibody clones were sourced, and validated using standard single marker immunofluorescence 

on appropriate positive control tissues. Following verification of staining pattern and performance 

quality, approved antibodies were subject to lanthanide metal conjugation using Maxpar X8 metal 

conjugation kit following manufacturer’s protocol (Standard Biotools, CAT#201300). Antibodies 

conjugated to platinum isotopes 194 Pt and 198 Pt were conjugated as described in Mei et al. 2015 

(1). (AbC™ Total Antibody Compensation Beads (Thermo Fisher, USA, CAT#A10513) were stained with 

conjugated antibodies and analysed in suspension using the Helios™ mass cytometer (Standard 

Biotools, USA) and successful conjugation was determined via detection of appropriate signal in the 

correct channel. Positive control tissues were then stained with conjugated antibodies. Suitable 



antibody titres were evaluated using Imaging Mass Cytometry™ via the Hyperion™ Imaging System 

(Standard Biotools, USA). 

S2.3 IMC Staining  

Tonsil sections were baked for 1 hour at 60oC in a dry oven followed by dewaxing in two changes of 

fresh xylene (Sigma-Aldrich, USA,CAT# 534056-4L), 5 minutes each. Slides were rehydrated in 

decreasing grades of ethanol (100% 90% 70% 50%), for 5 mins each, and then washed twice for 5 mins 

in Milli-Q® Type 1 ultrapure water. Antigen retrieval was carried out using Tris-EDTA (pH9) buffer 0.5% 

Tween in the microwave at maximum power for 20mins. Slides were cooled to 70 oC, washed in two 

changes of Milli-Q® water 5 mins each and followed by two washes in PBS (Fisher Scientific, USA, CAT# 

10728775). Tissue sections were blocked with 3% BSA (Sigma-Aldrich, CAT# A3059) in PBS for 45 mins 

at room temperature and then incubated overnight at 4oC with a cocktail of the 28 metal-conjugated 

antibodies (Table S1). Slides were washed with 0.2% Triton X-100 (Thermofisher, USA, CAT#85111) for 

8 mins followed by two 8 min washes in PBS. Cell nuclei were stained with Cell-ID™ Intercalator-Ir 

(Standard Biotools, USA, CAT#201192A) at a 1 in 400 dilution, for 30 mins at room temperature. The 

slides were then washed for 5mins in Milli-Q® water and air dried prior to ablation. 

S2.4 Hyperion set up, quality control (QC) and data acquisition 

Prior to each sample acquisition, the Hyperion Tissue Imager was calibrated and rigorously quality 

controlled to achieve reproducible sensitivity based on the detection of 175Lutetium. Briefly, a stable 

plasma was allowed to develop prior to ablation of a single multi-element-coated “tuning slide” 

(Standard Biotools). During this ablation, performance was standardised to an acceptable range by 

optimising system parameters using the manufacture’s “auto tune” application or by manual 

optimisation of XY settings whilst monitoring 175Lutetium dual counts. After system tuning, Tonsil 

sections were loaded onto the Hyperion system in order to create Epi-fluorescence panorama images 

of the entire tissue surface to guide region of interest selection (ROI). Two ROIs of approx. 500µm2 

encompassing lymphoid follicles and surrounding structural cells were selected for ablation per batch 



run. Small regions of tonsil tissue were first targeted to ensure complete ablation of tissue during the 

laser shot with ablation energies adjusted to achieve this where required. Finally, ablations were 

performed at 200Hz laser frequency to create a resultant MCD file containing all data from ROIs. 

Correction of signal ‘spillover’ between isotopes was performed as per the protocol described in here 

https://bodenmillergroup.github.io/IMCDataAnalysis/spillover-correction.html without deviation (2). 

 

S2.5 Basic image QC and segmentation  

S2.5.1 Ilastik Model Training 

Ilastik (3) is a “random forest” machine learning tool used for classification of pixels or objects from 

images. It relies on providing training images, partially labelled by the user, in order for the machine 

learning model to determine what features within the image are being identified by the human user. 

For the two Ilastik models trialled in this manuscript, pixels were classified into either nuclear or 

background. This simplifies the model learning and application processes. The models were both 

trained on nuclear Iridium 193 datasets, however one was trained on images acquired of tonsil tissue 

data, while the other was trained on images of “Vero” cells. This comparison served to determine if 

Ilastik model training material matching the input material for analysis was important for correct 

macro functioning. Partial labelling was applied to the training images followed by training of the 

Ilastik models. Following training, the models were applied to the training images and checked visually 

for regions where the model did not perform as expected. In these regions, additional labelling is then 

placed, and the model is retrained. Once output probability map images match the expected results 

sufficiently, the model is saved and applied to any further datasets of unseen data. In the experimental 

dataset whereby no Ilastik model was applied to the nuclear channel Iridium 193, the raw unprocessed 

channel was used for the following CellProfiler steps instead. 

 

https://bodenmillergroup.github.io/IMCDataAnalysis/spillover-correction.html


S2.5.2 CellProfiler Cell Segmentation 

CellProfiler (4,5) is an image processing and analysis pipeline tool. In this research, we have developed 

a CellProfiler pipeline to take input individual channels from the MATLAB processing pipeline, along 

with Ilastik processed nuclear channels, to output single-cell quantitative data. The CellProfiler 

pipeline requires the input data folders to be specified within the program, along with any folder 

naming conventions to be explicitly listed. The intensities of the membrane channel, the nuclear input 

channel, and the nuclear probability channel are first rescaled to allow for comparable intensity levels 

between images, regardless of any batch effect that might be present. The nuclear probability maps 

are then segmented into binary objects. This is achieved through a global “otsu thresholding”, splitting 

the pixels into three classes (combining the middle intensity pixels with the background pixels), leaving 

just the nuclear pixels as white on a black background. A threshold smoothing scale of 1 and correction 

factor of 1 is also applied, with shape then used to distinguish between clumped objects. The pipeline 

was set to automatically calculate the size of the smoothing filter and the minimum distance between 

maxima for splitting of clumped objects. To facilitate the faster processing of the large datasets 

provided by multiplexed images, the pipeline was allowed to use lower resolution images to identify 

the local maxima. The membrane channel is then smoothed (keeping edges) to facilitate the following 

step of identifying the cell boundaries. A propagation method was used, using the identified nuclear 

objects as initial seeds, along with global otsu thresholding (classifying middle intensity pixels to 

foreground). A regularisation factor of 0.05 is applied, meaning the boundary is determined by the 

intensity gradient in the membrane channel. Holes are filled within each object. The cell boundaries 

are then expanded by 2 pixels. Visualisation images are generated and saved for checking 

segmentation accuracy in quick sense-checks. The cell objects are then used to measure the intensity 

of each of the channels in their area, outputting intensity information along with some morphological 

data regarding the cells, all on a single-cell basis in .npy file format. 

 



S2.5.3 ImageJ Macro Channel Combination 

A Fiji macro was created to potentially aid with cell boundary segmentation by creating a single 

combined channel to potentially better represent the whole cell membrane for use in CellProfiler. The 

raw Hyperion images were difficult to interpret visually as a whole due to the quantity of channels (28 

metal signals/channels). Channels containing membrane or cytosol markers could be looked at 

individually to determine overall cell outline, however in isolation many channels had relatively low 

signal-to-noise giving a poorly defined, speckled appearance, while the specificity of other markers 

gave a clear indication of cell boundaries of some cell types but not others, meaning the single channel 

option was not optimal as a visual reference. 

The images were processed with a Fiji macro which combined multiple non-nuclear channels into a 

single reference channel with greater signal-to-noise than its individual parts for a clearer illustration 

of cell morphology. Following visual interrogation, 14 non-nuclear channels with the best signal-to-

noise ratio were selected.  These were:  channel 14 (CD45RA In115), channel 15 (CD68 Nd142), channel 

17 (Ki67 Nd144), channel 19 (CD138 Nd146), channel 20 (CD163 Sm147), channel 23 (MPO Nd150), 

channel 30 (CD206 Gd157), channel 31 (CD79a Gd158), channel 36 (IFITM3 Dy163), channel 38 (CD57 

Ho165), channel 43 (CD3 Er170), channel 45 (CD31 Yb172), channel 47 (CD4 Yb174) and channel 48 

(HLADR Lu175).  To process the images, the contrast of each channel was increased individually using 

“Enhance Contrast” with a default saturation of 0.35%. The look up table (LUT) was then applied. 

“Despeckle” was run on all of the channels to smooth noise. The channels were then stacked and 

projected into separate maximum intensity projections (MIP). The following outputs from each 

Hyperion image stack were produced: a composite image showing nuclear (green) and non-nuclear 

(red) regions for visual validation of segmentation, and a single channel non-nuclear MIP for use in 

CellProfiler for segmentation. 

 



S2.5.4 Spillover corrections, transformation, normalisation, metadata addition and .FCS file 

creation. 

Output npy files are subsequently processed within the MATLAB script. This portion of the script has 

three main functions: 1) Correct the data for spillover between the channels; 2) scale the data 

according to an arcsinh transformation; and 3) normalise the data to correct for batch variation (Z 

correction). Following these steps, the files are converted into FCS format to facilitate use with FCS 

Express for cluster analysis.  

Due to the nature of multiplexed imaging, a degree of spillover between similarly labelled compounds 

is to be expected. As the Hyperion system, used for this analysis, relies on the distinction between 

very similar weight metal ions (even different isotopes of the same metal), the spillover could 

negatively impact interpretations, especially in a variation-rich field such as biology.  To remove the 

contribution of metal isotopes in non-target channels we followed the protocol as outlined by 

Chevalier et al (2) whereby a slide was made that had each of the 28 metals used in this study spotted 

individually.  The Hyperion system was then set to ablate each spot one at a time and measure across 

the entire detector range the proportion (%) of the target channel that appeared in non-target 

channels in order to create a spillover correction matrix that was used to subsequently correct the 

mean intensity values for each channel derived from our multi-stained tonsil tissue. 

A Hyperbolic arcsine (arcsinh) scaling factor (6) is applied to the data with the intention of ensuring 

the high variance of a potentially larger value (positive signal) is given the same significance and 

weighting as a negative (low) signal that has low variance.  This scale normalisation is essential for 

dimensionality reduction and clustering algorithms to work well.    

Z-score normalisation was then applied to the spillover-corrected and arcsinh-processed data. The 

goal of this step is to align the median around 0 and compresses the scale to minimise influence of 

comparative brightness from batch effects and also inter/intra-marker variance due to biology and 

batch effects respectively. 



S2.6 Data analysis and exploration using FSC Express software 

S2.6.1 Introduction 

The “OPTIMAL” analysis approach is designed to work with any software, script or package that can 

read FCS file format data.  We have decided to use FCS Express from DeNovo by Dotmatics as it is a 

widely available software solution for cytometry data analysis, however the “OPTIMAL” approach 

could be executed using other commercial software as well as open source solutions.  Successful 

implementation of this approach using FCS Express requires some basic and advanced knowledge of 

the software.  We would direct anyone to look at the extensive YouTube tutorials that can be found 

here https://denovosoftware.com/videos/. However as much as is practical, we will outline the key 

steps in this supplemental methods section.  Note that this is not designed to serve as a user guide for 

the software, which already exists https://denovosoftware.com/full-access/manual-tutorials/.  The 

result of our segmentation approach is the generation of .FCS files that are composed of a combination 

of morphometric features (area, eccentricity), spatial features (x and y centroids) sample metadata 

(batch number, patient number) and metal “intensity” features (mean pixel intensity) that have been 

“compensated” (corrected) for signal spillover as described previously.  Each metal intensity 

parameter exist in two formats, one set of metal intensity features have been arcsinh transformed 

using the pre-determined optimal cofactor for IMC data of 1, and the second set have been Z-scored 

transformed in addition to the arcsinh transformation in order to minimise the influence of technical 

variation (batch effect) and also natural variation in the intensity of various markers/antibodies that 

would dominate the data structure (DimRedux visualisation, clustering or heat maps).   

S2.6.2 Determining the optimal transformation cofactor for IMC data 

In order to determine the optimal arcsinh transformation co-factor value for IMC data we performed 

a “titration” of possible values from 120 to 0.1 using the original (pixel capped and compensated) 

metal signal parameters and using FCS Express "mathematical transformations” option in FCS Express 

“Pipelines”.  We then used the Fisher Discrimination Ratio (Rd for short), also known as “Linear 

https://denovosoftware.com/videos/
https://denovosoftware.com/full-access/manual-tutorials/


Discriminate Analysis” (LDA) to enumerate the separation and resolution between a gated low (or 

negative) and high (or positive) signal using simple gating in FSC Express.  The Rd is calculated as 

follows (7):   

𝑅𝑅𝑅𝑅 =  
(𝑀𝑀𝑀𝑀𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 ℎ𝑀𝑀 − 𝑀𝑀𝑀𝑀𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 𝑙𝑙𝑙𝑙)

(𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑀𝑀 + 𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙)
 

It is then possible to plot for any parameter the arcsinh transformation value (x axis) versus the Rd 

value (y axis) to determine the cofactor that provides the best resolution of low and high signals and 

thus maximise the data resolution and structure prior to any dimensionality and clustering.  However 

we strongly suggest that the use of these transformations be empirically tested using the OPTIMAL 

approach. 

S2.6.3 Dimensionality reduction, batch effect determination and correction  

The fastest and simplest way to visualise multi-dimensional single cell data is usually via some kind of 

dimensionality reduction approach whereby n dimensions are compressed and represented by 2 or 

sometimes 3 parameters (8).  There are numerous options to achieve this, all with various benefits 

and drawbacks as well as tuneable hyper-parameters that will influence the output.  In all cases the 

choice and implementation of the dimensionality reduction method must remain true to the original 

underlying data structure.  Via the use of FCS Express and the “pipelines” tool we were able to assess 

multiple dimensionality reduction approaches using both embedded options within the software 

(tSNE and UMAP) as well as a number of external algorithms (TriMAP, PacMAP and fltSNE) via 

the python script interface in the FCS Express pipelines module.  References for each of these 

algorithms can be found in the main manuscript.  Information and instructions on how to run python 

scripts as part of the FCS Express pipelines module as well as the necessary software links and scripts 

that need to be installed with the relevant publications can be found here 

https://denovosoftware.com/full-access/knowledge-base/python-transformation/.     

 

https://denovosoftware.com/full-access/knowledge-base/python-transformation/


To begin the analysis open a new incidence of FCS Express and navigate to the “data” menu on the 

top options ribbon and select the “data list” option.  At this point it is possible to select the “+” icon 

and choose which files to load.  For this stage it is important to select the “merge FCS files” option as 

this will bring all samples in as a single merged entity and allow any analysis to be carried out 

simultaneously while still preserving individual file identity (a new column will be created called “file 

identifier” that can be used to de-convolute to individual sample level as necessary).  At this stage, it 

is good practice to open up a plot by dragging the merged file on to the workspace.  We tend to select 

a density plot of Area on the X axis versus eccentricity on the Y axis.  By then “right clicking” on this 

plot and selecting “gate stats”, this will show the total number of events loaded from all the merged 

files and can be cross checked against the expected total number of events.  If these numbers are in 

agreement, one can proceed to set up and run a set of dimensionality reduction and visualisation 

methods to rapidly assess a range of key issues such as the presence of any batch effects, attempts to 

correct these as well as selecting the best overall method for presenting the data structure.  Navigate 

to the “tools” option on the top options ribbon and select “transformations”.  This will open up a new 

window and clicking on the “+” icon allows you to then select the “pipelines” option in the drop down 

menu.  Details on how to set up and run pipelines in FCS Express can be found here 

https://denovosoftware.com/flow-cytometry-pipelines/.  Briefly selecting the pipeline option will 

open up a further window where it should be possible to input which parameters you want to have 

available for the further analysis.  We recommend selecting all available parameters in the data set at 

this stage.  There is also an option to “automatically run pipeline” that is ticked by default.  This should 

be unticked so as to avoid the software attempting to run a pipeline before it has been 

finalised.  Creating a new pipeline will activate a second “+” icon to the right of the first one.  Selecting 

this will provide a new drop down menu where the required pre-set analysis options will be present 

as well as the Python terminal for running scripts that are external to the software (see later 

section).  For the analysis of possible batch effect and to determine whether our chosen method of Z-

https://denovosoftware.com/flow-cytometry-pipelines/


score normalisation was able to remove it, we used UMAP.  The Z-score normalisation equation is 

shown below: 

 

𝑧𝑧 𝑠𝑠𝑐𝑐𝑙𝑙𝑟𝑟𝑀𝑀 =  
𝑥𝑥 −  𝜇𝜇
𝜎𝜎

 

 

This was done by selecting “dimensionality reduction” then “UMAP” from the drop down menu. This 

creates a new step in the pipeline that can be named (for example) “UMAP_arcsinh_only” and select 

in the option window to only use the arcsinh c.f. 1 transformed parameters that we know have 

successfully stained our tonsil tissue from our basic image QC step (2.3 and table S1).  We used the 

default hyper-parameter settings for UMAP (number of neighbours = 15, min. Low Dim Distance = 0.1 

and iterations = 500) we did however add a parameter suffix of “archsinh_only” to be able to identify 

each set of UMAP parameters in the same pipeline.  We created a duplicate of this UMAP step in the 

same pipeline and renamed it “UMAP_arcsinh_Zscore” and selected the arcsinh c.f.1 and Z-score 

corrected versions of the same parameters as before.  We kept the hyper-parameters of the UMAP 

identical but changed the parameter suffix to “arcsinh_Zscore” to provide distinction between these 

UMAP parameters and the other set of UMAP parameters.  Once all steps were cross checked, the 

pipeline was executed by re-ticking the “automatically run pipeline” option and clicking on the icon to 

“apply to all plots” located to the right of the “+” icon.  Successful launch of the pipeline can be 

determined by the progress bar at the bottom of the FCS Express workspace.  Run time is dependent 

on numerous factors such as computer specifications, number of events/samples as well as the 

complexity of the pipeline, both in terms of steps and the algorithm itself.  To give some context, 

generating two sets of UMAP parameters from the ~100,000 single cells across 24 samples took 

approximately 10 minutes on a Microsoft Surface Pro Series 4 with an 4 Intel(R) Core(TM) i7-7660U 

CPU @ 2.50GHz   2.50 GHz, 8 GB RAM and 64-bit operating system with x64-based processor.  We 

were then able to create a colour dot plot for the arcsinh only UMAP parameters 1 and 2, as well as 



one for the arcsinh and Z-score normalised set.  It was then possible to plot batch “batch number” 

versus Iridium signal (Z-score version) as a density plot and set individual gates for each of the 12 data 

batches with suitable colours.  Displaying the batch gates on each UMAP plot allowed us to quickly 

assess if there was any batch effect (arcsinh only UMAP parameters) and if it had been 

corrected/minimised (arcsinh plus Z-score normalised UMAP parameters and arcsinh plus 0-1 

normalised parameters).    

S2.6.4 PacMap visualisation via Python script interface  

Having shown empirically that Z-score normalisation of the arcsinh transformed parameters 

eliminated batch effects in the data, we used these for subsequent clustering and optimal 

visualisations.  UMAP visualisation provided a good two-dimensional representation of the 27 

antibody parameter data set, however we wanted to assess if there was an option that would improve 

upon this further.  Our criteria for assessing these methods was based on the overall data structure 

projection; namely the presence or absence of defined “islands” as well as how well key fiducial 

markers mapped to these structures.  For example, structures with concentrated maximal expression 

of CD3 or CD79a were preferred over apparent diffuse staining patterns.  At time of writing, FCS 

Express currently has tSNE and UMAP directly available in the pipelines options.  However it is possible 

to access and implement additional dimensionality reduction algorithms via the “miscellaneous” 

option in the “pipelines” sub menu and then selecting “Python Transformation”.  More details on what 

supporting software is required as well as the necessary scripts can be found 

here: https://denovosoftware.com/full-access/knowledge-base/python-transformation/.  Briefly, 

once C++, Anaconda (Python) and the FCS Express Environment (for Anaconda) have been installed it 

is possible to select the desired script and install the package using Anaconda by selecting the FCS 

Express environment and opening up a new terminal.  To install (for example) PacMap type pip install 

pacmap and the required dependencies will be installed automatically.  It is then possible to copy the 

required script text from the FCS Express web link and paste into the python script window in the 

pipeline (clear the existing script first).  If successful, on saving the relevant hyper-parameters should 

https://denovosoftware.com/full-access/knowledge-base/python-transformation/


be available as well as a list of input features to select.  As mentioned the arcsinh plus Z-score 

normalised parameters were used.  For PacMap, the “n neighbours” value was calculated based on 

the recommended equation (9) and for 109,535 single cells this was “26”.  For all other hyper-

parameters and dimensionality reduction algorithms default settings were employed (Flt-SNE, TriMap, 

tSNE, UMAP).   

 

S2.6.5 FLOWSOM and Phenograph Clustering  

In order to determine the resident phenotypes in our segmented tonsil data set of 109,535 single cells 

we compared two different clustering algorithms namely FLOWSOM (10) and Phenograph (11); both 

of which are available in FCS Express directly in the “pipelines” menu.  The panel of metal-tagged 

antibodies selected was designed to find at least 15 known cell phenotypes within the human tonsil 

(see table S1 and Figure S1) and as such allowed us to benchmark the different clustering approaches 

as well as the segmentation method.  To create a FLOWSOM pipeline with embedded PacMap 

visualisation we created a new “pipeline” and then selected the “Pre-Defined Algorithms” option in 

the drop down.  This allows access to a complete “FLOWSOM” script with all the required 

modules.  The first step “new scaling” is not required as the data has already been transformed within 

the FCS files and can be deleted or unticked.  The last step “New parameter removal” can also be 

removed.  In the “New Batch Self-Organizing Map” module, we selected the arcsinh transformed Z-

score normalised parameters representing the 27 phenotypic markers in the panel.  All other 

parameters were left as default and as such a 10 x 10 SOM grid generated 100 clusters (SOMs).  The 

only other module we altered was the “new consensus clustering” where we asked for 30 consensus 

clusters to be derived from the original 100 SOMs (twice the expected 15 clusters, so still over 

clustered).  We then created a new pipeline module to run Phenograph clustering.  Again this was 

done by selecting the Pre-Defined Algorithms” option in the drop down menu, but this time selecting 

“Phenograph”.  As before, the first part of the module “scaling” can be removed as the data has 

already been suitably scaled/normalised.  Within the “New K-nearest neighbour” module we selected 



a value for “number of neighbours” that generated 30 clusters.  The value used for the 109,535 single 

cells was 17-18.  Cluster number was assessed by creating a plate heat map from the “insert” tab “heat 

map” option and selecting “Louvain communities” to display on the x-axis.  Once all required cluster 

parameters and PacMap coordinates were created and basic outputs checked, we exported the data 

as a single merged .DNS file (Data Stream) using the “export” function in the “data” menu.  We also 

created individual .DNS files by repeating the export step but selecting the “export split on 

classification” drop down menu and selecting “classification identifier”.  The reason to create .DNS 

files is that they are smaller than the source files and will contain all the previous features as well as 

the new cluster info and PacMap coordinates.  All further analysis and exploration were done using 

the .DNS files.  

 

S2.6.6 Data visualisation, exploration and analysis  

A new incidence of FCS Express was launched and the merged .DNS file containing all original metadata 

and features plus the newly created dimensionality reduction coordinates for UMAP and PacMap as 

well as all FLOWSOM cluster information (100 SOMs and 30 cSOMs) was loaded into the data 

view.  Any meta-data gates such as those set previously for batches were recreated using a bivariate 

density plot of batch (x) versus Ir 193 signal (arcsinh and Z-score version on y).  The “plate heat map” 

option was selected from the “heat map” menu in the “insert” tab and either the “batch SOM cluster 

assignment” option was selected for x-axis display on the plot.  This created a radial spanning tree of 

the original 100 SOMs.  It was then possible to right click on this plot and select the “format” option 

then “overlays”.  This gives access to the ability to select a different radial statistic for a given marker 

and emphasise any SOMs characterised by high expression of that marker on the plot.  We then 

created a second plate heat map and this time selected “consensus clustering assignments” as the x-

axis parameter from the plots drop down menu.  This displayed the 30 cSOMs in a grid of 10 x 3.  We 

then used the “well gate” function from the “gating” tab and selected all “wells” and asked to create 

individual gates for each with the prefix “cSOM” and to select individual colours for each (however 



this function often works poorly so manual colour selection is required).  It was then possible to create 

a new PacMap colour dot plot, and select the “gates to display” option in the plot format menu (again 

accessible via a right mouse click on the plot).   

  

In order to explore the outputs from the clustering (FLOWSOM or Phenograph), “parameter heat 

maps” were selected from the “insert” then “heat maps” sub menu.  It is then possible to introduce 

multiple overlays of the same merged .DNS file on a “per gate” or in this case “per cluster” basis.  To 

do this, right click on the newly created heat map and select “Add Overlay using Advanced Open Data 

Dialog”.  This is the quickest way to select the current open file for duplication.  Once selected a new 

window will open and select the “duplicate for gates” option. Select all the necessary cSOM gates and 

click ok.  The heat map requires further editing however to generate an output that can be displayed 

and interpreted.  To modify the heat map further, right click and select “format”.  Select “specific 

options” and then choose (as a preference) to display in portrait mode.  This now places the markers 

(parameters) on the y-axis (rows) and the cSOMs (clusters) on the x-axis (columns).  At this stage, also 

select the option to “apply colours based on the values in each column” as this will normalise the heat 

map values by marker within each cluster (only possible because we have used the Z-score normalised 

versions).  Next select “parameters to display” and ensure that the appropriate arcsinh and Z-score 

normalised metal channel features are selected by ticking the “only the items checked below” box and 

then selecting the correct parameters.  Next go to the “overlays” option and select all overlays in the 

list.  Change the “statistic to show” setting to the “median”.    It is also good practice to check that all 

the clusters are shown.  It is also possible in this menu to move clusters (columns) left or right in the 

heat map order.  This is useful after annotation to group all T-cell subsets (for example) together.  It is 

also often useful to modify the axis.  This can be done in the “axes” sub menu and allows one to change 

font sizes, colours and also rotate labels 90 degrees; this is useful for the cluster names.  Cluster 

annotation was done using expert analysis and input.  In this case it was guided by the panel 

information shown in table S1.  Briefly, gate (cluster) names were edited to reflect broad or specific 



annotations.  Where two clusters were clearly very similar, they were given a label such as “Memory 

T cells 1, 2 etc.”  Where the cluster was deemed to be unique it was given a more definitive 

annotation.  To create merged populations, we used the “well gate” approach on a plate heat map 

showing all consensus clusters (so 30 in this case from both FLOWSOM and Phenograph).  Merging 

was achieved by multi-selecting the appropriate clusters and the new merged cluster was given a 

definitive annotation (for example Memory CD4 T cells).  A new parameter heat map was then created 

to only show the final merged consensus clusters.   

 

As a second stage of validation, we also plotted simple colour dot plots with the centroid x (x-axis) 

versus the centroid y (y-axis) coordinates and coloured by either cSOMs or the final merged 

clusters.  We did this to ensure that the cell types/states we had annotated mapped to the expected 

structure and anatomical locations in the tonsil (see figure S1).  In order to be able to show one 

ROI/FCS file at a time, we also used the plate heat map function to display file identifier on the x-axis 

and create well gates for each of the 24 merged tonsil FCS files.  We could then show/display each 

gated file/sample/image on the x/y centroid plot.  We found that the centroid plots were visually more 

pleasing when we set the fill background to black and also removed all axes ticks, labels and titles.  This 

can be done via the “format” menu.  

 

Once all clusters were annotated we created a simple excel file that contained the name and number 

of the final clusters (so 1-22 for example) and info regarding which cSOMs made up these final 

clusters.  So for example cluster 1 could be named as “memory CD4 T cells” and could be made up 

from merging cSOM3 and cSOM9 from the original 30 cSOMs.  We also created a .CSV using the 

“export” option from the “data” menu.  We only selected the minimal information needed for the 

advanced spatial mapping and neighbourhood analysis.  These were “file identifier” “centroid x”, 

centroid y” and “consensus clustering assignment”.  This created a matrix of all 109,535 cells across 

all 24 images, each assigned a cluster membership (1-30).   



Finally, we also created a batch statistics export for further analysis of the final clusters.  To do this, 

we opened up a new incidence of FCS Express and loaded the individual .DNS files for all 24 tonsil 

ROIs.  As mentioned previously, these contained all the necessary consensus clustering info as well as 

the original meta-data from the original FCS files.  We had to recreate the cluster (cSOM) gates using 

the plate heat map option and individual well gates with the “cSOM” prefix.  We also created a single 

bi-variate plot and displayed the first file in the data list.  Use any two parameters, however we often 

use centroid x versus centroid y.  This is important as the “data source” guide for running the stats 

report as a batch process (see later).  Once these gates were created (could be using any of the .DNS 

files), we navigated to the “batch” option on the menu ribbon.  We then selected “batch actions”.  In 

this new window, under the “add report” window, we select the “export to EXCEL (column 

mode)”.  Leave the option to “start with an empty file” in the “append option” area and in the “output 

file options” direct where to save the file and what to call it.  Select “ok” and it should now be possible 

to add in the statistics required in the output.  To add these, right click on the “EXCEL (column mode)” 

in the “Batch Process Action” window and select “add item” and “statistics token”.  Select in the sub 

window “data source” and select the single bi-variate plot created previously.  Next move to the 

“Statistic” menu.  In the “gate” window select “no gate” and in the “statistic” window select 

“filename”.  This means the first column on the export will be the FCS file/ROI name.  Press “Ok” to 

add to the export actions and it should now appear under the “EXCEL (column mode)” in the “Batch 

Process Action” window.  Highlight the bi-variate plot so the borders turn red and drag it on to the 

“EXCEL (column mode) icon.  This should open a new window that says “choose the format to paste”.  

Select “statistics token”.  This will open up a new window where it is possible to select all possible 

gates (ungated to cSOM X) by holding down the shift key and left clicking on the last gate at the bottom 

of the list.  In the “statistics” window, again hold down control and multi-select “filename”, “# of 

events” and (optional) “% of all cells”.  Once the EXCEL stats export routine has been finalised, ensure 

that the bivariate plot is showing the data from the first file in the data list then select “Run” in the 

“Batch” menu.  FCS Express will then visibly iterate through each sample and create an EXCEL file from 



the results.  These data can then be further analysed either in EXCEL or PRISM (Graph Pad) and should 

be arranged as:  First column:  filename (ROI); Second column:  Total #cells (ungated); Third column: 

#cells in cSOM 1 and so on.  The export of frequencies is optional as they can be derived using the 

total cell counts and the counts per cSOM. 

S2.7 Spatial analysis 

The MATLAB code developed for spatial analysis works by examining each cell identified within the 

cell mask file for a single image and is based on the code previously described in HistoCat (12) . It uses 

that cell mask and expands the cell region by the number of pixels specified by the user within the 

code. The function will then count the number of unique cells found within the expanded cell area, 

excluding the original cell, keeping a list of each cell identifier within the label image. The cluster 

identities of each of these neighbour cells is then assessed. This process is repeated for each cell within 

a ROI. In order to compare the spatial arrangement of the cells for higher-than-expected or lower-

than-expected interactions (where no positive or negative interactions are the nul hypothesis), the 

cell mask image is then used as a framework with the cell cluster identities randomly mapped onto 

the cell locations. The number of random images generated is dictated by the “Iteration” value 

specified by the user within the MATLAB code. If the original image shows a higher level of clustering 

than the randomly distributed images in more than 1-(significance threshold) proportion of the 

random images, then the interaction is deemed significantly positive for that image. If the reverse is 

true, showing a lower level of neighbour correspondence than the random images, then a significantly 

negative interaction is identified. In all other cases, no significant interaction is identified. The number 

of ROIs belonging to a group (i.e. pathology) that show a positive, negative, or neutral interaction is 

then averaged over the group condition, outputting a single heatmap with values ranging from a 

possible 1 (all images showed significant interaction between the cell types) to -1 (all images showed 

a significant avoidance between the cell types), with intermediate values indicating that some images 

showed interactions while others have not. The heatmap generated is asymmetric, allowing 



assessment of interactions that occur uni-directionally (i.e. cell type X interacts positively with cell 

type Y, but cell type Y does not interact in either direction with cell type X). 

Tested within this research were three methods of spatial analysis, based on the above description. 

The first method (Ungated Original) used the pixel expansion method used within the HistoCat code. 

Another method (Ungated Disk) performs the process above the same, with the exception of using an 

alternative radial approach to cell area expansion (Disk erosion/dilation), which appears to better 

preserve the shape of the cells examined and thus more likely to find “true” neighbours. Finally, an 

additional gating step was incorporated (Gate Disk), which excluded cells based on two factors: area 

and edge. Only cells with physiologically reasonable areas (20-200 µm2, equating to 5 – 15 µm dimeter) 

were included, and cells in contact with the edge of the image (and thus showing inaccurate neighbour 

reporting on their blank edged) were also excluded.  

Visualisation of the cluster spatial information was also performed by applying a high-contrast colour 

labelling to the original cell masks based on their reported cluster identity, with the possibility to map 

only selected cell types for ease of visualisation.  

S2.8 Code availability 

All code and data files used in this manuscript is available here: 

https://www.ebi.ac.uk/biostudies/studies/S-BSST1047 

 

 

 

 

 

 



Supplemental Figure Legends 

Table S1:  Key information concerning the panel of 27 antibodies used in this study to stain human 

tonsil tissue over 12 individual, temporally distinct batches. The final two columns denote the “ground 

truth” cell type that each marker in isolation or in combination was selected to identify in human tonsil 

as well as the expected spatial location in order to benchmark the clustering approaches used in this 

study. 

Figure S1:  (A) A single IMC image showing Iridium (DNA, red pseudo colour) overlaid with Ki67 (white 

pseudo colour) and CD31 (green pseudo colour) as per legend key.  The major anatomical and 

structural features are labelled.  (B) A gallery of grey scaled IMC images showing staining patterns for 

each of the 27 antibodies in table S1 plus the two Iridium channels (191 and 193).  (C)  Images showing 

the comparative staining coverage of EPCAM (left panel) and a combination of immune cell membrane 

signals (right panel). 

Figure S2:  IMC images from all 24 Tonsil ROIs across the 14 temporally distinct staining batches.  

Images shown are at 1 pixel per micron and equivalent to a 10x optical image and are between 0.25 

and 0.5 mm2 of total image area.  The pseudo-coloured overlays show DNA by virtue of Iridium 

intercalator (red), CD3 expression (Blue) and CD79a expression (Green) as per the legend.  In all cases 

ROIs were selected to try and capture as much of the diverse tonsil structure as possible such as 

follicles/germinal centres and epithelium. 

Figure S3:  Cell segmentation maps for all 24 Tonsil ROIs across the 12 temporally distinct staining 

batches derived from the “Tonsil EPCAM model” of cell segmentation whereby the tonsil nuclear 

image was used to train an Ilastik model based on classification of nuclear pixels and background, then 

single cell boundaries were defined by the EPCAM membrane signal using CellProfiler to generate 

single cell information from the Ilastik model-derived probability map.  The markers are denoted by 

the pseudo colours as shown in the legend. 



Figure S4:  Cell segmentation maps for all 24 Tonsil ROIs across the 12 temporally distinct staining 

batches derived from the “Nucleus only” of cell segmentation whereby the tonsil nuclear image was 

used directly by CellProfiler to generate single cell information without any Ilastik-derived probability 

map.  In all cases the object boundaries are shown on a merge of the nuclear (iridium) and EPCAM 

images. 

Figure S5: Bi-variate single cell level scatter plots for all 24 Tonsil ROIs across the 12 temporally distinct 

staining batches derived from the “Tonsil EPCAM model” of cell segmentation showing CD3 intensity 

levels on the x axis versus CD79a intensity levels on the y axis.  Both parameters are the arcsinh c.f.1 

transformed, Z-score normalised versions.  Gates have been set to determine the frequency of CD3 

and CD79a single positive events, as well the double positive (DP) “nonsense” cells. 

Figure S6:  Bi-variate single cell level scatter plots for all 24 Tonsil ROIs across the 12 temporally distinct 

staining batches derived from the “Nucleus only” of cell segmentation model showing CD3 intensity 

levels on the x axis versus CD79a intensity levels on the y axis.  Both parameters are the arcsinh c.f.1 

transformed, Z-score normalised versions.  Gates have been set to determine the frequency of CD3 

and CD79a single positive events, as well the double positive (DP) “nonsense” cells. 

Figure S7:  The top row shows UMAP plots coloured by batch (as indicated in the legend) created using 

the arcsinh transformed parameters only (first column), the arcsinh parameters transformed by 0-1 

scaling (middle column) and the arcsinh parameters Z-score transformed.  The middle row of UMAP 

plots are density weighted and the bottom row are density weighted by CD3 expression. 

Figure S8:  Cell cluster maps showing for all 24 Tonsil ROIs across the 12 temporally distinct staining 

batches derived from the “Tonsil EPCAM model” of cell segmentation as in S2.  All 21 final cell type 

clusters are shown as per the legend. 

Figure S9: (A) A graphical representation of how the cluster threshold function works when 

considering across all images what clusters to measure in the neighbourhood analysis.  In the ten mock 



images shown, the brown population only appears in one image so setting a 10% threshold means 

that it will not be considered however at a 1% it would be.  The purple population appears in nine of 

ten images so at a 90% cut off, this population and the brown population will not be included in any 

neighbourhood analysis.  (B) A graph showing the frequency of all 21 final cSOMs in all of the 24 tonsil 

images.  Note that all 24 images contained all of the 21 final cSOMs making the threshold function 

unnecessary in this study. 

Figure S10:  (A) Segmentation checker imagines for an expanded set of cell segmentation approaches 

as indicated.  (B)  Bi-variate plots for the single cell segmented outputs from the ROIs shown in A with 

CD3 (x axis) and CD79a (y axis) expressions levels plotted.  Gates are set to capture the frequency (%) 

of CD3 single positive, CD79a single positive and double positive events.  (C) PacMap plots for each of 

the single cell outputs for all ROIs from each of the respective segmentation approaches with 

expression density set on CD3 levels.  (D) The same as in C but with expression density set on CD79a 

levels.  (E)  Heatmaps of the FLOWSOM clustering outputs from either the “nuclear only II” (left panel) 

or CellPose (right panel) segmentation approaches. 

 

 

 

 

 

 

 

 

 



This user guide will assist users in using the macro and scripts present within this repository. For 
further information or queries, please contact George Merces at George.Merces@newcastle.ac.uk 

 

Folder Organisation 

1. Arrange your folders according to the naming convention listed below 

 
2. Put all raw .tiff images into the folder “1_ImageData” 
3. Put the Matlab macros, along with any excel files needed for the macros, in folder 

“2_image_extraction” and organise according to the image below 

 
4. Structure folder “3_ilastik_model” to have your ilastik model in the folder, with a folder for 

your output Pmaps (this must match with what is in the Matlab macro later, so ensure the 
code matches the information) 

 
5. The folder “4_structured_data_for_CP” should be empty when you initially run the Matlab 

macro for the first time, the script will populate the folder with other folders for the 
individual channels in your image and folders for the nuclear, membrane, and probability 

mailto:George.Merces@newcastle.ac.uk


maps 

 
6. Structure the folder “5_CP_pipeline” with two folders, “OUTPUTS” and “PIPELINE”. The 

“PIPELINE” folder should only contain the CellProfiler pipeline file to be used with the 
Matlab macro. The “OUTPUTS” folder should be organised according to the image below. 
Note, the excel files and the contents of these subfolders will not exist until after the 
CellProfiler pipeline has completed running 

 

 

Metadata Incorporation 



1. Format your metadata excel file according to the example below. Any data that is planned 
on being incorporated into the fcs files at the end of the macro must be in numerical format 

 

 

 

Training An Ilastik Model 

Note, if you are using the Ilastik model provided, this step may be skipped, and you can just follow 
the instructions for “OPTIMAL_Pipeline_Part_1.m”. 

1. Open Ilastik and create a Pixel Classification Model 

 
2. Drag a selection of your images (in our case, we use rescaled nuclear channel images) into 

the images window. Note, for ease of distribution of your model, we recommend setting the 
image “Location” to “Internal”, which increases the file size for your model but ensures it 



should be executable by anyone who downloads it. 

 
3. Select you Features for use. We recommend selecting a wide range of options 

 
4. Train your model: Rename the label options to be relevant for your sample (e.g. nuclear vs 

non-nuclear) and label pixels sporadically around your images. Do not label too much, as this 
can lead to a lack of general ability of the model, and can train it too heavily to the training 



dataset. 

 
5. Select “Live Update” to train your model. If the output probability is not good enough, try 

adding additional labelling information to your images, focussing on regions where the 
probability mapping has made errors 

 
6. Once you’re happy with your probability mapping model, choose the export settings. In the 

Matlab script given as part of this manuscript, we only export the nuclear option, and we 
export this to a location close to the Ilastik model file. The exports are then detected and 
resaved in the appropriate location for CellProfiler with a different name within the Matlab 
script. Note the name used to save the image under, as this needs to match with the Matlab 



script for proper function.

 
7. Save your finished model to an appropriate location, and make sure this is the location 

called within the Matlab script to ensure proper macro function 

 

 

 

 

Matlab Code I 

1. Open Ilastik on your device, select an appropriate folder to save your output probability 
maps to. Make sure the settings are as listed in the image to ensure correct use of the 



images in macro running

 



2. Open the Matlab script “OPTIMAL_Pipeline_Part_1.m”. Rename the folders at the start 
according to their locations on your current device 

 
3. In the Matlab script, select the channels for your membrane/cytoplasmic stain to use for cell 

boundary determination (EPCAM_channel) and also the DNA stain for nucleus probability 
mapping (nuclei_channel). Please note, channel number 1 refers to the first channel in your 
image (not 0 as in some software)

 



4. Rename the locations for Ilastik and Cell Profiler, using the exact format shown in the 
template code. The spacing and additional features are essential for proper function 

 
5. Incorporate the names of the excel files to be used for metadata incorporation within the fcs 

files at the end of the code, including the spillover matrix for compensation of signal 
bleedthrough. 



 
6. Incorporate the specific metadata necessary for inclusion within the fcs files later. Make sure 

this information is purely numeric within your files, otherwise issues with fcs file generation 



may occur 

  
7. Select the channels of interest, i.e. the channels that have been specifically stained and 

imaged during your experiment (note here that again the first channel is channel 1 etc.) 

 



8. Adapt the fcs conversion portion of the code to include the metadata specified earlier, 
making sure to adjust the headers as well 

 
9. Repeat this process for the “collated fcs” file at the very end of the macro 

 
10. Run the script. There is a manual input stage following CellProfiler calling to check that the 

script has been effective before attempting to continue. If CellProfiler has failed to run, it is 
possible to run CellProfiler manually according to the instructions in the following section 
and to then press “Enter” on the keypad back in Matlab to continue the script.  

 

 

 

 



CellProfiler Manual Use 

If CellProfiler does not run, you may manually open the CellProfiler software from outside Matlab 
and run according to the instructions below 

1. Drag all image folders from the folder “4_structured_data_for_CP” into the images window. 
Note, this system is set up for 60 channel images, and modifications will need to be made if 
a different number of channels are actually present.

 
2. Modify the save locations for all “SaveImages” modules, along with the 

“ExportToSpreadsheet” module if you plan on using that data. 

 
3. When ready to run the pipeline, simply press “Analyse Images” and wait for the pipeline to 

finish before returning to Matlab 

 

 

 

 

 

 

 

 

 



Clustering Data Excel 

1. Structure your clustering data according to the image, with the original cluster assignment in 
column “cSOM_s” and the new cluster assignment in column “Tier2ClusterAssisgnment” or 
“Tier1ClusterAssignment” depending on the clustering tier. Put the name of the cluster in 
column “Name”.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Matlab Macro II 

1. Following cluster analysis, it’s time to run the Matlab Macro 
“OPTIMAL_Pipeline_Part_2_Heatmaps.m”. Update the name for the csv file containing 
details about each cell identified in the process, along with the folder path names for the 
Mask outputs from CellProfiler, along with where you would like output heatmaps to be 
saved. 

 
2. Update the name for the clustering information file that you have for your data, including 

the names of relevant sheets for specific clustering tiers if necessary. Make sure to adapt the 
“TIER_TO_USE” parameter to the relevant tier for your data 

 
3. Adapt the settings for the heatmap generation in the section shown below. The key 

parameters are “pVal_sig” which sets the threshold for what proportion of the simulation 
images need to show positive, neutral, or negative interactions relative to the original 
dataset to be determined as a significant positive, neutral, or negative interaction. 



“cut_off_percent” determines the proportion of images a cell type needs to be present in to 
be counted within the analysis. “permutations” refers to the number of simulation images 
generated. This is important in conjunction with the “pVal_sig” value, as too few 
permutations with a high significance value could lead to aberrant results. Finally 
“number_of_pixels” refers to the number of pixels a cell mask is expanded by to determine 
neighbouring cells, the smaller this number the smaller the region the macro will assess to 
identify neighbours. This number should be adjusted based on cell density and cell size. 

 
4. Create heatmaps based on clinical/metadata information by using “for” loops: If you have 

metadata information that you wish to group your data by for heatmap generation, e.g. for 
comparison between pathologies, you can use this data as long as it is present within your 
single cell csv file. 

 



5. Set a size gate on the cells to be analysed by adapting the lower and higher area gate 
parameters 

 
6. Adjust the save name for your heatmaps to reflect any specific alterations you are trialling or 

testing. For example, as default we have the heatmaps saved specifying the pathology and 
the pixel number for cell expansion, but you could incorporate any of the other parameters 
used within your heatmap generation. 

 
7. Run the script 

 

 

 

 



Matlab Script III 

1. To create colour-coded cell masks of your data based on cell type information, use the 
Matlab script “OPTIMAL_Pipeline_Part_3_Visualisaton.m”. First, adapt the folder paths for 
the output figure location, the csv file containing every cell with a specific cluster 
assignment, the directory containing the cell mask npy files from CellProfiler, and the raw 
image folder (for save name creation) 

 
2. Update the name for the clustering information file that you have for your data, including 

the names of relevant sheets for specific clustering tiers if necessary. Make sure to adapt the 
“TIER_TO_USE” parameter to the relevant tier for your data 

 



3. If you would like to plot only selected cell type clusters, adapt the list of clusters in the array 
“selected_clusters_to_plot” to only include clusters of interest 

 
4. To incorporate additional information into the save name of the files, update the parameter 

“saveName” in the macro, by default we include the file name along with the clustering tier 
specified by the user 

 
5. Run the script 
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