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S2: Expanded Methods

$2.1 Tissue Section Preparation and Regions of Interest Selection

Formalin-fixed paraffin-embedded 2mm human tonsil tissue cores were obtained from the Novopath
Tissue Biobank (Royal Victoria Infirmary, Newcastle upon Tyne) and embedded into a 3 core Tissue
Microarray (TMA). TMA blocks were constructed manually using PFM Medical biopsy punches. Cores
were selected using haematoxylin and eosin-stained slides to guide suitable areas in the donor blocks.
Cores were places in a paraffin embedding mould, heated to 65°C and embedded in molten wax before
cooling to set. 8um serial sections were using HM 325 Rotary Microtome (Fisher Scientific, USA) and

mounted onto SuperFrost Plus™ Adhesion slides (Epredia, CAT#10149870).

$2.2 Panel Design and Antibody Validation

A 27-plex antibody panel was designed to identify the immune, signalling and stromal components in
the surrounding microenvironment of the human tonsil (See Figure S1 and Table S1). CD3 was
purchased pre-conjugated to the assigned metal (Table S1). For all other targets of interest, carrier
free antibody clones were sourced, and validated using standard single marker immunofluorescence
on appropriate positive control tissues. Following verification of staining pattern and performance
quality, approved antibodies were subject to lanthanide metal conjugation using Maxpar X8 metal
conjugation kit following manufacturer’s protocol (Standard Biotools, CAT#201300). Antibodies
conjugated to platinum isotopes 194 Pt and 198 Pt were conjugated as described in Mei et al. 2015
(1). (AbC™ Total Antibody Compensation Beads (Thermo Fisher, USA, CAT#A10513) were stained with
conjugated antibodies and analysed in suspension using the Helios™ mass cytometer (Standard
Biotools, USA) and successful conjugation was determined via detection of appropriate signal in the

correct channel. Positive control tissues were then stained with conjugated antibodies. Suitable



antibody titres were evaluated using Imaging Mass Cytometry™ via the Hyperion™ Imaging System

(Standard Biotools, USA).

$2.3 IMC Staining

Tonsil sections were baked for 1 hour at 60°C in a dry oven followed by dewaxing in two changes of
fresh xylene (Sigma-Aldrich, USA,CAT# 534056-4L), 5 minutes each. Slides were rehydrated in
decreasing grades of ethanol (100% 90% 70% 50%), for 5 mins each, and then washed twice for 5 mins
in Milli-Q® Type 1 ultrapure water. Antigen retrieval was carried out using Tris-EDTA (pH9) buffer 0.5%
Tween in the microwave at maximum power for 20mins. Slides were cooled to 70 °C, washed in two
changes of Milli-Q® water 5 mins each and followed by two washes in PBS (Fisher Scientific, USA, CAT#
10728775). Tissue sections were blocked with 3% BSA (Sigma-Aldrich, CAT# A3059) in PBS for 45 mins
at room temperature and then incubated overnight at 4°C with a cocktail of the 28 metal-conjugated
antibodies (Table S1). Slides were washed with 0.2% Triton X-100 (Thermofisher, USA, CAT#85111) for
8 mins followed by two 8 min washes in PBS. Cell nuclei were stained with Cell-ID™ Intercalator-Ir
(Standard Biotools, USA, CAT#201192A) at a 1 in 400 dilution, for 30 mins at room temperature. The

slides were then washed for 5mins in Milli-Q® water and air dried prior to ablation.

$2.4 Hyperion set up, quality control (QC) and data acquisition

Prior to each sample acquisition, the Hyperion Tissue Imager was calibrated and rigorously quality
controlled to achieve reproducible sensitivity based on the detection of 175Lutetium. Briefly, a stable
plasma was allowed to develop prior to ablation of a single multi-element-coated “tuning slide”
(Standard Biotools). During this ablation, performance was standardised to an acceptable range by

“«

optimising system parameters using the manufacture’s “auto tune” application or by manual
optimisation of XY settings whilst monitoring 175Lutetium dual counts. After system tuning, Tonsil
sections were loaded onto the Hyperion system in order to create Epi-fluorescence panorama images

of the entire tissue surface to guide region of interest selection (ROI). Two ROIls of approx. 500um?

encompassing lymphoid follicles and surrounding structural cells were selected for ablation per batch



run. Small regions of tonsil tissue were first targeted to ensure complete ablation of tissue during the
laser shot with ablation energies adjusted to achieve this where required. Finally, ablations were
performed at 200Hz laser frequency to create a resultant MCD file containing all data from ROls.
Correction of signal ‘spillover’ between isotopes was performed as per the protocol described in here

https://bodenmillergroup.github.io/IMCDataAnalysis/spillover-correction.html| without deviation (2).

$2.5 Basic image QC and segmentation

$2.5.1 llastik Model Training

llastik (3) is a “random forest” machine learning tool used for classification of pixels or objects from
images. It relies on providing training images, partially labelled by the user, in order for the machine
learning model to determine what features within the image are being identified by the human user.
For the two llastik models trialled in this manuscript, pixels were classified into either nuclear or
background. This simplifies the model learning and application processes. The models were both
trained on nuclear Iridium 193 datasets, however one was trained on images acquired of tonsil tissue
data, while the other was trained on images of “Vero” cells. This comparison served to determine if
llastik model training material matching the input material for analysis was important for correct
macro functioning. Partial labelling was applied to the training images followed by training of the
llastik models. Following training, the models were applied to the training images and checked visually
for regions where the model did not perform as expected. In these regions, additional labelling is then
placed, and the model is retrained. Once output probability map images match the expected results
sufficiently, the model is saved and applied to any further datasets of unseen data. In the experimental
dataset whereby no Ilastik model was applied to the nuclear channel Iridium 193, the raw unprocessed

channel was used for the following CellProfiler steps instead.


https://bodenmillergroup.github.io/IMCDataAnalysis/spillover-correction.html

$2.5.2 CellProfiler Cell Segmentation

CellProfiler (4,5) is an image processing and analysis pipeline tool. In this research, we have developed
a CellProfiler pipeline to take input individual channels from the MATLAB processing pipeline, along
with llastik processed nuclear channels, to output single-cell quantitative data. The CellProfiler
pipeline requires the input data folders to be specified within the program, along with any folder
naming conventions to be explicitly listed. The intensities of the membrane channel, the nuclear input
channel, and the nuclear probability channel are first rescaled to allow for comparable intensity levels
between images, regardless of any batch effect that might be present. The nuclear probability maps
are then segmented into binary objects. This is achieved through a global “otsu thresholding”, splitting
the pixels into three classes (combining the middle intensity pixels with the background pixels), leaving
just the nuclear pixels as white on a black background. A threshold smoothing scale of 1 and correction
factor of 1 is also applied, with shape then used to distinguish between clumped objects. The pipeline
was set to automatically calculate the size of the smoothing filter and the minimum distance between
maxima for splitting of clumped objects. To facilitate the faster processing of the large datasets
provided by multiplexed images, the pipeline was allowed to use lower resolution images to identify
the local maxima. The membrane channel is then smoothed (keeping edges) to facilitate the following
step of identifying the cell boundaries. A propagation method was used, using the identified nuclear
objects as initial seeds, along with global otsu thresholding (classifying middle intensity pixels to
foreground). A regularisation factor of 0.05 is applied, meaning the boundary is determined by the
intensity gradient in the membrane channel. Holes are filled within each object. The cell boundaries
are then expanded by 2 pixels. Visualisation images are generated and saved for checking
segmentation accuracy in quick sense-checks. The cell objects are then used to measure the intensity
of each of the channels in their area, outputting intensity information along with some morphological

data regarding the cells, all on a single-cell basis in .npy file format.



$2.5.3 Imagel Macro Channel Combination

A Fiji macro was created to potentially aid with cell boundary segmentation by creating a single
combined channel to potentially better represent the whole cell membrane for use in CellProfiler. The
raw Hyperion images were difficult to interpret visually as a whole due to the quantity of channels (28
metal signals/channels). Channels containing membrane or cytosol markers could be looked at
individually to determine overall cell outline, however in isolation many channels had relatively low
signal-to-noise giving a poorly defined, speckled appearance, while the specificity of other markers
gave a clear indication of cell boundaries of some cell types but not others, meaning the single channel

option was not optimal as a visual reference.

The images were processed with a Fiji macro which combined multiple non-nuclear channels into a
single reference channel with greater signal-to-noise than its individual parts for a clearer illustration
of cell morphology. Following visual interrogation, 14 non-nuclear channels with the best signal-to-
noise ratio were selected. These were: channel 14 (CD45RA In115), channel 15 (CD68 Nd142), channel
17 (Ki67 Nd144), channel 19 (CD138 Nd146), channel 20 (CD163 Sm147), channel 23 (MPO Nd150),
channel 30 (CD206 Gd157), channel 31 (CD79a Gd158), channel 36 (IFITM3 Dy163), channel 38 (CD57
Ho165), channel 43 (CD3 Er170), channel 45 (CD31 Yb172), channel 47 (CD4 Yb174) and channel 48
(HLADR Lu175). To process the images, the contrast of each channel was increased individually using
“Enhance Contrast” with a default saturation of 0.35%. The look up table (LUT) was then applied.
“Despeckle” was run on all of the channels to smooth noise. The channels were then stacked and
projected into separate maximum intensity projections (MIP). The following outputs from each
Hyperion image stack were produced: a composite image showing nuclear (green) and non-nuclear
(red) regions for visual validation of segmentation, and a single channel non-nuclear MIP for use in

CellProfiler for segmentation.



S$2.5.4 Spillover corrections, transformation, normalisation, metadata addition and .FCS file

creation.

Output npy files are subsequently processed within the MATLAB script. This portion of the script has
three main functions: 1) Correct the data for spillover between the channels; 2) scale the data
according to an arcsinh transformation; and 3) normalise the data to correct for batch variation (Z
correction). Following these steps, the files are converted into FCS format to facilitate use with FCS

Express for cluster analysis.

Due to the nature of multiplexed imaging, a degree of spillover between similarly labelled compounds
is to be expected. As the Hyperion system, used for this analysis, relies on the distinction between
very similar weight metal ions (even different isotopes of the same metal), the spillover could
negatively impact interpretations, especially in a variation-rich field such as biology. To remove the
contribution of metal isotopes in non-target channels we followed the protocol as outlined by
Chevalier et al (2) whereby a slide was made that had each of the 28 metals used in this study spotted
individually. The Hyperion system was then set to ablate each spot one at a time and measure across
the entire detector range the proportion (%) of the target channel that appeared in non-target
channels in order to create a spillover correction matrix that was used to subsequently correct the

mean intensity values for each channel derived from our multi-stained tonsil tissue.

A Hyperbolic arcsine (arcsinh) scaling factor (6) is applied to the data with the intention of ensuring
the high variance of a potentially larger value (positive signal) is given the same significance and
weighting as a negative (low) signal that has low variance. This scale normalisation is essential for

dimensionality reduction and clustering algorithms to work well.

Z-score normalisation was then applied to the spillover-corrected and arcsinh-processed data. The
goal of this step is to align the median around 0 and compresses the scale to minimise influence of
comparative brightness from batch effects and also inter/intra-marker variance due to biology and

batch effects respectively.



$2.6 Data analysis and exploration using FSC Express software

S$2.6.1 Introduction

The “OPTIMAL” analysis approach is designed to work with any software, script or package that can
read FCS file format data. We have decided to use FCS Express from DeNovo by Dotmatics as it is a
widely available software solution for cytometry data analysis, however the “OPTIMAL” approach
could be executed using other commercial software as well as open source solutions. Successful
implementation of this approach using FCS Express requires some basic and advanced knowledge of
the software. We would direct anyone to look at the extensive YouTube tutorials that can be found

here https://denovosoftware.com/videos/. However as much as is practical, we will outline the key

steps in this supplemental methods section. Note that this is not designed to serve as a user guide for

the software, which already exists https://denovosoftware.com/full-access/manual-tutorials/. The

result of our segmentation approach is the generation of .FCS files that are composed of a combination
of morphometric features (area, eccentricity), spatial features (x and y centroids) sample metadata
(batch number, patient number) and metal “intensity” features (mean pixel intensity) that have been
“compensated” (corrected) for signal spillover as described previously. Each metal intensity
parameter exist in two formats, one set of metal intensity features have been arcsinh transformed
using the pre-determined optimal cofactor for IMC data of 1, and the second set have been Z-scored
transformed in addition to the arcsinh transformation in order to minimise the influence of technical
variation (batch effect) and also natural variation in the intensity of various markers/antibodies that

would dominate the data structure (DimRedux visualisation, clustering or heat maps).

$2.6.2 Determining the optimal transformation cofactor for IMC data

In order to determine the optimal arcsinh transformation co-factor value for IMC data we performed
a “titration” of possible values from 120 to 0.1 using the original (pixel capped and compensated)
metal signal parameters and using FCS Express "mathematical transformations” option in FCS Express

“Pipelines”. We then used the Fisher Discrimination Ratio (Rd for short), also known as “Linear


https://denovosoftware.com/videos/
https://denovosoftware.com/full-access/manual-tutorials/

Discriminate Analysis” (LDA) to enumerate the separation and resolution between a gated low (or
negative) and high (or positive) signal using simple gating in FSC Express. The Rd is calculated as

follows (7):

Rd = (Median hi — Median lo)
- (rSD hi 4+ rSD low)

It is then possible to plot for any parameter the arcsinh transformation value (x axis) versus the Rd
value (y axis) to determine the cofactor that provides the best resolution of low and high signals and
thus maximise the data resolution and structure prior to any dimensionality and clustering. However
we strongly suggest that the use of these transformations be empirically tested using the OPTIMAL

approach.

$2.6.3 Dimensionality reduction, batch effect determination and correction

The fastest and simplest way to visualise multi-dimensional single cell data is usually via some kind of
dimensionality reduction approach whereby n dimensions are compressed and represented by 2 or
sometimes 3 parameters (8). There are numerous options to achieve this, all with various benefits
and drawbacks as well as tuneable hyper-parameters that will influence the output. In all cases the
choice and implementation of the dimensionality reduction method must remain true to the original
underlying data structure. Via the use of FCS Express and the “pipelines” tool we were able to assess
multiple dimensionality reduction approaches using both embedded options within the software
(tSNE and UMAP) as well as a number of external algorithms (TriMAP, PacMAP and fltSNE) via
the python script interface in the FCS Express pipelines module. References for each of these
algorithms can be found in the main manuscript. Information and instructions on how to run python
scripts as part of the FCS Express pipelines module as well as the necessary software links and scripts
that need to be installed with the relevant publications can be found here

https://denovosoftware.com/full-access/knowledge-base/python-transformation/.



https://denovosoftware.com/full-access/knowledge-base/python-transformation/

To begin the analysis open a new incidence of FCS Express and navigate to the “data” menu on the
top options ribbon and select the “data list” option. At this point it is possible to select the “+” icon
and choose which files to load. For this stage it is important to select the “merge FCS files” option as
this will bring all samples in as a single merged entity and allow any analysis to be carried out
simultaneously while still preserving individual file identity (a new column will be created called “file
identifier” that can be used to de-convolute to individual sample level as necessary). At this stage, it
is good practice to open up a plot by dragging the merged file on to the workspace. We tend to select
a density plot of Area on the X axis versus eccentricity on the Y axis. By then “right clicking” on this
plot and selecting “gate stats”, this will show the total number of events loaded from all the merged
files and can be cross checked against the expected total number of events. If these numbers are in
agreement, one can proceed to set up and run a set of dimensionality reduction and visualisation
methods to rapidly assess a range of key issues such as the presence of any batch effects, attempts to
correct these as well as selecting the best overall method for presenting the data structure. Navigate
to the “tools” option on the top options ribbon and select “transformations”. This will open up a new
window and clicking on the “+” icon allows you to then select the “pipelines” option in the drop down
menu. Details on how to set up and run pipelines in FCS Express can be found here

https://denovosoftware.com/flow-cytometry-pipelines/. Briefly selecting the pipeline option will

open up a further window where it should be possible to input which parameters you want to have
available for the further analysis. We recommend selecting all available parameters in the data set at
this stage. There is also an option to “automatically run pipeline” that is ticked by default. This should
be unticked so as to avoid the software attempting to run a pipeline before it has been
finalised. Creating a new pipeline will activate a second “+” icon to the right of the first one. Selecting
this will provide a new drop down menu where the required pre-set analysis options will be present
as well as the Python terminal for running scripts that are external to the software (see later

section). For the analysis of possible batch effect and to determine whether our chosen method of Z-


https://denovosoftware.com/flow-cytometry-pipelines/

score normalisation was able to remove it, we used UMAP. The Z-score normalisation equation is

shown below:

X — u
o

Z Score =

This was done by selecting “dimensionality reduction” then “UMAP” from the drop down menu. This
creates a new step in the pipeline that can be named (for example) “UMAP_arcsinh_only” and select
in the option window to only use the arcsinh c.f. 1 transformed parameters that we know have
successfully stained our tonsil tissue from our basic image QC step (2.3 and table S1). We used the
default hyper-parameter settings for UMAP (number of neighbours = 15, min. Low Dim Distance = 0.1
and iterations = 500) we did however add a parameter suffix of “archsinh_only” to be able to identify
each set of UMAP parameters in the same pipeline. We created a duplicate of this UMAP step in the
same pipeline and renamed it “UMAP_arcsinh_Zscore” and selected the arcsinh c.f.1 and Z-score
corrected versions of the same parameters as before. We kept the hyper-parameters of the UMAP
identical but changed the parameter suffix to “arcsinh_Zscore” to provide distinction between these
UMAP parameters and the other set of UMAP parameters. Once all steps were cross checked, the
pipeline was executed by re-ticking the “automatically run pipeline” option and clicking on the icon to
“apply to all plots” located to the right of the “+” icon. Successful launch of the pipeline can be
determined by the progress bar at the bottom of the FCS Express workspace. Run time is dependent
on numerous factors such as computer specifications, number of events/samples as well as the
complexity of the pipeline, both in terms of steps and the algorithm itself. To give some context,
generating two sets of UMAP parameters from the ~100,000 single cells across 24 samples took
approximately 10 minutes on a Microsoft Surface Pro Series 4 with an 4 Intel(R) Core(TM) i7-7660U
CPU @ 2.50GHz 2.50 GHz, 8 GB RAM and 64-bit operating system with x64-based processor. We

were then able to create a colour dot plot for the arcsinh only UMAP parameters 1 and 2, as well as



one for the arcsinh and Z-score normalised set. It was then possible to plot batch “batch number”
versus Iridium signal (Z-score version) as a density plot and set individual gates for each of the 12 data
batches with suitable colours. Displaying the batch gates on each UMAP plot allowed us to quickly
assess if there was any batch effect (arcsinh only UMAP parameters) and if it had been
corrected/minimised (arcsinh plus Z-score normalised UMAP parameters and arcsinh plus 0-1
normalised parameters).

$2.6.4 PacMap visualisation via Python script interface

Having shown empirically that Z-score normalisation of the arcsinh transformed parameters
eliminated batch effects in the data, we used these for subsequent clustering and optimal
visualisations. UMAP visualisation provided a good two-dimensional representation of the 27
antibody parameter data set, however we wanted to assess if there was an option that would improve
upon this further. Our criteria for assessing these methods was based on the overall data structure
projection; namely the presence or absence of defined “islands” as well as how well key fiducial
markers mapped to these structures. For example, structures with concentrated maximal expression
of CD3 or CD79a were preferred over apparent diffuse staining patterns. At time of writing, FCS
Express currently has tSNE and UMAP directly available in the pipelines options. However it is possible
to access and implement additional dimensionality reduction algorithms via the “miscellaneous”
optionin the “pipelines” sub menu and then selecting “Python Transformation”. More details on what
supporting software is required as well as the necessary scripts can be found

here: https://denovosoftware.com/full-access/knowledge-base/python-transformation/. Briefly,

once C++, Anaconda (Python) and the FCS Express Environment (for Anaconda) have been installed it
is possible to select the desired script and install the package using Anaconda by selecting the FCS
Express environment and opening up a new terminal. To install (for example) PacMap type pip install
pacmap and the required dependencies will be installed automatically. It is then possible to copy the
required script text from the FCS Express web link and paste into the python script window in the

pipeline (clear the existing script first). If successful, on saving the relevant hyper-parameters should


https://denovosoftware.com/full-access/knowledge-base/python-transformation/

be available as well as a list of input features to select. As mentioned the arcsinh plus Z-score
normalised parameters were used. For PacMap, the “n neighbours” value was calculated based on
the recommended equation (9) and for 109,535 single cells this was “26”. For all other hyper-
parameters and dimensionality reduction algorithms default settings were employed (FIt-SNE, TriMap,

tSNE, UMAP).

$2.6.5 FLOWSOM and Phenograph Clustering

In order to determine the resident phenotypes in our segmented tonsil data set of 109,535 single cells
we compared two different clustering algorithms namely FLOWSOM (10) and Phenograph (11); both
of which are available in FCS Express directly in the “pipelines” menu. The panel of metal-tagged
antibodies selected was designed to find at least 15 known cell phenotypes within the human tonsil
(see table S1 and Figure S1) and as such allowed us to benchmark the different clustering approaches
as well as the segmentation method. To create a FLOWSOM pipeline with embedded PacMap
visualisation we created a new “pipeline” and then selected the “Pre-Defined Algorithms” option in
the drop down. This allows access to a complete “FLOWSOM” script with all the required
modules. The first step “new scaling” is not required as the data has already been transformed within
the FCS files and can be deleted or unticked. The last step “New parameter removal” can also be
removed. In the “New Batch Self-Organizing Map” module, we selected the arcsinh transformed Z-
score normalised parameters representing the 27 phenotypic markers in the panel. All other
parameters were left as default and as such a 10 x 10 SOM grid generated 100 clusters (SOMs). The
only other module we altered was the “new consensus clustering” where we asked for 30 consensus
clusters to be derived from the original 100 SOMs (twice the expected 15 clusters, so still over
clustered). We then created a new pipeline module to run Phenograph clustering. Again this was
done by selecting the Pre-Defined Algorithms” option in the drop down menu, but this time selecting
“Phenograph”. As before, the first part of the module “scaling” can be removed as the data has

already been suitably scaled/normalised. Within the “New K-nearest neighbour” module we selected



a value for “number of neighbours” that generated 30 clusters. The value used for the 109,535 single
cells was 17-18. Cluster number was assessed by creating a plate heat map from the “insert” tab “heat
map” option and selecting “Louvain communities” to display on the x-axis. Once all required cluster
parameters and PacMap coordinates were created and basic outputs checked, we exported the data
as a single merged .DNS file (Data Stream) using the “export” function in the “data” menu. We also
created individual .DNS files by repeating the export step but selecting the “export split on
classification” drop down menu and selecting “classification identifier”. The reason to create .DNS
files is that they are smaller than the source files and will contain all the previous features as well as
the new cluster info and PacMap coordinates. All further analysis and exploration were done using

the .DNS files.

$2.6.6 Data visualisation, exploration and analysis

A new incidence of FCS Express was launched and the merged .DNS file containing all original metadata
and features plus the newly created dimensionality reduction coordinates for UMAP and PacMap as
well as all FLOWSOM cluster information (100 SOMs and 30 cSOMs) was loaded into the data
view. Any meta-data gates such as those set previously for batches were recreated using a bivariate
density plot of batch (x) versus Ir 193 signal (arcsinh and Z-score version on y). The “plate heat map”
option was selected from the “heat map” menu in the “insert” tab and either the “batch SOM cluster
assignment” option was selected for x-axis display on the plot. This created a radial spanning tree of
the original 100 SOMs. It was then possible to right click on this plot and select the “format” option
then “overlays”. This gives access to the ability to select a different radial statistic for a given marker
and emphasise any SOMs characterised by high expression of that marker on the plot. We then
created a second plate heat map and this time selected “consensus clustering assignments” as the x-
axis parameter from the plots drop down menu. This displayed the 30 ¢cSOMs in a grid of 10 x 3. We
then used the “well gate” function from the “gating” tab and selected all “wells” and asked to create

individual gates for each with the prefix “cSOM” and to select individual colours for each (however



this function often works poorly so manual colour selection is required). It was then possible to create
a new PacMap colour dot plot, and select the “gates to display” option in the plot format menu (again

accessible via a right mouse click on the plot).

In order to explore the outputs from the clustering (FLOWSOM or Phenograph), “parameter heat
maps” were selected from the “insert” then “heat maps” sub menu. It is then possible to introduce
multiple overlays of the same merged .DNS file on a “per gate” or in this case “per cluster” basis. To
do this, right click on the newly created heat map and select “Add Overlay using Advanced Open Data
Dialog”. This is the quickest way to select the current open file for duplication. Once selected a new
window will open and select the “duplicate for gates” option. Select all the necessary cSOM gates and
click ok. The heat map requires further editing however to generate an output that can be displayed
and interpreted. To modify the heat map further, right click and select “format”. Select “specific
options” and then choose (as a preference) to display in portrait mode. This now places the markers
(parameters) on the y-axis (rows) and the cSOMs (clusters) on the x-axis (columns). At this stage, also
select the option to “apply colours based on the values in each column” as this will normalise the heat
map values by marker within each cluster (only possible because we have used the Z-score normalised
versions). Next select “parameters to display” and ensure that the appropriate arcsinh and Z-score
normalised metal channel features are selected by ticking the “only the items checked below” box and
then selecting the correct parameters. Next go to the “overlays” option and select all overlays in the
list. Change the “statistic to show” setting to the “median”. It is also good practice to check that all
the clusters are shown. It is also possible in this menu to move clusters (columns) left or right in the
heat map order. This is useful after annotation to group all T-cell subsets (for example) together. Itis
also often useful to modify the axis. This can be done in the “axes” sub menu and allows one to change
font sizes, colours and also rotate labels 90 degrees; this is useful for the cluster names. Cluster
annotation was done using expert analysis and input. In this case it was guided by the panel

information shown in table S1. Briefly, gate (cluster) names were edited to reflect broad or specific



annotations. Where two clusters were clearly very similar, they were given a label such as “Memory
T cells 1, 2 etc.” Where the cluster was deemed to be unique it was given a more definitive
annotation. To create merged populations, we used the “well gate” approach on a plate heat map
showing all consensus clusters (so 30 in this case from both FLOWSOM and Phenograph). Merging
was achieved by multi-selecting the appropriate clusters and the new merged cluster was given a
definitive annotation (for example Memory CD4 T cells). A new parameter heat map was then created

to only show the final merged consensus clusters.

As a second stage of validation, we also plotted simple colour dot plots with the centroid x (x-axis)
versus the centroid y (y-axis) coordinates and coloured by either cSOMs or the final merged
clusters. We did this to ensure that the cell types/states we had annotated mapped to the expected
structure and anatomical locations in the tonsil (see figure S1). In order to be able to show one
ROI/FCS file at a time, we also used the plate heat map function to display file identifier on the x-axis
and create well gates for each of the 24 merged tonsil FCS files. We could then show/display each
gated file/sample/image on the x/y centroid plot. We found that the centroid plots were visually more
pleasing when we set the fill background to black and also removed all axes ticks, labels and titles. This

can be done via the “format” menu.

Once all clusters were annotated we created a simple excel file that contained the name and number
of the final clusters (so 1-22 for example) and info regarding which ¢cSOMs made up these final
clusters. So for example cluster 1 could be named as “memory CD4 T cells” and could be made up
from merging cSOM3 and cSOM9 from the original 30 cSOMs. We also created a .CSV using the
“export” option from the “data” menu. We only selected the minimal information needed for the

” u

advanced spatial mapping and neighbourhood analysis. These were “file identifier” “centroid x”,
centroid y” and “consensus clustering assignment”. This created a matrix of all 109,535 cells across

all 24 images, each assigned a cluster membership (1-30).



Finally, we also created a batch statistics export for further analysis of the final clusters. To do this,
we opened up a new incidence of FCS Express and loaded the individual .DNS files for all 24 tonsil
ROIs. As mentioned previously, these contained all the necessary consensus clustering info as well as
the original meta-data from the original FCS files. We had to recreate the cluster (cSOM) gates using
the plate heat map option and individual well gates with the “cSOM” prefix. We also created a single
bi-variate plot and displayed the first file in the data list. Use any two parameters, however we often
use centroid x versus centroid y. This is important as the “data source” guide for running the stats
report as a batch process (see later). Once these gates were created (could be using any of the .DNS
files), we navigated to the “batch” option on the menu ribbon. We then selected “batch actions”. In
this new window, under the “add report” window, we select the “export to EXCEL (column
mode)”. Leave the option to “start with an empty file” in the “append option” area and in the “output
file options” direct where to save the file and what to call it. Select “ok” and it should now be possible
to add in the statistics required in the output. To add these, right click on the “EXCEL (column mode)”
in the “Batch Process Action” window and select “add item” and “statistics token”. Select in the sub
window “data source” and select the single bi-variate plot created previously. Next move to the
“Statistic” menu. In the “gate” window select “no gate” and in the “statistic’ window select
“filename”. This means the first column on the export will be the FCS file/ROI name. Press “Ok” to
add to the export actions and it should now appear under the “EXCEL (column mode)” in the “Batch
Process Action” window. Highlight the bi-variate plot so the borders turn red and drag it on to the
“EXCEL (column mode) icon. This should open a new window that says “choose the format to paste”.
Select “statistics token”. This will open up a new window where it is possible to select all possible
gates (ungated to cSOM X) by holding down the shift key and left clicking on the last gate at the bottom
of the list. In the “statistics” window, again hold down control and multi-select “filename”, “# of
events” and (optional) “% of all cells”. Once the EXCEL stats export routine has been finalised, ensure
that the bivariate plot is showing the data from the first file in the data list then select “Run” in the

“Batch” menu. FCS Express will then visibly iterate through each sample and create an EXCEL file from



the results. These data can then be further analysed either in EXCEL or PRISM (Graph Pad) and should
be arranged as: First column: filename (ROI); Second column: Total #cells (ungated); Third column:
#cells in cSOM 1 and so on. The export of frequencies is optional as they can be derived using the

total cell counts and the counts per cSOM.

$2.7 Spatial analysis

The MATLAB code developed for spatial analysis works by examining each cell identified within the
cell mask file for a single image and is based on the code previously described in HistoCat (12) . It uses
that cell mask and expands the cell region by the number of pixels specified by the user within the
code. The function will then count the number of unique cells found within the expanded cell area,
excluding the original cell, keeping a list of each cell identifier within the label image. The cluster
identities of each of these neighbour cells is then assessed. This process is repeated for each cell within
a ROl. In order to compare the spatial arrangement of the cells for higher-than-expected or lower-
than-expected interactions (where no positive or negative interactions are the nul hypothesis), the
cell mask image is then used as a framework with the cell cluster identities randomly mapped onto
the cell locations. The number of random images generated is dictated by the “Iteration” value
specified by the user within the MATLAB code. If the original image shows a higher level of clustering
than the randomly distributed images in more than 1-(significance threshold) proportion of the
random images, then the interaction is deemed significantly positive for that image. If the reverse is
true, showing a lower level of neighbour correspondence than the random images, then a significantly
negative interaction is identified. In all other cases, no significant interaction is identified. The number
of ROIs belonging to a group (i.e. pathology) that show a positive, negative, or neutral interaction is
then averaged over the group condition, outputting a single heatmap with values ranging from a
possible 1 (all images showed significant interaction between the cell types) to -1 (all images showed
a significant avoidance between the cell types), with intermediate values indicating that some images

showed interactions while others have not. The heatmap generated is asymmetric, allowing



assessment of interactions that occur uni-directionally (i.e. cell type X interacts positively with cell

type Y, but cell type Y does not interact in either direction with cell type X).

Tested within this research were three methods of spatial analysis, based on the above description.
The first method (Ungated Original) used the pixel expansion method used within the HistoCat code.
Another method (Ungated Disk) performs the process above the same, with the exception of using an
alternative radial approach to cell area expansion (Disk erosion/dilation), which appears to better
preserve the shape of the cells examined and thus more likely to find “true” neighbours. Finally, an
additional gating step was incorporated (Gate Disk), which excluded cells based on two factors: area
and edge. Only cells with physiologically reasonable areas (20-200 pm?, equating to 5 — 15 um dimeter)
were included, and cells in contact with the edge of the image (and thus showing inaccurate neighbour

reporting on their blank edged) were also excluded.

Visualisation of the cluster spatial information was also performed by applying a high-contrast colour
labelling to the original cell masks based on their reported cluster identity, with the possibility to map

only selected cell types for ease of visualisation.

$2.8 Code availability

All code and data files used in this manuscript is available here:

https://www.ebi.ac.uk/biostudies/studies/S-BSST1047



Supplemental Figure Legends

Table S1: Key information concerning the panel of 27 antibodies used in this study to stain human
tonsil tissue over 12 individual, temporally distinct batches. The final two columns denote the “ground
truth” cell type that each marker in isolation or in combination was selected to identify in human tonsil
as well as the expected spatial location in order to benchmark the clustering approaches used in this

study.

Figure S1: (A) A single IMC image showing Iridium (DNA, red pseudo colour) overlaid with Ki67 (white
pseudo colour) and CD31 (green pseudo colour) as per legend key. The major anatomical and
structural features are labelled. (B) A gallery of grey scaled IMC images showing staining patterns for
each of the 27 antibodies in table S1 plus the two Iridium channels (191 and 193). (C) Images showing
the comparative staining coverage of EPCAM (left panel) and a combination of immune cell membrane

signals (right panel).

Figure S2: IMC images from all 24 Tonsil ROIs across the 14 temporally distinct staining batches.
Images shown are at 1 pixel per micron and equivalent to a 10x optical image and are between 0.25
and 0.5 mm? of total image area. The pseudo-coloured overlays show DNA by virtue of Iridium
intercalator (red), CD3 expression (Blue) and CD79a expression (Green) as per the legend. In all cases
ROIs were selected to try and capture as much of the diverse tonsil structure as possible such as

follicles/germinal centres and epithelium.

Figure S3: Cell segmentation maps for all 24 Tonsil ROls across the 12 temporally distinct staining
batches derived from the “Tonsil EPCAM model” of cell segmentation whereby the tonsil nuclear
image was used to train an Ilastik model based on classification of nuclear pixels and background, then
single cell boundaries were defined by the EPCAM membrane signal using CellProfiler to generate
single cell information from the llastik model-derived probability map. The markers are denoted by

the pseudo colours as shown in the legend.



Figure S4: Cell segmentation maps for all 24 Tonsil ROIs across the 12 temporally distinct staining
batches derived from the “Nucleus only” of cell segmentation whereby the tonsil nuclear image was
used directly by CellProfiler to generate single cell information without any Ilastik-derived probability
map. In all cases the object boundaries are shown on a merge of the nuclear (iridium) and EPCAM

images.

Figure S5: Bi-variate single cell level scatter plots for all 24 Tonsil ROls across the 12 temporally distinct
staining batches derived from the “Tonsil EPCAM model” of cell segmentation showing CD3 intensity
levels on the x axis versus CD79a intensity levels on the y axis. Both parameters are the arcsinh c.f.1
transformed, Z-score normalised versions. Gates have been set to determine the frequency of CD3

and CD79a single positive events, as well the double positive (DP) “nonsense” cells.

Figure S6: Bi-variate single cell level scatter plots for all 24 Tonsil ROIs across the 12 temporally distinct
staining batches derived from the “Nucleus only” of cell segmentation model showing CD3 intensity
levels on the x axis versus CD79a intensity levels on the y axis. Both parameters are the arcsinh c.f.1
transformed, Z-score normalised versions. Gates have been set to determine the frequency of CD3

and CD79a single positive events, as well the double positive (DP) “nonsense” cells.

Figure S7: The top row shows UMAP plots coloured by batch (as indicated in the legend) created using
the arcsinh transformed parameters only (first column), the arcsinh parameters transformed by 0-1
scaling (middle column) and the arcsinh parameters Z-score transformed. The middle row of UMAP

plots are density weighted and the bottom row are density weighted by CD3 expression.

Figure S8: Cell cluster maps showing for all 24 Tonsil ROIs across the 12 temporally distinct staining
batches derived from the “Tonsil EPCAM model” of cell segmentation as in S2. All 21 final cell type

clusters are shown as per the legend.

Figure S9: (A) A graphical representation of how the cluster threshold function works when

considering across all images what clusters to measure in the neighbourhood analysis. In the ten mock



images shown, the brown population only appears in one image so setting a 10% threshold means
that it will not be considered however at a 1% it would be. The purple population appears in nine of
ten images so at a 90% cut off, this population and the brown population will not be included in any
neighbourhood analysis. (B) A graph showing the frequency of all 21 final cSOMs in all of the 24 tonsil
images. Note that all 24 images contained all of the 21 final cSOMs making the threshold function

unnecessary in this study.

Figure S10: (A) Segmentation checker imagines for an expanded set of cell segmentation approaches
as indicated. (B) Bi-variate plots for the single cell segmented outputs from the ROIs shown in A with
CD3 (x axis) and CD79a (y axis) expressions levels plotted. Gates are set to capture the frequency (%)
of CD3 single positive, CD79a single positive and double positive events. (C) PacMap plots for each of
the single cell outputs for all ROIs from each of the respective segmentation approaches with
expression density set on CD3 levels. (D) The same as in C but with expression density set on CD79a
levels. (E) Heatmaps of the FLOWSOM clustering outputs from either the “nuclear only II” (left panel)

or CellPose (right panel) segmentation approaches.



This user guide will assist users in using the macro and scripts present within this repository. For
further information or queries, please contact George Merces at George.Merces@newcastle.ac.uk

Folder Organisation

1. Arrange your folders according to the naming convention listed below

MName Date modified Type Size
1_lmageData File folder
2_image_extraction File folder
3_ilastik_model File folder
4 structured_data_for_CP File folder
5_CP_pipeline File folder
fes_files File folder
5_CP_pipeline_vero.zip Compressed (zipp... 757,010 KB
fies_files.zip Compressed (zipp... 92,763 KB
=] Motes.txt Text Document 1KB

2. Putall raw .tiff images into the folder “1_ImageData”
3. Put the Matlab macros, along with any excel files needed for the macros, in folder
“2_image_extraction” and organise according to the image below

Mame Date modified Type Size
Functions File folder
Qutputs File folder
@ Gut_Data_Analysis_Master.xlsx Microsoft Excel W... e
@ Gut_Data_Analysis_Master_TstRun.xlsx Microsoft Excel W ITKE
@ Mumber_MName_Conversion.xlsx Microsoft Excel W... 10 KB
£ OPTIMAL _Pipeline_Part_1.m MATLAB Code 22 KB
£ OPTIMAL_Pipeline_Part_2_Heatmaps.m MATLAE Code 14 KB
E OPTIMAL_Pipeline_Part_3_Visualisaton.m MATLAB Code 13 KB
@ Saskia_MAY23xlsx Microsoft Excel W, 21 KB
@ spillover2. 1 .xlsx Microsoft Excel W... 16 KB

III

4. Structure folder “3_ilastik_model” to have your ilastik model in the folder, with a folder for
your output Pmaps (this must match with what is in the Matlab macro later, so ensure the
code matches the information)

~
Marmne Date modified Type Size
OUTPUT_PMAPS 24/05/2023 12:18 File folder
E 20210906 _Tonsil_pixel_classification_v1.0....  22/05/2023 16:27 ilastik project
E 20230220_JD_Muclear_Medelilp 22/02/2023 09:51 ilastik project
E 20230328 JD_Muclear_Maedelilp 22/05/2023 1636 ilastik project

5. The folder “4_structured_data_for_CP” should be empty when you initially run the Matlab
macro for the first time, the script will populate the folder with other folders for the
individual channels in your image and folders for the nuclear, membrane, and probability


mailto:George.Merces@newcastle.ac.uk

maps

MName - Date modified Type Size
Channel_001 24/05/2023 12:18 File folder
Channel_002 24/05/2023 12:18 File folder
Channel_003 1 File folder
Channel_004 1 File folder
Channel_003 1 File folder
Channel_00& 1 File folder
Channel_007 1 File folder
Channel_0D08 1 File folder
Channel_009 1 File folder
Channel_010 1 File folder
Channel_011 1 File folder
Channel_012 1 File folder
Channel_013 1 File folder
Channel_014 1 File folder
Channel_015 1 File folder
Channel_016 1 File folder
Channel_017 1 File folder
Channel_018 1 File folder
Channel_019 1 File folder
Channel_020 1 File folder
Channel_021 1 File folder
Channel_022 1 File folder
Channel_023 1 File folder
Channel_024 1 File folder
Channel_025 1 File folder
Channel_026 1 File folder
Channel_027 1 File folder
Channel_028 1 File folder

6. Structure the folder “5_CP_pipeline” with two folders, “OUTPUTS” and “PIPELINE”. The
“PIPELINE” folder should only contain the CellProfiler pipeline file to be used with the
Matlab macro. The “OUTPUTS” folder should be organised according to the image below.
Note, the excel files and the contents of these subfolders will not exist until after the
CellProfiler pipeline has completed running

Name Date modified Type Size

CellMasks 24/05/2023 1%:00 File folder

Segmentation_Checker /2023 19:00 File folder

Tissue 123 19:00 File folder
E@ MyExpt_Cells.csv 123 19:17 Microsoft Excel C... 4,144,522 KB
@ MyExpt_Experiment.csv 231917 Microsoft Excel C... 222 KB
@ MyExpt_Image.csv 231917 Microsoft Excel C... 1KB
@ MyExpt_Nuclei.csv 31624 Microsoft Excel C... 1,654,134 KB
@ MyExpt_secondary_objects.csv 23 19:30 Microsoft Excel C... 1,654,134 KE

Metadata Incorporation



1. Format your metadata excel file according to the example below. Any data that is planned

on being incorporated into the fcs files at the end of the macro must be in numerical format

O Search GeorgeMerces GM)
7 Ao S & A P Bt O Bl B [rema e BEE v O
s SFM""’WW BIU-|T-|&-A- Bvegeacea « | @+ % 9 G5 | Cordions Fornats Newtal [Calcutation e D fomat | SO sons Fde | e
F56 - s
1 |sample_id Batch_no Biobank Tissue Time
2 |BATCH001_ROI003_TONSIL_START.ome.tiff 1NA Tonsil 1
3 |BATCHO01_ROI006_TONSIL_END.ome.tiff 1NA Tonsil 2
4| BATCH002_ROI003_TONSIL_START.ome.tiff 2NA Tonsil 1
5 |BATCH002_ROI006_TONSIL_END.ome.tiff 2NA Tonsil 2
6 |BATCH003_ROI003_TONSIL_START.ome.tiff 3NA Tonsil 1
7 |BATCH003_ROI006_TONSIL_END.ome.tiff 3NA Tonsil 2
8 |BATCH004_ROI003_TONSIL_START.ome.tiff 4anNA Tonsil 1
9 |BATCHO004_ROI006_TONSIL_END.ome.tiff 4NA Tonsil 2
10 |BATCH005_ROI003_TONSIL_START.ome.iff 5NA Tonsil 1
11 |BATCH005_ROI004_TONSIL_END.ome.tiff 5NA Tonsil 2
12 |BATCH006_ROI003_TONSIL_START.ome.tiff 6 NA Tonsil 1
13 |BATCH006_ROI006_TONSIL_END.ome.tiff 6 NA Tonsil 2
14 |BATCH007_ROI003_TONSIL_START.ome.tiff 7 NA Tonsil 1
15 |BATCH007_ROI006_TONSIL_END.ome.tiff 7 NA Tonsil 2
16 |BATCH008_ROI003_TONSIL_START.ome.iff 8 NA Tonsil 1
17 |BATCH008_ROI006_TONSIL_END.ome.tiff 8 NA Tonsil 2
18 |BATCH009_ROI003_TONSIL_START.ome.tiff 9 NA Tonsil 1
19 |BATCH009_ROI006_TONSIL_END.ome.tiff 9 NA Tonsil 2
20 |BATCH010_ROI003_TONSIL_START.ome.tiff 10 NA Tonsil 1
21 |BATCH010_ROI006_TONSIL_END.ome.tiff 10 NA Tonsil 2
23 |BATCHO11_ROI006_TONSIL_END.ome.tiff 11 NA Tonsil 2
24 |BATCH012_ROI003_TONSIL_START.ome.tiff 12 NA Tonsil 1
25 |BATCHO12_ROI006_TONSIL_END.ome.tiff 12 NA Tonsil 2
B
g
g
5
5

Training An llastik Model

Note, if you are using the llastik model provided, this step may be skipped, and you can just follow
the instructions for “OPTIMAL_Pipeline_Part_1.m".

1. Open llastik and create a Pixel Classification Model

[ ilastik - No Project Loaded - m} X
Project Settings Help

Create New Project ~
# Pixel Classification

# Autocontext (2-stage)

% Pixel Classification + Object Classification

# Object Classification [Inputs: Raw Data, Pixel Prediction Map]

= Object Classification [Inputs: Raw Data, Segmentation]

# Manual Tracking Workflow [Inputs: Raw Data, Pixel Prediction Map)
# Tracking [Inputs: Raw Data, Binary Image]

# Tracking [Inputs: Raw Data, Pixel Prediction Map]

® Animal Tracking (Inputs: Raw Data, Binary Image]

® Animal Tracking [Inputs: Raw Data, Pixel Prediction Map]

® Tracking with Learning [Inputs: Raw Data, Binary Image]

® Tracking with Learning [Inputs: Raw Data, Pixel Prediction Map]

# Carving

# Boundary-based Segmentation with Multicut

% Cell Density Counting

# Data Conversion

Open Project ...

IS Browse Files
v

Active Requests: 0 Cached Data: 0.0 MB

2. Drag a selection of your images (in our case, we use rescaled nuclear channel images) into

the images window. Note, for ease of distribution of your model, we recommend setting the

image “Location” to “Internal”, which increases the file size for your model but ensures it

x

ol




should be executable by anyone who downloads it.

o s LFoll Datse 07 o -9 x

2 poon 20105

LR i3 AR

------
15 ESEENRATE O

Ao e Coed b 004

3. Select you Features for use. We recommend selecting a wide range of options

scove Roques: 0 oo D0V

4. Train your model: Rename the label options to be relevant for your sample (e.g. nuclear vs
non-nuclear) and label pixels sporadically around your images. Do not label too much, as this
can lead to a lack of general ability of the model, and can train it too heavily to the training



dataset.

L SteffGeorge/20230220.J0_Hyperion/ 20230221 Full Dataset JD/3 lastik model/20230328 JD_ Nucear Modellp - Pvel Clssfication 8 x

Group ibiy:
Clerababity O segnenaton
e a=1000%

@ Uncertainty Gl

@ Segmentation (ludear)  °71000%

@ Segmentation (Background)°~000%

redcton for Nuckar  7250%

[ —
rediction for Background_ °7250%
—

& FEETIETTN O comas

Select “Live Update” to train your model. If the output probability is not good enough, try
adding additional labelling information to your images, focussing on regions where the
ing has made errors

L Full DatasetJD/3 stk model 0 Nuclear lasification - 8 x

FoFe oo*
Corentven: RO 20724 061 M 17 = gl . . ] = _ﬂ"i_— g_ -
. ey :
- \ R ]
A prosbity O] segmentaton " il . - o w
LS . ' . ¥ - g
@ Labels 0% x ! el - .
@ Uncertainty et

a=100.0%

]

Seomentation (lucear)
_—-
@ Segmentation (Background)  °100.0%
_—

a=25.0%

©

Prediction for Nuclear

a-25.0%

0

Prediction for Background

BE s e

Once you’re happy with your probability mapping model, choose the export settings. In the
Matlab script given as part of this manuscript, we only export the nuclear option, and we
export this to a location close to the Ilastik model file. The exports are then detected and
resaved in the appropriate location for CellProfiler with a different name within the Matlab
script. Note the name used to save the image under, as this needs to match with the Matlab



script for proper function.

Dataset
ROI002, 207502-4Ch,061_M5.117
ROI00T 200106-1Ch 061 M5 001

ROI0OT 204410-1Ch051_M5. 010

DataType: foats2

Shape: (79,665, 1)

Cutout sbregon

[ Comvert toDataType: [unsgned st~
=] oo

] Tanspose to s rcer

Output Image Descrton
Shape: (@15, 500, 1) A Order: e Data Type: unts

> 5ot rocessing

QuputFe Ino

@ Label 1- Preview 025 Fomt: [uff
)
Fie: [ge/20230220 30, Ful_Dataset_I0/3 lastk_model/OUTPUT_ Prapl] | select.
@ Raw b

Ve ® [Speme—

e Remeste 0 Cached Data: 941

Save your finished model to an appropriate location, and make sure this is the location
called within the Matlab script to ensure proper macro function

Matlab Code |

1.

Open llastik on your device, select an appropriate folder to save your output probability
maps to. Make sure the settings are as listed in the image to ensure correct use of the



images in macro running

Source Image Description

el

Shape: (500, 500, 1) Axis Order: yxc Data Type: float32

Cutout Subregion

range [start, stop)
y Fan- -

x MAaN- 21— 2

L3
L3

c danlo S =

Transformations
Convert to Data Type: | integer 8-bit w
Renormalize [min,max] from: |[J.[J[J |1.[JD |to: |[.'| I?_SS |

[] Transpose to Axis Order: | |

Output Image Description
Shape: (464, 465, 1) Axis Order: yxc Data Type: uintd
Output File Info

Format: | tiff ~

File: |Y:fBioimaging_SiﬁfFfGeorge,.’lDZSM 15_AutoDECRA3_ilastik_model (OUTPUT_PMAPS/{nickname}_pmap. tiff | Select...

Reset filepath

oK Cancel




2. Open the Matlab script “OPTIMAL_Pipeline_Part_1.m”. Rename the folders at the start
according to their locations on your current device

@ Editor - ¥:\Bioimaging_Staff\George\20230315_AuteDECRANZ image_extraction\OPTIMAL_Pipeline_Part_T.m ® =
| OPTIMAL Pipeline_Part_1.m X | OPTIMAL Pipeline Part_1.m 2| OPTIMAL_Pipeline_Part_1.m 3 | + |
16 ~|A
17 *%User-Defined Directories and Files
18 X%Please adapt these folder names as necessary to work with your folder
19 %%names for your device. The explanation of each folder/file is given
20 X¥%immediately prior to the folder being named =
21
22 %%¥Defines the location of the raw (.tiff) image files for use in your =
23 T X¥%pipeline. Ensure these all have the same number of channels and have been
24 X%exported correctly from your imaging platform
25 raw_data_directory = '¥:/Bicimaging_Staff/George/208238315_AutoDECRA/1_ImageData/’ ;
26 % %%Defines the location of the Save Folder for all of the individual
27 %%channels output by this macro -
28 save_directory = '¥:/Bioimaging_Staff/George/20230315_AutoDECRA/4_structured data_for_CP/" ; .
29 X¥Defines the location of the output fcs file folder to save fcs files into Lol
30 fes_directory="Y:/Bioimaging Staff/George/20230315_AutoDECRA/Tcs_filesh'; .
31 I% ¥%Defines the ROI Working Directory (Should be the Same as the Raw Data
32 ¥%Directory —
33 ROI_working_directory="Y:/Bioimsging_Staff/George/282308315_AutoDECRA/1_ImageDstal';
34 I% %%Defines the Mark Working Directory, when running Cell Profiler ENSURE i
35 X%this is the same folder you are saving your mask npy files to
36 Mask_working_directory="v:/Bioimaging_Staff/George/20230315_AutoDECRA/S_CP_pipeline\OUTPUTS\CellMasks\';
37
38
38 .
48 X¥%Sets the display rescaled data option to True
41 display rescaled _data = true; =
42 —

43 % X¥Defines the channel number relating to the membrane stain and the nuclear
44 X¥stain, respectively

45 e L1 i

New to MATLAB? See resources for Getting Started. x
Mask #25 = CellMasksO25.npy -
Mask #26 = CellMasksO026.npy
Mask #27 = CellMasks027.npy

r u g readcell
Unable to find or open 'Tonsil Data RAnalysis Master.xlsx'. heck the path and filename or file permissions.
Error in OPTIMAL Pipeline Part 1 (1li 240)
RCI_data = readcell('Tonsil Data_An is_Master.xlsx', 'sheet',4):

Jr oo | v
< >

3. Inthe Matlab script, select the channels for your membrane/cytoplasmic stain to use for cell
boundary determination (EPCAM_channel) and also the DNA stain for nucleus probability
mapping (nuclei_channel). Please note, channel number 1 refers to the first channel in your

image (not 0 as in some software)
maging_Staff\George\20230315_AutoDECRANZ_image_extraction\OPTIMAL

| OPTIMAL_Pipeline_Part_1.m 0 | OPTIMAL_ Pipeline_Part_1.m | OPTIMAL_Pipeline_Part_1.m = | + |
35 L #%%this is the same folder you are saving your mask npy files to - A
36 Mask_working directory="v:/Bioimaging Staff/George/202323215_AutoDECRA/S_CP_pipeline\OUTPUTS\CellMasks\';
37
38
39 -
48 X¥sets the display rescaled data option to True -
41 display_rescaled_data = true; =
42
43 % %¥pefines the channel number relating to the membrane stain and the nuclear
44 H¥stain, respectively
45 EPCAM_channel = 29;
46 nuclei_channel = 51; .
47 -
48 % H¥%Takes the Tiff file names from the raw data directory and transposes them —
49 #¥into an array —_
58 ravi_data_info = dir ([raw_data_directory,'*.tiff']) ;
51 image_names = {raw_data_info.name}'; —
52
53 X¥Runs a loop on each of the images in your raw data directory -
54 T #¥Change this to a single image for testing purposes if necessary -
55 SRS ERERESSEEEEEELEE SEEEEEEEEE LSRG LRSS ST S
56 []  for loop = 1:length(image_names)
57 %Defines the image to be processed based on the loop progress, finding
58 %the correct image name based on this -_—
59 ESEEEEESERSEEEESEEEEERFEL SRS LS EEEEEEE Y
60 image_number = loop =
61 fileMName = char(image_names(image_number)) -
62 fileMame = fileMame(l:end-9) -_—
63 ESEEERESESSEREERESEEES PSR EERYE RS Y SRS
64 T

4




4. Rename the locations for llastik and Cell Profiler, using the exact format shown in the

138 EESSEEEERE S EREREEEEE LR S LSS LR ES SRS LSS - a
139
148
141 =] ¥¥Defines the location of the Ilastik program file, Ilastik model, and
142 ¥Xthe output save location, aleng with instructions for Ilastik, then =
143 ¥%¥runs the Ilastik model using these settings on the rescaled nuclear
144 kXimage =
145 ¥¥Exact spacing is very important for this section
146 % lexact! spacing etc etc - use test to debug
147 ¥ ESSSEERERE S EVEETESFERE PSR LR RS SE ST S
148 ilastik path = "C:/Users/ngml2é//ilastik-1.2.3post3/ilastik.exe’ ;
149 ilastik_instruction = ' --headless --project’; =
158 ilastik_model = '=¥:/Bioimaging_Staff/George/20230315_AutoDECRA/3_ilastik model//20218966_Tonsil pixel classification_vl
151 ilastik_data = [' ¥:/Bioimaging_Staff/George/20230315_AutoDECRA/4_structured_data_for_CP/Channel_es1/",fileName, "Ch_861_| =
152 R e R et el % —
153 system([ilastik_path ilastik_instruction ilastik_model ilastik_data]);
154 [ B = e e e oL % .
155 ¥ EES SR EEE T EYEETESEERS PSR EREEES ST S
156 i
157 = %%Saves the output probability map to the appropriste location with the|
158 ¥Xappropriate name
159 r PSS SEEEEREEEREESEEEEEREELEEREEEEESESE Y S S S
16@ Pmap_for_CP = imread(['Y:/Bioimaging_Staff/George/20238315_AutoDECRA/3_Hlastik _model/OUTPUT_PMAPS/',fileName, "Ch_@61_MS_
161 imwrite(Pmap_for_CP, [save_directory,’'/Channel @63/ ,fileName,'Ch_8&3_M5_",counter,'.tiff']) ; .
162 b SR R R A S S R N S
163 - end =
164 PESERES SESEEREEEREREEEEERERGESEELEE S TGS =
165 —
166 -
167 L|:"1mm G e e L. . .. . \ PR — o

|Z Editor - Y¥:\Bioimaging_Staff\George\20230315_AutoDECRANZ_image_extractiom\OPTIMAL_Pipeline_Part_1.m m x

[ OPTIMAL_Pipeline_Part_l.m Kl OPTIMAL_Pipeline_Part_1.m x| OPTIMAL_Pipeline_Part_l.m P‘il +]
16@ pmap_for_CP = imread(['Y:/Bioimaging_Staff/George/20238315_AutoDECRA/3_Hlastik_model/OUTPUT_PMAPS/",fileName, 'Ch_@61_Ms_ -8
161 imwrite(Pmap_for_CP, [save_directory,’/Channel_@863/',fileName, 'Ch_2863_M5_",counter,’'.tiff']} ;
162 PEEEEER S SR VAR SR FERVERES SRRV RS S SN S S
163 - end
164 EEESS SRS S EEEEREERET SRR ST SRS TS =
165 -
166 n
167 [] %%0nce the Ilastik model and rescaling has been applied to the whole image
168 ¥%set, this calls the Cellprofiler program (based on CellProfiler Path,
169 F¥settings, input folder, and output folder
178 % lexact! spacing etc etc - use test to debug
171 S 4 £ 5 5SS E LS SRS SRR SRR S LS LS SREEEES SR L SSRGS =
172 cp_path = "C:/Users/george/MATLAB_Macros/CellProfiler/CellProfiler.exe’ ;
173 cp_settings = [ -c -r'] :
174 cp_project = ° -p Ci/Users/george/MATLAE Macros/28238315_AutoDECRA//5_CP_pipeline/PIPELINE/26211114 Pipeline.cpproj’;
175 cp_input = ' -i C:/Users/george/MATLAB Macros/2023@315_AutoDECRAS/4_structured_dsta_for_CP/'; -
176 cp_output = ' -0 C:/Users/george/MATLAB_Macros/28238315_AutoDECRA//S_CP_pipeline/OUTPUTS/" ; ;
177 A o % —
178 system{[cp_path cp_project cp_input cp_output]);
179 R e e et %
18@
181 EEES 5SS EEERS S5 SESEE Y RRLRAE
182

183 #%IT CellProfiler does not open automatically, open the CellProfiler
X¥%Program, run the Pipeline, then once complete select the Matlab Command

185 F¥Window and press the Enter buttom E
186 input('") —
187

188 i

5. Incorporate the names of the excel files to be used for metadata incorporation within the fcs
files at the end of the code, including the spillover matrix for compensation of signal
bleedthrough.



224 %% Simple error check based on number of ROI - &
225 if Mumber_of masks~=Number_of ROI
226 error('Number of masks and ROI dont match'});
227 end
228 .
228 #% Load compensation matrix and extract important information .
238 LEESERRS SR F R SRS SR ESEES SRS SSRGS SRS S S S =
231 comp_matrix=readtable( " spillover2.l.xlsx");
232 comp_channels=comp_matrix.Properties.VariableNames;
233 comp_channels=comp_channels(2:end);
234 compensation_matrix=table2array(comp_matrix(:,2:end));
235 EEESESEE LRSS SESESEEEEEEREER S LSS S SRS SRS -
236 =
237 -—
238 #% Load the ROI spreadsheet to get the PATIENT metadata —_—
239 PR RS % %
248 ROI_data = readcell(’Tonsil Data_anslysis_Master.xlsx','sheet',4); -
241 Patient_data = readcell( ' Tonsil_Data_Analysis_Master.xlsx', "sheet’,5);
242 Patient_identifier=Patient_data(2:end,2); .
243 ROI_1ist=ROI_data(2:end,1); i
244 Patient_name_list=ROI_data(2:end,3);
245 for loop=1:numel(Patient_name_list)
246 for loop2=1:numel(Patient identifier)
247 if contains(Patient_name_list{loop),Patient_identifier(loop2)) ==1 —
248 Patient_number_list(loop)=loop2;
249 end =
250 end p—
251 end —
252 EEESESEE LRSS SESESEEEEEEREER S LSS S SRS SRS
253 M
4 3

B Editor - ¥:\Bioimaging_Staff\George\20230315_AutoDECRANZ_image_extraction\OPTIMAL _Pipeline_Part_1.m ® x

[ OPTIMAL Pipeline_Part_1.m 3@1 OPTIMAL Pipeline_Part_1.m 3@‘ OPTIMAL Pipeline_Part_1.m Nl +}
255 X¥Load the spreadsheet containing essential metadata (in this example, «|a
256 T ¥%Patient, Batch_no, Time, and Tissue)
257 EEESEESSESSLELEEEEERFERSELEEEE LS ESEES T
258 Spreadsheet=readtable( Tonsil MAY22.xlsx");
259 Patient_name_list=5Spreadsheet.Patient; =
268 Batch_number_list=Spreadsheet.Batch_no;
261 Patient_identifier=unique(Patient_name_list); =
262 for loop=l:numel(Patient_name_list)
263 for leop2=1:numel(Patient_identifier)
264 if contains(Patient_name_list{loop),Patient_identifier{loop2)) ==
265 Patient number_list(loop)=loopZ;
266 end =
267 end
268 end i
269 condition_list=Spreadsheet.Tissue; n
278 EEESESS 58 % % HEXRER -
271
272 XXIncorporates the tissue type into the stored data (in this case Tonsil -
273 T #%should represent all of the images, with no Syn images
274 EEERFES SESELELESEELEE RS SR EEREL LS SRS S ST
275 Tonsil_ROI_Index = find({contains({condition_list, 'Tonsil'});
276 Syn_ROI_Index = find(contains(condition_list, 'Syn’));
2T % check number should be total number of ROI
278 check_number=numel(Tonsil_ROI_Index)+numel(Syn_ROI_Index); i
279 Tissue_index=zereos(numel(condition list),1);
288 Tissue_index{Tonsil_ROI_Index)=1; =
281 Tissue_index(Syn_ROI_Index)=2; -
282 test=Find(Tissue_index==0); #should be @ i.e. all ROI allocated a .
283 if test==0 -
284 4 »

6. Incorporate the specific metadata necessary for inclusion within the fcs files later. Make sure
this information is purely numeric within your files, otherwise issues with fcs file generation




may occur
@ Editor - ¥:\Bicimaging_Staff\George\20230315_AutoDECRANZ image_extraction\OPTIMAL Pipeline_Part_1.m ™ x

I OPTIMAL Pipeline_Part_1.m xl OPTIMAL_Pipeline_Part_1.m x| OPTIMAL_Pipeline_Part_1.m Nl +]

282 test=find(Tissue_index==8); ®¥should be @ i.e. all ROI allocated a - A
283 if test==0

284 error( Not all ROIs given a tissue type’)

285 end

286 N B A S K R AN K KA AKX

287 -
288 —
289 #¥Incorporates the time type into the stored data (in this case half should

298 T H¥be START and half should be END)

291 ERAXLRXX %% 54 5551

292 time_list=Spreadsheet.Time

293 Start_ROI_Index = find(contains(time_list, 'START'));

294 End_ROI_Index = find(contains(time_list, "END')); =
295 check_number=numel(Start_ROI_Index)+numel(End_ROI_Index); —_
296 Time_index=zeros{numel(time_list),1); —-—
297 Time_index(Start_ROI_Index)=1;

298 Time_index(End ROI_Index)=2; -
299 test=Ffind(Time_index==08); Xshould be @ i.e. all ROI sllocated a .

3ee if test==0 -
3e1 error( Not all ROIz given a time point')

3082 end

303 S EEEEEEEEEEERSEELEEEEES LSS SEESEEL SRS S

384

w
@
o
|

306 T #%Gets the list of channels from the images based on the metadata inherent

3e7 H¥within each Tiff file =
388 EESEES S % 54 5551 -
389 current_ROI_directory=ROI_folder{1}; —
312 current_ROI=ROI_filenames{1};
311 current ROI filename and directorv=lcurrent ROI directorv.'“'.current ROIT: v

] 3

7. Select the channels of interest, i.e. the channels that have been specifically stained and
imaged during your experiment (note here that again the first channel is channel 1 etc.)

Editor - oimaging_Staff\George\20. 5_AutoDECRANZ ima raction\OPTIMAL_P Part_1.m

OPTIMAL_Pipeline_Part_1.m | OPTIMAL Pipeline_Part_1.m Kl OPTIMAL Pipeline_Part_1.m = | +

uy COFFENT_RUL_OIMECTory=RUL_TOLO&r{ L} -1a
318 current_ROI=ROI_filenames{l};
311 current_ROI_filename_and_directory=[current_ROI_directory,'%',current_ROI];
312 fprintf{[ 'IMAGE = ', current_ROI_filename_and_directory]);
313 fprintf{"\n")
314 print_or_not="n"; =
315 check_channel_names_list=get_channel_names(current_ROI_directory,current_ROI,print_or_not); .
316 FEEESES SEEEEEEEEREES LSRR FELE LSRR S LGS =
317
318 % #¥%Allows the user to then define which channels actually contain a label of
319 ¥%interest, modify this list based on your own images
328 required_channel_numbers=[7,%,14,15,16,17,18,19,28,21,22,23, 24,25,26,27,28,29,38, ...
321 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54, 57 ]; =
322
323 #%Prints out the channels selected along with their name according to the :
324 T *¥metadata
325 fEL SRR SLERER SR ER SRR L SRS E ARV ESEL SRS ERE LY -
326 choosen_channel_names=check_channel_names_list{required_channel_numbers);
327 fprintf{'CHOOSEN CHANMEL CHECKLISTA\rir') -_—
328 for loop=1:numel(required channel_numbers) -—
329 T fprintf('Channel Number = %1 : Lsbel = %s “r',loop,choosen_channel_names{loop})
338 end
331 fprintf{"\r")
332 PESERES SESEEREEEREREEEEERERGESEELEE S TGS .
333
334
335 = =
336 Ffprintf{'BUILDING CELL LIST FOR AMALYSIS\r') :
337 fprintf('-----------------ee oo - ety
338 count=08; -



8. Adapt the fcs conversion portion of the code to include the metadata specified earlier,
making sure to adjust the headers as well

Editor - maging_Staff\George\20230315_AutoDECRANZ traction\OP
| OPTIMAL Pipeline_Part_1.m ¢ | OPTIMAL_Pipeline_Part_1.m OPTIMAL Pipeline_Part_1m = | + |
411 Bl %%Add patient/ROI metadata to single cell file list - A
412 r EASERER LSS ERE SRS S SRS SRS SRS EEVES S E SRS S
413 number_of_cells=size (ONE_ROI_DATA,1);
414 all ROI list({all ROI_loop).number_of_ cells=number_of_cells;
415 Single_cell ROI_number=repelem{all_ROI_loop,number_of_cells)"; .
416 single_cell Patient number=repelem{Patient_number_list(all_ROI_loop),number of_cells)"; —
417 Single_cell File=repelem(Patient_name_list(all_ROI_loop),number_of cells)"; =
418 Single_cell_Patholegy_index=repelem(Tissue_index(all_ROI_loop),number_of_cells)’;
419 single cell batch_number=repelem(batch_number,number_of cells)";
428 FCS_ROI_DATA=[AS_DATA, AS_MNORM_DATA, EXTRA_DATA, Single_cell ROI_number, Single_cell_Patient_number, Single_cell Patholo
421 if count==1
422 COMPLETE_COMP_DATA_SET=[AS_DATA, AS_NORM_DATA, EXTRA_DATA, Single_cell ROI_number, Single_cell Patient_number, Single
423 else =
424 COMPLETE COMP_DATA_SET=[COMPLETE COMP_DATA SET; [AS_DATA, AS_NORM DATA, EXTRA DATA, Single cell ROI number, Single c&  —
425 end -
426 S L L A N L ALY
427 —
428
429 =] %¥Creates the fcs file data, and saves as fcs to the appropriate folder _—
438 %¥using the appropriate file name .
431 r EESEEERERESERE LRSS ELEEL RS EEEESES LSRR S
432 fes_name_all=al1_ROI_list{all_ROI_loop).channels_filename;
433 [filepath,filename,ext] = fileparts(fcs_name_all);
434 fcs_name=[fcs_directory,filename,”.fcs']; -
435 fes_channel_list=[marker_channels,norm_marker_channels,extra_markers , {'ROI_number'},{'Patient_number'},{ 'Pathology_ind
436 fprintf("\r') =
437 fprintf('Writing %s \r',filename) =
438 fea_writefcs(fcs_name,FCS_ROI_DATA,fcs_channel_list, fcs_channel_list) _—
439 EESEEER S S % 55551
448 -
L|« »
9. Repeat this process for the “collated fcs” file at the very end of the macro
|z Editor - ¥:\Bioimaging_5taff\George\20230315_AutoDECRA\2_image_extractiom\OPTIMAL_Pipeline_Part_1.m ® x
| OPTIMAL_Pipeline_Part_T.m *0 | OPTIMAL_ Pipeline_Part_1.m | OPTIMAL_Pipeline_Part_1m | + |
431 T R AN R SR A R A RN R N RN - |
432 fes_name_all=all ROI_list{all ROI_loop).channels_filename;
433 [filepath,filename,ext] = fileparts(fcs_name_all);
434 fcs_name=[fcs_directory,filename, ' .fcs'];
435 fes_channel_list=[marker_channels,norm_marker_channels,extra_markers , {'ROI_number'},{'Patient_number'},{ 'Pathalogy_ind
436 fprintf("\r") S
437 fprintf(‘Writing %s \r',filename) =
438 fea_writefos(fcs_name,FCS_ROI_DATA,fcs_channel_list, fcs_channel_list)
439 b5 S SR ESER S S 54 HELIAEL
448
441 - end
442 S SR EEF AT EVER SRS S EFRVERES SR ESVAS SRS
443 =
444 %%Creates one final fcs file containing all the data processed within this -
445 T ¥¥pipeline -
446 EEEESEE ST ELEEEEE SR EEEEREL LRSS LS RS S
447 fprintf('\r') -
443 filename='Combined_dataset’;
449 fes_name=[fcs_directory,filename, ' .fcs"]; o
4s5@ fprintf('Writing %s \r',filename)
451 fcs_channel list=[marker_channels,norm_marker_channels,extra_markers , {'ROI_number’},{'Patient number'},{ 'Pathology index'}
452 fea_writefes({fcs_name, COMPLETE_COMP_DATA_SET,fcs_channel_list, fecs_channel_list)
453 EEEESEE ST ELEEEEE SR EEEEREL LRSS LS RS S
454 _—
455 fprintf("\rir")
456 =
457 #%End of Macro =
458 -
459
460 T
4 3

10. Run the script. There is a manual input stage following CellProfiler calling to check that the
script has been effective before attempting to continue. If CellProfiler has failed to run, it is
possible to run CellProfiler manually according to the instructions in the following section
and to then press “Enter” on the keypad back in Matlab to continue the script.



CellProfiler Manual Use

If CellProfiler does not run, you may manually open the CellProfiler software from outside Matlab
and run according to the instructions below

1. Drag all image folders from the folder “4_structured_data_for_CP” into the images window.
Note, this system is set up for 60 channel images, and modifications will need to be made if
a different number of channels are actually present.

(4 CellProfiler 4.2.5: 20230726_TEST_20.cpproj (V:\Bioimaging_Staff\George\20230726_PCUK_RIA\20230726_Macro_Rum\5_CP_pipeline\PIPELINE) - o X
Gl Edit Test Windows Help

©

= o begin creating your project, dule to compile 3 st of iles that you want o analyze. You can slso specy s set of rules to include only the desied fles

your seected folders.

©

©

©

[

©

[

©

©  IdentifySecondaryObjects

©

©

©

o

o

o

(7

o

o

o

o ers o the ile st

o

o

o

o

O ExportTospreadshect

Output Settings | | View Workspace

Adjust modules: | +

1 Pause Wstop anaiysis Processing: 1 of 22 image sets completed Running 12 workers. [ Time 0:39/2:1

2. Modify the save locations for all “Savelmages” modules, along with the
“ExportToSpreadsheet” module if you plan on using that data.

| CellProfiler 4.2.5: 20230726_TEST_20.cpproj (VA\Bioimaging_Staff\George\20230726_P CUK_RIA\20230726_Macro_Ru\5_CP_pipeline\PIPELINE) - o X

& NamesAndTypes

[
©
©
©
© Select the type of image to =ave [ o
(4
o Select the image to save | Segmentation Checker | (from OverlayOutlines #13)
g . Select method for constructing file names | Sequential numbers ?
© Overl Enter file pref | Segmentation_checker ?
O OverlayObjects S =
O sevemeger Number of digits
O Savelmages Saved file format ?
jpeg v

L

e Elsewhere, < ?
o Output file location
=} 'V:\Bioimaging_Staff\George\20230726 PCUK_RIA\20230726 Macro_Run\5_CP_pipeline\OUTPUTS\CellProfiler_Testing\Test 20
o
g Ovenwiite existing files without waming? @ ves O No
o

When to save Every cycle v g

o 1y o
=] and path information to the saved ?
D oo [ OYes @No

Output Settings | | View Workspace

Adjust modules: | +

b Start Test Mode >

3. When ready to run the pipeline, simply press “Analyse Images” and wait for the pipeline to
finish before returning to Matlab



Clustering Data Excel

1.

Structure your clustering data according to the image, with the original cluster assignment in
column “cSOM_s” and the new cluster assignment in column “Tier2ClusterAssisgnment” or
“Tier1ClusterAssignment” depending on the clustering tier. Put the name of the cluster in

| E=E by O | @

Fiter~ Select~ | Data
cans cating anais | senstvty
061 F
o 3 3 s H ) 3 L M N ° 3 a R s i

1 epithelium 1
) 2 Memory CD8T cells 2
I 2 Memory CD8 T cells 1
; 3 M2 Macrophages 3
B 3 M2Macrophages 2
. 4 Bcells s
) 4Beells 10
) 5 Memory CDa T cells s
0 5 Memory CD4 T cells 5
1 & Epithelium (proliferating) 7
2 7 Folicular B cells (proliferating) 8
3 7 Folicular 8 cell (prolferating) B
4 8 Mature Macrophages 1
B 9 Folicular T cells n
6 10 Plasm cells )
7 11 Endothelium 1
8 11 Endothelium 16
B 11 Endothelium 2%
o 12 Unclassified 15
1 12 Unclassified 4
2 13 Effector CD4 T cells Y
3 14 Epithelium and Immune cells 18
h 15 Nawe CDs Tcells 2
5 16 anti-Inflammatory Macrophages 2
5 16 anti-nflammatory Macrophages 2
7 17 D4 Tcells 2
B 18 STING* cells 2
9 19 Apoptotic cells 27
o 20 Germinal center Macrophages 2
1 21 Standard Macrophages 2
2
3
h




Matlab Macro Il

1. Following cluster analysis, it’s time to run the Matlab Macro
“OPTIMAL_Pipeline_Part_2_ Heatmaps.m”. Update the name for the csv file containing
details about each cell identified in the process, along with the folder path names for the
Mask outputs from CellProfiler, along with where you would like output heatmaps to be
saved.

| MATLAB R20222 - academic use -

EREEEo)) E—

T O G € BB iy | ] Dostonsek | @
G Open Swve g v | GoTo DT g DB, BReedadene g g
- T e < Rbookmak = Fil - Secton {5} Run o End -

fue wAVIGHTE cooe avwze secrion o =
3% (1§ » Yo » Bioimaging Staff » George » 20230315 AutoDECRA b 2.image.extraction -2
unent Foder l Viokspace ©
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1Ll Functons L] .poL 1t N
1 Outputs Eorkoioy 27

#oDECRA_Dits_Analysz Msterxlex

3] AutoDECRA_EPCAM_Clusters V2.csv
3] AutoDECRA_EPCAM_Clusters V3.csv
3] AutoDECRA_EPCAM_Clusters Vd.csv
B AutoDECRA_EPCAM_Clusters_V5_COPY_PRE_ALTERATION.csv.
3] AutoDECRA_EPCAM _Clusters_V5.csv

5] AutoDECRA_March23 lox folder to the path, sllowing for use of the
y for thiz macro to run

user Asignments_and_Mierges AutoDECRAXISx

) ClusterAssignments,and Merges AutoDECRA N2xsx
B3 Finallung_clustered_output.csy.

£) OPTIMAL Pipelne Par 1 v2m

) OPTIMAL Pipeine part. 1

[ OPTIMAL PpelinePar 2. Hestmap.sy

) OPTIMAL_pipeine. stmapsm

) OPTIMAL pipeine stmaps MultFactor Plotting.m

o el
o oA
comp e
J %o work with your folder compenited s
folder/file is given o

ormation including <

o
) OPTMAL Pipeine Part 3 Vsusistonm & Sndex etc. B coumer "
B9 spilover2.Txlsx b cpinput i C/Users/george/MATLAB Macros/20230315_Auto.
89 spillover2.1 - Copyalsx ekl cp_output -0 Cy/Users/george/MATLAB Macros/20230315 Autc
[ cp_path e/ george MATLAE Miacroz/CelProfier/CelPr
ep_prject " p CfUsers/geonge/MATLAB Macros 20230315 Autc
| cp_settings s
[ cument mask "CellVasks027.npy

e

outputFolder = * i current_mask die... "YABioimaging Staff\George\20230315 AutoDECRAS

— | [ cument_masi ... \Bioimaging Staff George20230315_AutoDECRA\S
i curent ROl 5P) Tonsil28062021_ROI0O4ROL004 omeif

I curent_ RO direct... 'VA\Bioimaging Staff George\ 20230315 AutoDECRA\
e cluster nusbe &. pathology nusbers = | [ curent_ROLflns... ‘VBioimaging Saf George\20Z30315 AutoDECRAXI
» diply sescaled & 1
Command Window ok
New to MATLAB?See resources fo Gttng Stated x

© LABEL = CDe3 (Lul76Di) ~

LEBEL = CD45 (¥617¢D1)
Theet - cose (eireon ;

UtoDECRA MAY22xls¢ (Microsoft Excel Worksheet) v . | es_directory V:/Bioimaging Staff/George/20230315 AutoDECRA/S

f LRBEL - DNAZ (1:193D%) | fes-name "V:/Bioimaging StaffGeorge/20230315_AutoDECRA/f
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2. Update the name for the clustering information file that you have for your data, including
the names of relevant sheets for specific clustering tiers if necessary. Make sure to adapt the
“TIER_TO_USE” parameter to the relevant tier for your data
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3. Adapt the settings for the heatmap generation in the section shown below. The key
parameters are “pVal_sig” which sets the threshold for what proportion of the simulation
images need to show positive, neutral, or negative interactions relative to the original
dataset to be determined as a significant positive, neutral, or negative interaction.



“cut_off percent” determines the proportion of images a cell type needs to be present in to

be counted within th

e analysis. “

permutations” refers to the number of simulation images

generated. This is important in conjunction with the “pVal_sig” value, as too few
permutations with a high significance value could lead to aberrant results. Finally
“number_of pixels” refers to the number of pixels a cell mask is expanded by to determine
neighbouring cells, the smaller this number the smaller the region the macro will assess to
identify neighbours. This number should be adjusted based on cell density and cell size.
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Create heatmaps based on clinical/metadata information by using
metadata information that you wish to group your data by for heatmap generation, e.g. for
comparison between pathologies, you can use this data as long as it is present within your

single cell csv file.
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5. Set a size gate on the cells to be analysed by adapting the lower and higher area gate
parameters
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6. Adjust the save name for your heatmaps to reflect any specific alterations you are trialling or
testing. For example, as default we have the heatmaps saved specifying the pathology and
the pixel number for cell expansion, but you could incorporate any of the other parameters
used within your heatmap generation.
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7. Run the script
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1.

To create colour-coded cell masks of your data based on cell type information, use the

Matlab script “OPTIMAL_Pipeline_Part_3_Visualisaton.m”. First, adapt the folder paths for
the output figure location, the csv file containing every cell with a specific cluster
assignment, the directory containing the cell mask npy files from CellProfiler, and the raw
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Update the name for the clustering information file that you have for your data, including

n 19 Col 56

the names of relevant sheets for specific clustering tiers if necessary. Make sure to adapt the
“TIER_TO_USE” parameter to the relevant tier for your data
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3. If you would like to plot only selected cell type clusters, adapt the list of clusters in the array
“selected_clusters_to_plot” to only include clusters of interest
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4. To incorporate additional information into the save name of the files, update the parameter
“saveName” in the macro, by default we include the file name along with the clustering tier
specified by the user

o\ MATLAB R20222 - academic use x

PO H G ®E B reB o E scnmer > G

oo QFnd s oo [ el 2 Run and Advance
= m-

(e p— fan st Stop
P =" R gockmrk e | e @ funtotnd -
NAVIGATE CODE ANALYZE SECTION RUN =
+ V- » Biimaging Sulf » George » 23035 AUSDECRA » 2.mage ctscion In
Workspace ®
OPTIMAL Pipeline Part_T.m > | OPTIMAL Pipeline Part_.m > | OPTIMAL Pipeline Part 2 Heatmaps.m ‘OPTIMAL Pipeline_Part 3 Visuslisaton.m = | + Nome = Value
220 WEV_ASK_g(o (barder.pixel_loop,1), b (border_pivel_Loop,2)) <NEH_FASK_b(b(border_pixel_loop, 1) b(sorder_pixci_ < b | ot ALt 127sinct o
Outputs 230 NEW_MASK_b(b(border_pixel_loop,1),b(border_pixel_loop,2)) =NEW_MASK_b(b(border_pixel loop,1),b(border_pixel_ =] ;n',wﬁwp 7
5] ~SAutoDECRA_EPCAM Clusters VS clsx Py end B h
RA_MAV22xlsx 222 end — | s pata 19073331 double.
AutoDECRA_Data Analysis Master.xisx 233 mask_cell_loop — | E As.NORM_DATA  19073:37 double.
234 end ] batch_number 1
25 B ——" — | e st 25 doubic
2 ; E channt counter 000
27 [0l chamne it 55
238 NEW_ NASK( . ,3) -NEW_? I_ASK_t [ channel_loog
20 0 check <hamnelna. e0cel
5 AMGDECRA Graphing.Outpusip 200 H checkommber 0
13 AutoDECRA.MarchZ3 isx 201 Xishows the cluster inage, and saves to the output folder based on the mm{m oomel... 1221 cel
 AaDECRA MAV24x 262 user inputs -
5] Cluster Assgnmerts.nd_Merges AeDECRAX( 263 e =
B3 Cluster Assignments_and_Merges_AutoDECRA V2xxlsx 208 Figure(1)
- 205 SnghonUEN_BSK, (1) .
1 V2m 246 img_name = img_filenames(ROI_to_generate_image);
1m 247 1mlegend[<olur5(sele:t=d clusters_to_plot,:), labelsArr);
OPTMALPipeine Par 2 Hestmapsass 28 tice iatii
) OPTIMAL Pipeline_Part_2_Heatmaps.m 24 cavetiane szr(a((uu(pulfolder, , int2str(TIER_TO_USE), *_Inage_ ", img nome, *.png")
 Hestmps MutiFctor Platingm 20 Savees(ger, aveone)
) OPTVALPieine Par 3 Visufsatanm a1 jrebiedt ettt m—— -
B spillover2.Txlsx 252 -i C:/Users/george/MATLAB_Macros/20230315_Auto
B spillover2.1 - Copyaxlsx 253 - -0 C:/Users/george/MATLAB_Macros/20230315_Autc
254 3 ‘Cy/Users/george/MATLAB. Macros/CellProfiler/CellPr
s ¥ pCrrg MATAR o TS A
25 5] etings
27 | Eeleument sk Gzt
258 L et made .. VASioimaging S George 2020315 AtoDECRAYS
2 funceion inlegend(colorarr, labelsarr) [ otk i ¥Bcimcing S0 Gorge 20730315 At OECRAS
260 G % For instance IF two legend enerics are needed: o comentR oy o 2202 RO ROL 004 emer
261 % colorarr [c current_ RO direct... Vi ioimaging.Stf\George| 20230315 AutoDECRA\T
262 || % s errey of doubles. Each entry should be an RS percentage value betueen & and 1 <] B oo ROLHems. VABemagi- S\ Guorg 001 AtoDECRA
@ | | e
Command Vindow = Ffeafounde ()
- E— [ EPCAM channel 29
New to MATLAB? See resources for Getting Started. X [ EpcaM s 4
29 : LABEL = CD83 (Lul7sD1) L EPCAM_min O
e
- 45+ LABEL = Co#5 (w17608) o o oa jm’mf
TARGET CHAMNVEL NUMDER = 30 ¢ LABEL = CD4S (10176D3) Lot 15l
AtaDECRA MAVEZxis (Micosot xcel Worshes) v T R = o5+ e puss (resssne) icodredon | V/Biomaging Siaff/George 20030515 AoDECRAT:
N N (2! * Flfcs_name. 'V:/Bioimaging_Staff/George/20230315_AutoDECRA/f:
TARGET CHAMVEL NOMOER = 31 : LABEL = DIAZ (1r153D3) At oyt oot by s i
[ Fes_RoLDATA 19073x73 double.
Writing S67_Tonsil_ 2206202 _ROZA04_ROI_004.cne Commed s
AW, Baseine 2002621 FOID1FOLGET
No detalls svelluble Writing Combined_dataset
V/Bimaging Saf/George 2020815 AuoDECRA
hesdes et
5o © Filiesicmodd Ricimadin S Georqe 20230315 At oDECRA
< > e B
-] Zoom: 100% Ut CRIF[seript n 255 Col 1

H O Type here to search
5. Run the script




References within supplemental notes

10.

11.

12.

Mei HE, Leipold MD, Maecker HT. Platinum-conjugated antibodies for application in mass
cytometry. Cytometry A 2016;89:292-300.

Chevrier S, Crowell HL, Zanotelli VRT, Engler S, Robinson MD, Bodenmiller B. Compensation of
Signal Spillover in Suspension and Imaging Mass Cytometry. Cell Syst 2018;6:612-620 e5.
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy
M and others. ilastik: interactive machine learning for (bio)image analysis. Nat Methods
2019;16:1226-1232.

Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH,
Lindquist RA, Moffat J and others. CellProfiler: image analysis software for identifying and
quantifying cell phenotypes. Genome Biol 2006;7:R100.

Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A. CellProfiler 4:
improvements in speed, utility and usability. BMC Bioinformatics 2021;22:433.

Burbidge JB, Magee L, Robb AL. Alternative Transformations to Handle Extreme Values of the
Dependent Variable. Journal of the American Statistical Association 1988;83:123-127.

Lin TH, Li HT, Tsai KC. Implementing the Fisher's discriminant ratio in a k-means clustering
algorithm for feature selection and data set trimming. J Chem Inf Comput Sci 2004;44:76-87.
Bruce Bagwell C. High-Dimensional Modeling for Cytometry: Building Rock Solid Models Using
GemStone and Verity Cen-se' High-Definition t-SNE Mapping. Methods Mol Biol
2018;1678:11-36.

Wang Y. Understanding How Dimension Reduction Tools Work: An Empirical Approach to
Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization Journal of Machine
Learning Research 2021.

Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, Saeys Y.
FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data.
Cytometry A 2015;87:636-45.

Levine JH, Simonds EF, Bendall SC, Davis KL, Amir EAD, Tadmor MD, Litvin O, Fienberg HG,
Jager A, Zunder ER and others. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-
like Cells that Correlate with Prognosis. Cell 2015;162:184-197.

Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D, Giesen C, Catena
R, Varga Z, Bodenmiller B. histoCAT: analysis of cell phenotypes and interactions in multiplex
image cytometry data. Nat Methods 2017;14:873-876.



Table S1

Antibody Clone Vendor Cat. # Metal Working Conc. Major target cell Main spatial location
Tag {ug/mL) type/population (Protein Atlas)
CD45R0O UCHL1 Thermofisher CAT#14-0457-82 115In 4 Activated/memory immune cells Non-follicular, mantle zone
CD45RA HI100 Thermofisher | CAT#14-0458-82 141Pr 4 Naive immune cells Widespread locations
cD68 KP1 Biolegend CATH#372902 142Nd 5 Macrophages/monocytes Widespread locations
CD8a C8/1448B Biolegend CAT#372902 143Nd 6 CD8 T cells Non-follicular, mantle zone
KI6? Polyclonal Novus CAT#NB500-170 144Nd 3 Proliferating/mitotic cells Follicles/GCs
Collagen | 3D5E8 Protein Tech CAT#66761-1-Ig 145Nd 2.5 Fibroblasts Epithelium
CD138 4F3A8 Protein Tech CAT#67155-1-Ig 146Nd 35 Plasma B cells Non-follicular, mantle zone
CD163 EDHu-1 BioRad CAT#MCA1853 1475m 10 Perifollicular macrophages Epithelium and mantle zone
MPO 4C11F6 Protein Tech CAT#66177-1-Ig 150Nd 5 Neutrophils Non-follicular, mantle zone
CD56 E7X9M CST CATH#99746BF 153Eu 12 NK/NK T cells Non-follicular, mantle zone
CD69 15B5G2 Novus CATHNBP2-25236 155Gd 0.25 Memory T cells Epithelium
EPCAM Polyclonal Abcam CATH#ab71916 156Gd 1 Epithelial cells Widespread locations
CD206 2A6A10 Abcam 60143-1-Ig 157Gd 0.5 Tissue Macrophages and DCs Epithelium and mantle zone
CD79a EP3618 Abcam CAT#ab239891 158Gd 7.5 B cells (all) Widespread locations
STING D2P2F CST CAT#13647 159Tb 5 T and NK cell subsets Widespread locations
CD1c 2A7C11 Novus CATH#NBP2-61726 162Dy 2.5 Dendritic cells (DCs) Epithelium
IFITM3 Polyclonal Protein Tech CAT#11714-1-AP 163Dy 5 Immune cells Epithelium and mantle zone
CD57 HNK-1 Biolegend CAT#359602 165Ho 10 GC-resident T/B cells Follicles/GCs
IL6-R Polyclonal Thermofisher | CAT#PA5-100836 167Er 10 Immune cells Widespread locations
Cleaved Caspase-3 Aspl75 CST CAT#9579S 168Er 5 Apoptotic cells Follicles/GCs
CcD3 Polyclonal Fluidigm CAT#3170019D 170Er 7.5 T/NKT Cells Widespread locations
CD31 EPR3094 Abcam CAT#ab207090 172Yb Endothelium Epithelium and mantle zone
CcD4 EPR6855 Abcam CAT#ab181724 174Yb CD4 T cells/Monocytes Widespread locations
HLA-DR LN3 Thermofisher CAT#14-9956-82 175Lu Antigen presenting cells (MHCII) Widespread locations
CD169 SP213 Abcam CAT#ab245735 176Yb 2.5 Monocytes Widespread locations
CD147 E1S1V CST CATH#13287BF 194Pt 4 Various cells Widespread locations
Beta-2-M EPR21752-214 Abcam CAT#ab237032 198Pt 1.5 All cells (MHC-1) Widespread locations

CST = Cell Signalling Technologies; GC — Germinal centres
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Figure S7
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Figure S10
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