

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Cardiorenal Outcomes by Age and Sex in Patients Treated With Finerenone: FIDELITY Post Hoc Analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-076444
Article Type:	Original research
Date Submitted by the Author:	07-Jun-2023
Complete List of Authors:	Bansal, Shweta ; The University of Texas Health Science Center at San Antonio Department of Medicine Canziani, M. E. F.; Univ Fed Sao Paulo Birne, Rita; Centro Hospitalar Lisboa Ocidental, Department of Nephrology; University of Lisbon, Nova Medical School Anker, Stefan; Charité Universitätsmedizin, Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT) Bakris, George; University of Chicago, Hypertension Center Filippatos, Gerasimos; National and Kapodistrian University of Athens Rossing, Peter; Steno Diabetes Center AS; University of Copenhagen, Department of Clinical Medicine Ruilope, Luis M ; Institute of Research imas12, Cardiorenal Translational Laboratory and Hypertension Unit; Hospital Universitario 12 de Octubre, CIBER-CV Farjat, Alfredo; Bayer plc Kolkhof, Peter; Cardiovascular Precision Medicines Bayer AG Lage, Andrea; Bayer SA Brinker, Meike; Cardiology and Nephrology Clinical Development Pitt, B; University of Michigan
Keywords:	Risk Factors, Diabetic nephropathy & vascular disease < DIABETES & ENDOCRINOLOGY, DIABETES & ENDOCRINOLOGY

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Cardiorenal Outcomes by Age and Sex in Patients Treated With Finerenone: FIDELITY Post Hoc Analysis

Author(s)

Shweta Bansal, MD,¹ Maria E.F. Canziani, MD,² Rita Birne, MD,^{3,4} Stefan D. Anker, MD, PhD,⁵ George L. Bakris, MD,⁶ Gerasimos Filippatos, MD,⁷ Peter Rossing, MD, DMSc,^{8,9} Luis M. Ruilope, MD,^{10–12} Alfredo E. Farjat, PhD,¹³ Peter Kolkhof, PhD,¹⁴ Andrea Lage, MD,¹⁵ Meike Brinker, MD,¹⁶ Bertram Pitt, MD,¹⁷ on behalf of the FIDELIO-DKD and FIGARO-DKD investigators

Institution(s)

¹Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA

²Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
³Department of Nephrology, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
⁴Nova Medical School, University of Lisbon, Lisbon, Portugal
⁵Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
⁶Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
⁷National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
⁸Steno Diabetes Center Copenhagen, Gentofte, Denmark
⁹Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
¹⁰Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research imas12, Madrid, Spain

¹¹CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
17	

¹²Faculty of Sport Sciences, European University of Madrid, Madrid, Spain ¹³Research and Development, Clinical Data Sciences and Analytics, Bayer PLC, Reading, UK

¹⁴Research and Early Development, Cardiovascular Precision Medicines, Bayer AG,

Wuppertal, Germany

¹⁵Cardiology and Nephrology Clinical Development, Bayer SA, São Paulo, Brazil

¹⁶Cardiology and Nephrology Clinical Development, Bayer AG, Wuppertal, Germany

¹⁷Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan,

USA

Contact information for corresponding author:

Name: Shweta Bansal, MD, FASN

Address: Department of Medicine, Division of Nephrology, Joe R. & Teresa Lozano Long

School of Medicine, UT Health, San Antonio, TX, USA iez oni

7703 Floyd Curl Drive, MSC 7882

San Antonio, TX-78229, USA

Phone no: 210-422-0438

Fax no: 210-567-4712

Email: bansals3@uthscsa.edu

Journal: BMJ Open

Running head: Finerenone: Cardiorenal Outcomes by Age and Sex Key words: chronic kidney disease, type 2 diabetes, cardiorenal, finerenone, risk factors

Word count: 2797 of 4000 allowed by the journal (excluding title, abstract, tables, figures and figure legends, acknowledgments, disclosures, references, and online-only material) No. of figures and tables: 5 of 5 tables/figures allowed by the journal (combined) No. of references: 42

Abstract

Objectives: To evaluate the effects of finerenone, a selective, nonsteroidal mineralocorticoid receptor antagonist, on cardiorenal outcomes by age and/or sex.

Design: Post hoc analysis of the FIDELITY study (prespecified pooled analysis of FIDELIO-DKD and FIGARO-DKD), with a median follow-up of 3 years.

Setting: FIDELITY was a prespecified analysis of two phase 3, multicenter, double-blind trials.

Participants: Adults with type 2 diabetes and chronic kidney disease receiving maximum tolerated renin–angiotensin system inhibitor; 13 171 patients randomized and 13 026 patients included in the analyses.

Interventions: Randomized 1:1 to finerenone or placebo.

Primary and secondary outcome measures: Primary outcomes were a cardiovascular composite outcome (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure) and a kidney composite outcome (kidney failure, sustained ≥57% estimated glomerular filtration rate decline, or renal death).

Results: The mean age of 13 026 participants was 64.8 years; 45.2%, 40.1%, and 14.7% were aged <65, 65–74, and ≥75 years, respectively; 69.8% were male. Cardiovascular benefits of finerenone versus placebo were consistent across age ($P_{interaction}$ =.42) and sex categories ($P_{interaction}$ =.99); effects of finerenone to reduce hospitalization for heart failure were not modified by age ($P_{interaction}$ =.70) but were more pronounced in males ($P_{interaction}$ =.02). Kidney events were lower with finerenone versus placebo in patients aged <65 and 65–74 but not ≥75; no heterogeneity in treatment effect was observed ($P_{interaction}$ =.51). In sex subgroups, finerenone consistently reduced kidney events ($P_{interaction}$ =.85). Finerenone reduced albuminuria and estimated glomerular filtration rate decline regardless of age and sex. Hyperkalemia increased with finerenone, but rates of subsequent discontinuation were <3% across subgroups. Gynecomastia in males was uncommon across age subgroups and identical between treatment groups.

Conclusions: Finerenone improved cardiorenal outcomes with no new safety concerns

across ages and sexes.

Registration: FIDELIO-DKD (NCT02540993); FIGARO-DKD (NCT02545049)

Abstract word count: 290 of 300 allowed by the journal (no abbreviations)

Strengths and limitations of this study

- An advantage of this study was the use of combined individual-level data from the FIDELIO-DKD and FIGARO-DKD phase 3 clinical trials, resulting in a large number of patients included in the full analysis set
- This study did not use predefined age categories, as it was a post hoc analysis, which may have resulted in some of the tests performed being underpowered
- Limitations present in FIDELITY are present in this analysis, such as the small proportion of Black patients and exclusion of patients with nonalbuminuric CKD

Introduction

In patients with diabetes, the risk of cardiovascular (CV) disease and chronic kidney disease (CKD) increases with age.¹ Likewise, vascular complications are affected by sex and are increased in females more than males in patients with diabetes.²

Among individuals aged 50 to 75 years without baseline diabetes, CKD, or CV disease, males have a steeper decline in glomerular filtration rate (GFR) than females.³ However, reported effects of sex on risk of incidental and progressive CKD in patients with type 2 diabetes (T2D) have been inconsistent.⁴⁻⁶ In trials including patients with CKD, female representation varies (25-40%),⁷⁻¹¹ whereas in real-world studies, females make up over half of patients.^{12,13}

Overactivation of the mineralocorticoid receptor (MR) is associated with CV and kidney diseases.^{14,15} In epithelial cells, the 11 β -hydroxysteroid dehydrogenase type 2 (11 β -HSD2) enzyme prevents inappropriate MR activation by cortisol.¹⁶⁻¹⁸ The activity of 11 β -HSD2 decreases with age, resulting in MR overactivation in the elderly despite low circulating aldosterone levels.¹⁶⁻¹⁸ Sex also influences 11 β -HSD2 activity, particularly in patients with hypertension, where 11 β -HSD2 activity is reduced in males versus females.¹⁶ The MR is also expressed in nonepithelial cells, including endothelial cells, vascular smooth muscle cells, adipocytes, and immune cells.¹⁷ In many of these, the MR may be activated by cortisol because of a lack of protection by 11 β -HSD2.^{19,20}

Despite management with recommended treatments for CKD in T2D, patients experience CKD progression or kidney failure and are at high risk of CV events.^{10,21-23} Finerenone, a selective, nonsteroidal MR antagonist (MRA), reduced the risk of CKD progression and CV outcomes compared with placebo in patients with CKD and T2D in FIDELITY (The FInerenone in chronic kiDney diseasE and type 2 diabetes: Combined FIDELIO-DKD and

BMJ Open

FIGARO-DKD Trial programme analYsis), a prespecified pooled analysis of the FIDELIO-DKD (FInerenone in reducing kiDnEy faiLure and dIsease prOgression in Diabetic Kidney Disease; NCT02540993) and FIGARO-DKD (FInerenone in reducinG cArdiovascular moRtality and mOrbidity in Diabetic Kidney Disease; NCT02545049) phase 3 trials.²¹ However, the influence of age and sex on outcomes with finerenone is unknown. This post hoc analysis evaluated whether the cardiorenal benefits and safety profile of finerenone observed in FIDELITY are consistent in patients with CKD and T2D across ages and in both sexes.

Methods

Study Design and Patients

FIDELITY combined individual patient-level data from the FIDELIO-DKD and FIGARO-DKD phase 3 clinical trials. The study design, procedures, and outcomes for the trials have been previously published.²⁴⁻²⁶

Eligible patients were aged ≥18 years with CKD and T2D, receiving maximum tolerated renin–angiotensin system inhibitor, and with serum potassium levels ≤4.8 mmol/L at screening. Patients had either a urine albumin-to-creatinine ratio (UACR) ≥30 to <300 mg/g and an estimated glomerular filtration rate (eGFR) ≥25 to ≤90 mL/min/1.73 m², or UACR ≥300 to ≤5000 mg/g and eGFR ≥25 mL/min/1.73 m². Patients with symptomatic heart failure (HF) with reduced ejection fraction were excluded because this implies an indication for a steroidal MRA.

Standard-of-care therapy with a renin–angiotensin system inhibitor was optimized during the run-in period. Patients were randomly assigned (1:1) to receive finerenone at titrated doses (10 or 20 mg) once-daily oral treatment or matching placebo.

Key Outcomes

Efficacy outcomes included a CV composite outcome (CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for HF [HHF]), a kidney composite outcome (kidney failure, sustained ≥57% eGFR decline, or renal death), HHF, and change in UACR and eGFR over time.

Safety outcomes included incidence of investigator-reported adverse events (AEs), including those leading to treatment discontinuation, central laboratory assessment of serum potassium levels >5.5 and >6.0 mmol/L, and other safety events of interest, such as hypotension, hyperkalemia, and gynecomastia in males.

Outcomes were analyzed according to patient age at baseline (<65, 65 to 75, \geq 75 years) and sex (females were categorized as either pre- or postmenopausal if they were aged <51.4 or \geq 51.4 years at baseline, respectively).

Statistical Analysis

Statistical analyses were performed as described in FIDELITY.²⁴ The full analysis set comprised all randomized patients (except those with critical Good Clinical Practice violations, who were prospectively excluded). Safety analyses were performed in the safety analysis set (randomized patients without critical Good Clinical Practice violations who took >1 dose of study drug). The analyses were prespecified exploratory evaluations of outcomes according to age and sex, with events reported from randomization up to the end-of-study visit. Stratified Cox proportional hazards models were used for the analysis of time-to-event clinical outcomes with stratification factors: geographic region, eGFR and albuminuria category at screening, history of CV disease, and study. The *P*-values for interaction between the treatment group (finerenone or placebo) and each baseline subgroup were based on stratified Cox proportional hazards models, accounting for the treatment effect, the subgroup effect, and their interaction.

BMJ Open

Changes in UACR and eGFR over time were assessed using a linear mixed-model analysis accounting for repeated measurements over time. The least-squares mean ratio and absolute change from baseline were estimated from the models for changes in UACR and eGFR, respectively. The 2-slope, linear spline, mixed-model, repeated measure method²⁷ was used to estimate the rate of change in eGFR across time, specifically total (annualized rate of change in eGFR from baseline to permanent discontinuation or end of study) and chronic (from month 4 to permanent discontinuation or end of study) eGFR slopes. To account for possible nonlinear effects of age on clinical outcomes, age was modeled with cubic splines with 3 knots in Cox proportional hazards models, to produce plots of the HRs and 95% CI as functions of age and sex.

Patients and public involvement

No patient or public involvement in the current study.

Results

Patients

FIDELITY included 13 026 patients.²⁴ Median follow-up was 3 years (interquartile range 2.3 to 3.8).²⁴ Mean age at baseline was 64.8 years (standard deviation 9.5), with 45.2%, 40.1%, and 14.7% of patients aged <65, 65 to 74, and \geq 75 years at baseline, respectively. Most patients (69.8%; *n*=9088/13 026) were male; 2.5% (*n*=323/13 026) were premenopausal females, and 27.8% (*n*=3615/13 026) were postmenopausal females. Patients were distributed evenly between treatment arms within age and sex subgroups (**eTable 1**).

Lieu

Baseline Characteristics

Baseline characteristics were similar across age subgroups except for some key differences (**Table 1**). The overall FIDELITY population was predominantly White (68.1%), the proportion of which increased with age. Mean eGFR and median UACR were higher in the <65 years

group. History of CV disease was more common in the \geq 75 years group; this trend was also observed for atrial fibrillation/atrial flutter.

Baseline characteristics in sex subgroups are shown in **Table 1**.

Efficacy

CV composite outcome by age

CV composite event rates increased with patient age in both treatment arms (**Figure 1A**). However, CV composite event rates were lower with finerenone than placebo in all age groups (**Figure 1A**). The effect of finerenone on reducing the risk of the CV composite outcome was consistent across categorical age subgroups ($P_{interaction}$ =.42). There was no evidence of treatment effect modification when age was modeled as a continuous variable ($P_{interaction}$ =.10). The trend of HR as a function of age was modeled with cubic splines (**eFigure 1A**).

HHF event rates were lower with finerenone than placebo in all age subgroups (**Figure 1A**). The effect of finerenone on HHF risk reduction was consistent across age subgroups ($P_{\text{interaction}}$ =.70).

CV composite outcome by sex

CV composite event rates were lower with finerenone than placebo for males, premenopausal females, and postmenopausal females (**Figure 1B**). The effect of finerenone on reducing the risk of the CV composite outcome was consistent across sex subgroups ($P_{interaction}$ =.10). When age was modeled with cubic splines by sex, the effect of finerenone was consistent with advancing age in males; however, a trend toward a stronger effect in older versus younger females was noted (**eFigure 1B, 1C**). Age distribution by sex is demonstrated in **eFigure 1D**.

BMJ Open

The reduction of HHF with finerenone versus placebo was more pronounced in males than premenopausal/postmenopausal females (**Figure 1B**). These results persisted after adjustment for differences in baseline age, body mass index, systolic blood pressure, hemoglobin, eGFR, UACR, smoking history, and history of atrial fibrillation between sex subgroups ($P_{interaction}$ =.02).

Kidney composite outcome by age

Kidney composite event rates were lower with finerenone than placebo in the <65 years and the 65 to 74 years groups but were similar in the ≥75 years group (**Figure 2A**). The effect of finerenone on reducing the risk of the kidney composite outcome was consistent across age subgroups ($P_{interaction}$ =.51), with no evidence of treatment effect modification when age was modeled as a continuous variable ($P_{interaction}$ =.77). The trend of HR as function of age was modeled with cubic splines (**eFigure 2A**).

Kidney composite outcome by sex

Kidney composite event rates were lower with finerenone than placebo in males but were similar in premenopausal and postmenopausal females (**Figure 2B**). The effect of finerenone on reducing the risk of the kidney composite outcome was consistent across sex subgroups ($P_{interaction}$ =.85). When age was modeled with cubic splines by sex subgroups, the effect of finerenone suggests trends similar to overall results in males and females across all age groups (**Figure 2B**, **2C**). Age distribution by sex is demonstrated in **eFigure 2D**.

Effect of finerenone on markers of kidney function and damage by age and sex

Finerenone significantly attenuated the least-squares mean change in eGFR from month 4 to end of treatment (chronic eGFR slope) compared with placebo across all age and sex subgroups (**Figure 3**, **eFigure 3**). Finerenone reduced UACR over time compared with placebo regardless of age and sex (**eFigure 4**).

Safety

 The incidence of any AE was similar between treatment groups irrespective of age or sex (**Table 2**). There were more drug-related AEs with finerenone than placebo in age and sex subgroups except premenopausal females, where the incidence was similar. AEs leading to drug discontinuation were more frequent in patients given finerenone than placebo (6.4% and 5.4%, respectively), with higher incidences in the 65 to 74 and ≥75 years groups than the <65 years group; there were more AEs leading to drug discontinuation with finerenone than placebo in males and premenopausal females but not in postmenopausal females.

Although the incidences of any serious AEs (SAEs), study drug-related SAEs, or SAEs leading to drug discontinuation were similar between treatment arms across all age and sex subgroups, the overall incidences of SAEs increased with age and was highest in males, followed by postmenopausal females, then premenopausal females.

In all age and sex subgroups, the incidences of treatment-emergent hypotension AEs were higher with finerenone than placebo but did not have a substantial impact on related clinical outcomes, including falls, dizziness, and fatigue. The incidence of hypotension in patients treated with finerenone increased with age (**Table 2**).

In FIDELITY, finerenone increased the risk of any hyperkalemia event versus placebo; similar findings were observed in all age and sex subgroups, except premenopausal females (**Table 2**). The incidences of any hyperkalemia AEs leading to discontinuation of study drug and any serious hyperkalemia AEs leading to hospitalization were low across all age and sex subgroups (<3% and <2%, respectively). However, the relative risk of treatment discontinuation because of hyperkalemia with finerenone versus placebo increased with advancing age (relative risk [95% CI] for ages 45 to 64, 65 to 74, and ≥75 years: 2.2 [1.2 to 4.3], 2.8 [1.7 to 4.7], and 4.4 [1.8 to 10.8], respectively). Treatment-emergent serum

BMJ Open

potassium levels >5.5 mmol/L and >6.0 mmol/L were more frequent with finerenone than placebo, being consistent across all age and sex subgroups. The incidence of gynecomastia in males was the same with finerenone (0.2%) and placebo (0.2%) across all ages.

Discussion

In this post hoc analysis, finerenone demonstrated reduced risk of CV and kidney composite outcomes versus placebo across all age and sex subcategories. In FIDELITY, HHF was the main driver of CV benefit with finerenone²⁴; lower incidences of HHF with finerenone versus placebo were observed in this analysis across all age subgroups, with some differences noted between sex subgroups. Moreover, the incidences of any AEs or SAEs were similar between the treatment groups regardless of age and sex.

The results for the CV outcome in this analysis are consistent with findings from other studies of MRAs in HF. In TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist), age did not affect the efficacy of spironolactone in patients with HF, ²⁸ and in analyses of HF studies (RALES [Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure], EMPHASIS-HF [Eplerenone in Patients with Systolic Heart Failure and Mild Symptoms], and TOPCAT), MRAs reduced morbidity and mortality in elderly patients,²⁹ demonstrating a consistent benefit regardless of sex.³⁰ In contrast to our results, female sex was associated with poorer kidney outcomes versus male sex in patients receiving a steroidal MRA for bilateral primary aldosteronism.³¹ The MR can be activated by different drivers in different diseases; MR activation in diabetes is driven by additional factors other than high aldosterone in comparison with primary aldosteronism, which may account for differences in outcomes observed across different indications.³²

In this study, although the elderly population had higher risk of certain AEs (e.g., hypotension, AEs leading to discontinuation, and death), they occurred less frequently with finerenone than placebo. Hyperkalemia was more prevalent with finerenone but was

BMJ Open

generally similar across age and sex. In a FIDELIO-DKD subanalysis, younger age and female sex were independent risk factors for hyperkalemia (>6.0 mmol/L).³³ Similar findings for age were observed in TOPCAT post hoc data for patients with HF.²⁸ Steroidal MRAs have been associated with gynecomastia in males,^{34,35} which was not observed in this study, most likely because finerenone has no detectable affinity for androgen receptors.³⁵

Preclinical data suggest that different molecular mechanisms drive endothelial dysfunction in male and female mice^{36,37} and that increased age and male sex are associated with MR overactivation, which is linked to vascular stiffness and endothelial dysfunction.^{38,39} In human aortic smooth muscle cells, MR expression increased with age, leading to epigenetic changes associated with increased vascular stiffness. These effects were reversed with MR inhibition.⁴⁰ In vitro, MR expression in the whole aortae and early passage aortic vascular smooth muscle cells was increased in aged (30 months) versus adult (8 months) rat cells.³⁸ In a preclinical mouse model, aortic stiffness occurred earlier in male than female mice and correlated with the timing of increased aortic MR expression; vascular stiffness was prevented in smooth muscle cell MR-deficient mice.³⁹ These data suggest that elderly males may derive the greatest benefit from finerenone; indeed, in this analysis, finerenone-treated males had lower risk of the CV composite outcome and HHF versus placebo across age groups, including >75 years. Moreover, statistical heterogeneity was observed for HHF by sex, persisting after adjustment for differences in baseline characteristics, with a more pronounced effect of finerenone to reduce HHF versus placebo in males than females.

In this study, markers of kidney damage (eGFR decline and UACR) were reduced with finerenone in age subgroups; however, no benefit on kidney outcomes was observed in the >75 years age group. The small sample size of this subgroup precluded definitive conclusions, which may be accounted for by the slowing rate of CKD progression with advancing age.^{41,42}

BMJ Open

Limitations include the study being a post hoc analysis and the chosen age categories not being predefined. In addition, patients may have initiated other treatments during the study. Sample size and number of events for premenopausal females were relatively small, resulting in uncertainty around the estimates for this subgroup. Results for premenopausal females versus postmenopausal females/males should be interpreted with caution because age may partly account for differences observed; the average age of premenopausal females was ~45 years old compared with postmenopausal females (~66 years old) and males (~65 years old) (**Table 1**). As such, these groups had different baseline characteristics. Higher baseline mean eGFR and median UACR, and lower history of CV comorbidities and hypotension were observed in premenopausal females versus males and postmenopausal females. Additionally, the study design and tests performed may have been underpowered to address the research questions. Furthermore, FIDELITY limitations, mainly the small proportion of Black patients and exclusion of patients with nonalbuminuric CKD, were present in this analysis.

In conclusion, this post hoc FIDELITY analysis suggests that finerenone effectively lowers the risk of clinically important cardiorenal outcomes in patients with CKD and T2D across ages and sexes, with no new safety concerns in those aged >65 years or by sex. These data highlight the therapeutic potential of finerenone in older patients and both sexes in patients with CKD and T2D.

Acknowledgments

Medical writing assistance was provided by Chameleon Communications International, and was funded by Bayer AG.

Funding

This work was supported by Bayer AG, who funded the FIDELIO-DKD and FIGARO-DKD studies and combined analysis.

Contributors:

SB prepared the initial analysis and interpretation of data, as well as the initial manuscript draft, which was then reviewed and edited by all authors. All authors vouch for the completeness and accuracy of the data and agreed to submit the manuscript for publication. The funder had a role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclosures

SB reports research support from 3ive, Bayer, Boehringer Ingelheim, Novartis, and Novo Nordisk; honorarium from UpToDate; consultancy fees from Baxter; and speaker bureau fees from Home Dialysis University and PD Excellence Academy.

MEFC reports consultancy fees from AstraZeneca, Bayer, Boehringer Ingelheim, and Fresenius Medical Care, and research support from Baxter and Fresenius.

RB reports consultancy fees from AstraZeneca, Bayer, Boehringer Ingelheim, Gilead, MSD, Mundipharma, Sanofi, and Servier.

SDA reports grants from Abbott Vascular and Vifor International; and personal fees from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, BioVentrix, Brahms, Cardiac Dimensions, Cardior, Cordio, CVRx, Edwards, Impulse Dynamics, Janssen, Novartis, Occlutech, Respicardia, Servier, Vectorious, and V-Wave.

BMJ Open

GLB reports consultancy fees from Alnylam, Ionis, and Merck.

GF is a trial committee member for Amgen, Bayer (no fees received), Boehringer Ingelheim, Medtronic, Novartis, Servier, and Vifor.

PR reports personal fees from Bayer during the conduct of the study; he has received research support and personal fees from AstraZeneca and Novo Nordisk, and personal fees from Astellas, Boehringer Ingelheim, Eli Lilly, Gilead, Mundipharma, Sanofi, and Vifor; all fees are given to Steno Diabetes Center Copenhagen.

LMR reports consultancy fees from Bayer.

AEF, PK, AL, and MA are all full-time employees of Bayer.

BP reports consultant fees for AstraZeneca, Bayer, Boehringer Ingelheim, Brainstorm Medical, Cereno Scientific, G3 Pharmaceuticals, KBP Biosciences, PhaseBio, Proton Intel, Sanofi/Lexicon, Sarfez, scPharmaceuticals, SQ Innovation, Tricida, and Vifor/Relypsa; he has stock options for Brainstorm Medical, Cereno Scientific, G3 Pharmaceuticals, KBP Biosciences, Proton Intel, Sarfez, scPharmaceuticals, SQ Innovation, Tricida, and Vifor/Relypsa; he also holds a patent for site-specific delivery of eplerenone to the myocardium (US patent #9931412) and a provisional patent for histone-acetylationmodulating agents for the treatment and prevention of organ injury (provisional patent US 63/045,784).

Data sharing statement

Data not currently available Will data be available: Yes Where: Electronic repository When will data availability begin: Date to be confirmed by Bayer

References

- 1. Halter JB, Musi N, McFarland Horne F, *et al*. Diabetes and cardiovascular disease in older adults: Current status and future directions. *Diabetes* 2014;63:2578–89.
- Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. *Clin Sci (Lond)* 2017;131:833–46.
- 3. Melsom T, Norvik JV, Enoksen IT, *et al.* Sex differences in age-related loss of kidney function. *J Am Soc Nephrol* 2022;33:1891–902.
- 4. Bairey Merz CN, Dember LM, Ingelfinger JR, *et al.* Sex and the kidneys: Current understanding and research opportunities. *Nat Rev Nephrol* 2019;15:776–83.
- 5. Maric-Bilkan C. Sex differences in diabetic kidney disease. *Mayo Clin Proc* 2020;95:587–99.
- Yu MK, Lyles CR, Bent-Shaw LA, *et al.* Risk factor, age and sex differences in chronic kidney disease prevalence in a diabetic cohort: The Pathways Study. *Am J Nephrol* 2012;36:245–51.
- Wiviott SD, Raz I, Bonaca MP, *et al.* Dapagliflozin and cardiovascular outcomes in type 2 diabetes. *N Engl J Med* 2019;380:347–57.
- 8. Heerspink HJL, Stefánsson BV, Correa-Rotter R, *et al.* Dapagliflozin in patients with chronic kidney disease. *N Engl J Med* 2020;383:1436–46.
- Zannad F, Ferreira JP, Pocock SJ, *et al.* Cardiac and kidney benefits of empagliflozin in heart failure across the spectrum of kidney function: Insights from EMPEROR-Reduced. *Circulation* 2021;143:310–21.
- Perkovic V, Jardine MJ, Neal B, *et al.* Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. *N Engl J Med* 2019;380:2295–306.
- 11. Chertow GM, Block GA, Correa-Rotter R, *et al.* Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. *N Engl J Med* 2012;367:2482–94.

3 4	12.	Tuttle KR, Alicic RZ, Duru OK, et al. Clinical characteristics of and risk factors for
5		chronic kidney disease among adults and children: An analysis of the CURE-CKD
7		registry. JAMA Netw Open 2019;2:e1918169.
9 10	13.	Gasparini A, Evans M, Coresh J, et al. Prevalence and recognition of chronic kidney
11 12		disease in Stockholm healthcare. Nephrol Dial Transplant 2016;31:2086–94.
13 14	14.	Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid receptor and cardiovascular
15 16		disease. Am J Hypertens 2018;31:1165–74.
17 18	15.	Luther JM, Fogo AB. The role of mineralocorticoid receptor activation in kidney
19 20		inflammation and fibrosis. Kidney Int Suppl 2022;12:63-8.
21 22 23	16.	Henschkowski J, Stuck AE, Frey BM, et al. Age-dependent decrease in 11beta-
23 24 25		hydroxysteroid dehydrogenase type 2 (11beta-HSD2) activity in hypertensive
26 27		patients. Am J Hypertens 2008;21:644–9.
28 29	17.	Kolkhof P, Jaisser F, Kim SY, et al. Steroidal and novel non-steroidal
30 31		mineralocorticoid receptor antagonists in heart failure and cardiorenal diseases:
32 33		comparison at bench and bedside. Handb Exp Pharmacol 2017;243:271–305.
34 35	18.	Pitt B. The role of mineralocorticoid receptor antagonists (MRAs) in very old patients
36 37		with heart failure. Heart Fail Rev 2012;17:573–9.
38 39	19.	Cole TJ, Young MJ. 30 years of the mineralocorticoid receptor: Mineralocorticoid
40 41		receptor null mice: Informing cell-type-specific roles. <i>J Endocrinol</i> 2017;234:T83–T92.
42 43 44	20.	Nakamura T, Girerd S, Jaisser F, et al. Nonepithelial mineralocorticoid receptor
44 45 46		activation as a determinant of kidney disease. Kidney Int Suppl 2022;12:12-8.
47 48	21.	Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse
49 50		kidney and cardiovascular events in patients with diabetic and non-diabetic chronic
51 52		kidney disease: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes
53 54		Endocrinol 2021;9:22–31.
55 56	22.	Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and
57 58		cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J
59 60		<i>Med</i> 2001;345:861–9.

2 3 4 5 6	23.
7 8 9 10 11 12 13	24.
14 15 16 17	25.
18 19 20 21	26.
22 23 24 25	27.
26 27 28 29	28.
30 31 32 33 34	29.
35 36 37 38 39 40 41 42	30.
43 44 45 46 47	31.
48 49 50 51	32.
52 53 54 55	33.
56 57 58 59 60	

- 23. Heerspink HJL, Parving HH, Andress DL, *et al*. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. *Lancet* 2019;393:1937–47.
- 24. Agarwal R, Filippatos G, Pitt B, *et al.* Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. *Eur Heart J* 2022;43:474–84.
- 25. Bakris GL, Agarwal R, Anker SD, *et al*. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. *N Engl J Med* 2020;383:2219–29.
- 26. Pitt B, Filippatos G, Agarwal R, *et al*. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. *N Engl J Med* 2021;385:2252–63.
- 27. Vonesh E, Tighiouart H, Ying J, *et al*. Mixed-effects models for slope-based endpoints in clinical trials of chronic kidney disease. *Stat Med* 2019;38:4218–39.
- 28. Vardeny O, Claggett B, Vaduganathan M, *et al.* Influence of age on efficacy and safety of spironolactone in heart failure. *JACC Heart Fail* 2019;7:1022–8.
- 29. Ferreira JP, Rossello X, Eschalier R, *et al.* MRAs in elderly HF patients: Individual patient-data meta-analysis of RALES, EMPHASIS-HF, and TOPCAT. *JACC Heart Fail* 2019;7:1012–21.
- Rossello X, Ferreira JP, Pocock SJ, *et al.* Sex differences in mineralocorticoid receptor antagonist trials: A pooled analysis of three large clinical trials. *Eur J Heart Fail* 2020;22:834–44.
- 31. Nakamaru R, Yamamoto K, Akasaka H, *et al.* Sex differences in renal outcomes after medical treatment for bilateral primary aldosteronism. *Hypertension* 2021;77:537–45.
- 32. Kawanami D, Takashi Y, Muta Y, *et al*. Mineralocorticoid receptor antagonists in diabetic kidney disease. *Front Pharmacol* 2021;12:754239.
- 33. Agarwal R, Joseph A, Anker SD, *et al*. Hyperkalemia risk with finerenone: Results from the FIDELIO-DKD trial. *J Am Soc Nephrol* 2022;33:225–37.

Page 21 of 47

1 2		
3	34.	Hasegawa T, Nishiwaki H, Ota E, et al. Aldosterone antagonists for people with
5		chronic kidney disease requiring dialysis. Cochrane Database Syst Rev
7 8		2021;2:Cd013109.
9 10	35.	Kolkhof P, Joseph A, Kintscher U. Nonsteroidal mineralocorticoid receptor
11 12		antagonism for cardiovascular and renal disorders – new perspectives for
13 14		combination therapy. Pharmacol Res 2021;172:105859.
15 16	36.	Davel AP, Jaffe IZ, Tostes RC, et al. New roles of aldosterone and mineralocorticoid
17 18		receptors in cardiovascular disease: Translational and sex-specific effects. Am J
19 20		Physiol Heart Circ Physiol 2018;315:H989–H99.
21 22	37.	Faulkner JL, Kennard S, Huby AC, et al. Progesterone predisposes females to
23 24 25		obesity-associated leptin-mediated endothelial dysfunction via upregulating
25 26 27		endothelial MR (mineralocorticoid receptor) expression. Hypertension 2019;74:678–
28 29		86.
30 31	38.	Krug AW, Allenhofer L, Monticone R, et al. Elevated mineralocorticoid receptor
32 33		activity in aged rat vascular smooth muscle cells promotes a proinflammatory
34 35		phenotype via extracellular signal-regulated kinase 1/2 mitogen-activated protein
36 37		kinase and epidermal growth factor receptor-dependent pathways. Hypertension
38 39		2010;55:1476–83.
40 41	39.	DuPont JJ, Kim SK, Kenney RM, et al. Sex differences in the time course and
42 43		mechanisms of vascular and cardiac aging in mice: Role of the smooth muscle cell
44 45		mineralocorticoid receptor. Am J Physiol Heart Circ Physiol 2021;320:H169–H80.
46 47	40.	Ibarrola J, Kim SK, Lu Q, et al. Smooth muscle mineralocorticoid receptor as an
48 49		epigenetic regulator of vascular aging. <i>Cardiovasc Res</i> 2023;118:3386–400.
50 51 52	41.	Mathur R, Dreyer G, Yaqoob MM, et al. Ethnic differences in the progression of
52 53 54		chronic kidney disease and risk of death in a UK diabetic population: An
55 56		observational cohort study. <i>BMJ open</i> 2018;8:e020145.
57 58		
59 60		
00		

42. Go AS, Yang J, Tan TC, *et al.* Contemporary rates and predictors of fast progression of chronic kidney disease in adults with and without diabetes mellitus. *BMC Nephrol* 2018;19:146.

For peer terier only

Tables

Table 1. Patient Baseline Characteristics According to Age and Sex

		Age		Sex				
	<65 Years (<i>n</i> =5889)	65–74 Years (<i>n</i> =5221)	≥75 Years (<i>n</i> =1916)	Male (<i>n</i> =9088)	Premenopausal Female (<i>n</i> =323)	Postmenopausa Female (<i>n</i> =3615)		
Sex, <i>n</i> (%)	Ur				Age, y, mean ± SD)		
Female	1839 (31.2)	1501 (28.7)	598 (31.2)	04.0 + 0.5	454+40	00.0 + 0.0		
Male	4050 (68.8)	3720 (71.3)	1318 (68.8)	64.8 ± 9.5	45.1 ± 4.9	66.3 ± 8.0		
Race, <i>n</i> (%)		102						
Asian	1591 (27.0)	997 (19.1)	306 (16.0)	2136 (23.5)	87 (26.9)	671 (18.6)		
Black/African American	309 (5.2)	160 (3.1)	53 (2.8)	284 (3.1)	37 (11.5)	201 (5.6)		
White	3592 (61.0)	3817 (73.1)	1460 (76.2)	6231 (68.6)	167 (51.7)	2471 (68.4)		
Other ^a	397 (6.7)	247 (4.7)	97 (5.1)	437 (4.8)	32 (9.9)	272 (7.5)		
Systolic blood pressure, mm Hg, mean (SD)	135.6 ± 14.0	137.4 ± 14.2	138.4 ± 14.6	136.8 ± 14.2	133.0 ± 14.0	136.9 ± 14.3		
Diastolic blood pressure, mm Hg, mean (SD)	78.8 ± 9.1	74.9 ± 9.4	72.8 ± 9.8	76.5 ± 9.7	80.1 ± 8.4	75.6 ± 9.5		
Duration of diabetes, years, mean (SD)	13.5 ± 7.6	16.4 ± 8.6	18.6 ± 10.4	15.3 ± 8.5	10.6 ± 7.0	16.0 ± 9.1		
HbA1c, %, mean (SD)	7.9 ± 1.5	7.6 ± 1.3	7.4 ± 1.2	7.6 ± 1.3	8.2 ± 1.7	7.9 ± 1.4		
Serum potassium, mmol/L, mean (SD)	4.4 ± 0.5	4.4 ± 0.4	4.4 ± 0.4	4.3 ± 0.4	4.3 ± 0.4	4.4 ± 0.4		
eGFR, mL/min/1.73 m ² , mean (SD)	64.3 ± 24.0	53.5 ± 18.5	48.1 ± 15.1	57.7 ± 21.2	77.0 ± 28.9	55.6 ± 21.3		
eGFR, mL/min/1.73 m ² , <i>n</i> (%) ^b								

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Age			Sex	
	<65 Years (<i>n</i> =5889)	65–74 Years (<i>n</i> =5221)	≥75 Years (<i>n</i> =1916)	Male (<i>n</i> =9088)	Premenopausal Female (<i>n</i> =323)	Postmenopausa Female (<i>n</i> =3615)
<25	53 (0.9)	72 (1.4)	37 (1.9)	98 (1.1)	2 (0.6)	62 (1.7)
25–<45	1448 (24.6)	1898 (36.4)	886 (46.2)	2871 (31.6)	57 (17.6)	1304 (36.1)
45-<60	1315 (22.3)	1514 (29.0)	605 (31.6)	2468 (27.2)	50 (15.5)	916 (25.3)
≥60	3071 (52.1)	1736 (33.3)	388 (20.3)	3651 (40.2)	214 (66.3)	1330 (36.8)
UACR, mg/g, median (IQR)	650.48 (315.2–1363.5)	438.63 (154.1–1030.7)	332.29 (107.8–830.5)	511.53 (200.9–1130.1)	793.52 (376.6–1547.3)	501.47 (173.6–1149.1)
UACR, mg/g, <i>n</i> (%) ^c		8				
<30	79 (1.3)	103 (2.0)	48 (2.5)	137 (1.5)	3 (0.9)	90 (2.5)
30–<300	1331 (22.6)	1907 (36.5)	861 (44.9)	2881 (31.7)	54 (16.7)	1164 (32.2)
≥300	4475 (76.0)	3210 (61.5)	1007 (52.6)	6068 (66.8)	266 (82.4)	2358 (65.2)
BMI, kg/m², mean (SD)	32.0 ± 6.4	31.1 ± 5.7	29.6 ± 5.0	31.0 ± 5.6	34.1 ± 7.9	32.0 ± 6.6
Current smoker, <i>n</i> (%)	1283 (21.8)	686 (13.1)	124 (6.5)	1730 (19.0)	35 (10.8)	328 (9.1)
History of CV disease, present, <i>n</i> (%)	2188 (37.2)	2667 (51.1)	1080 (56.4)	4374 (48.1)	56 (17.3)	1505 (41.6)
History of heart failure	413 (7.0)	432 (8.3)	162 (8.5)	630 (6.9)	22 (6.8)	355 (9.8)
History of atrial fibrillation/atrial flutter	266 (4.5)	547 (10.5)	293 (15.3)	867 (9.5)	0	239 (6.6)
Baseline medications, n (%) ^d						
RAS inhibitors (ACEis/ARBs)	5876 (99.8)	5213 (99.8)	1914 (99.9)	9069 (99.8)	323 (100.0)	3611 (99.9)
Beta-blockers	2619 (44.5)	2849 (54.6)	1036 (54.1)	4545 (50.0)	111 (34.4)	1848 (51.1)
Diuretics	2790 (47.4)	2813 (53.9)	1107 (57.8)	4706 (51.8)	137 (42.4)	1867 (51.6)
Statins	4033 (68.5)	3920 (75.1)	1446 (75.5)	6696 (73.7)	203 (62.8)	2500 (69.2)
Calcium channel blockers	3127 (53.1)	3052 (58.5)	1179 (61.5)	5208 (57.3)	149 (46.1)	2001 (55.4)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Age		Sex					
	<65 Years (<i>n</i> =5889)	65–74 Years (<i>n</i> =5221)	≥75 Years (<i>n</i> =1916)	Male (<i>n</i> =9088)	Premenopausal Female (<i>n</i> =323)	Postmenopausal Female (<i>n</i> =3615)			
≥1 glucose-lowering medication, <i>n</i> (%) ^d	5779 (98.1)	5111 (97.9)	1830 (95.5)	8860 (97.5)	317 (98.1)	3543 (98.0)			
Insulin	3637 (61.8)	3020 (57.8)	973 (50.8)	5203 (57.3)	193 (59.8)	2234 (61.8)			
GLP-1RA	492 (8.4)	378 (7.2)	74 (3.9)	676 (7.4)	30 (9.3)	238 (6.6)			
SGLT-2i	517 (8.8)	289 (5.5)	71 (3.7)	671 (7.4)	36 (11.1)	170 (4.7)			

ACEi = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; BMI = body mass index; CV = cardiovascular; eGFR = estimated

glomerular filtration rate; GLP-1RA = glucagon-like peptide-1 receptor agonist; HbA1c = glycated hemoglobin; IQR = interquartile range; RAS = renin-

angiotensin system; SD = standard deviation; SGLT-2i = sodium-glucose co-transporter-2 inhibitor; UACR = urine albumin-to-creatinine ratio.

^a Other: included American Indian/Alaska Native, Native Hawaiian/other Pacific, not reported, multiple.

^b Missing (eGFR): <65 years, *n*=2; 65 to 74 years, *n*=1; postmenopausal female, *n*=3.

^c Missing (UACR): <65 years, *n*=4; 65 to 74 years, *n* = 1; male, *n*=2; postmenopausal female, *n*=3.

^d Analysis allowed multiple drug groups for the same drug.

			Ag	ge		Sex						
n (%)	<65 Y	'ears	65–74 Years		≥75 Years		Male		Female (Premenopausal)		Female (Postmenopausal)	
	Finerenone (<i>n</i> =2953)	Placebo (<i>n</i> =2926)	Finerenone (<i>n</i> =2631)	Placebo (<i>n</i> =2578)	Finerenone (<i>n</i> =926)	Placebo (<i>n</i> =985)	Finerenone (<i>n</i> =4476)	Placebo (<i>n</i> =4595)	Finerenone (<i>n</i> =163)	Placebo (<i>n</i> =160)	Finerenone (<i>n</i> =1871)	Placebo (<i>n</i> =1734)
Any AE	2494 (84.5)	2523 (86.2)	2301 (87.5)	2225 (86.3)	807 (87.1)	859 (87.2)	3899 (87.1)	4011 (87.3)	137 (84.0)	138 (86.3)	1566 (83.7)	1458 (84.1)
Related to study drug	478 (16.2)	384 (13.1)	558 (21.2)	337 (13.1)	170 (18.4)	141 (14.3)	884 (19.7)	612 (13.3)	21 (12.9)	20 (12.5)	301 (16.1)	230 (13.3
Leading to discontinuation	128 (4.3)	124 (4.2)	212 (8.1)	153 (5.9)	74 (8.0)	74 (7.5)	313 (7.0)	249 (5.4)	9 (5.5)	7 (4.4)	92 (4.9)	95 (5.5)
Any SAE	856 (29.0)	938 (32.1)	871 (33.1)	876 (34.0)	333 (36.0)	372 (37.8)	1487 (33.2)	1590 (34.6)	33 (20.2)	42 (26.3)	540 (28.9)	554 (31.9
Related to study drug	29 (1.0)	27 (0.9)	39 (1.5)	17 (0.7)	15 (1.6)	17 (1.7)	56 (1.3)	46 (1.0)	0	1 (0.6)	27 (1.4)	14 (0.8)
Leading to discontinuation	41 (1.4)	48 (1.6)	75 (2.9)	71 (2.8)	29 (3.1)	35 (3.6)	115 (2.6)	112 (2.4)	1 (0.6)	2 (1.3)	29 (1.5)	40 (2.3)
Any AE leading to death	43 (1.5)	55 (1.9)	42 (1.6)	62 (2.4)	25 (2.7)	34 (3.5)	73 (1.6)	115 (2.5)	0	3 (1.9)	37 (2.0)	33 (1.9)
AEs of interest					1		1.					
Hypotension	101 (3.4)	70 (2.4)	127 (4.8)	76 (2.9)	54 (5.8)	31 (3.1)	216 (4.8)	131 (2.9)	3 (1.8)	0	63 (3.4)	46 (2.7)
Orthostatic hypotension	18 (0.6)	15 (0.5)	23 (0.9)	15 (0.6)	5 (0.5)	9 (0.9)	34 (0.8)	30 (0.7)	0	2 (1.3)	12 (0.6)	7 (0.4)
Hyperkalemia	360 (12.2)	238 (8.1)	420 (16.0)	158 (6.1)	132 (14.3)	52 (5.3)	647 (14.5)	304 (6.6)	14 (8.6)	16 (10.0)	251 (13.4)	128 (7.4
Leading to permanent discontinuation	31 (1.0)	13 (0.4)	54 (2.1)	19 (0.7)	25 (2.7)	6 (0.6)	83 (1.9)	28 (0.6)	4 (2.5)	1 (0.6)	23 (1.2)	9 (0.5)
Classified as a serious AE	28 (0.9)	8 (0.3)	29 (1.1)	5 (0.2)	12 (1.3)	3 (0.3)	45 (1.0)	9 (0.2)	1 (0.6)	0	23 (1.2)	7 (0.4)
Leading to hospitalization	26 (0.9)	6 (0.2)	25 (1.0)	2 (<0.1)	10 (1.1)	2 (0.2)	38 (0.8)	5 (0.1)	1 (0.6)	0	22 (1.2)	5 (0.3)
Gynecomastia	2 (<0.1)	4 (0.1)	5 (0.2)	3 (0.1)	1 (0.1)	4 (0.4)	8 (0.2)	11 (0.2)	NA	NA	NA	NA

Table 2 Treatment Emergent AEs According to Age and Sex

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Serum potassium	444/2904	233/2871	460/2585	180/2529	171/913	57/970	720/4403	308/4523	16/159	8/154 (5.2)	339/1840	154/1693
>5.5 mmol/L	(15.3)	(8.1)	(17.8)	(7.1)	(18.7)	(5.9)	(16.4)	(6.8)	(10.1)		(18.4)	(9.1)
Serum potassium >6.0 mmol/L	90/2926 (3.1)	44/2896 (1.5)	89/2598 (3.4)	31/2544 (1.2)	32/915 (3.5)	5/973 (0.5)	143/4428 (3.2)	48/4544 (1.1)	4/160 (2.5)	1/156 (0.6)	64/1851 (3.5)	31/1713 (1.8)

AE = adverse event; NA = not applicable; SAE = serious adverse event.

^a The "n" numerator represents the number of patients at risk with ≥1 treatment-emergent laboratory assessment meeting the criterion. The "N" denominator

Jatory Layed threshold. represents all patients at risk for a treatment-emergent laboratory abnormality. Patients had both a baseline and postbaseline treatment-emergent

value while the baseline value did not exceed the displayed threshold.

Figure Legends

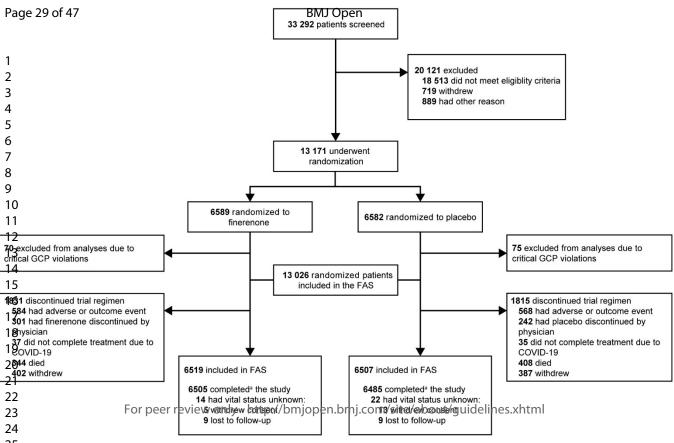
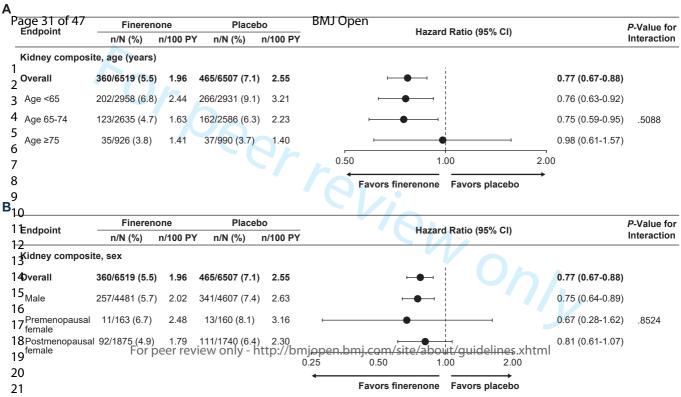
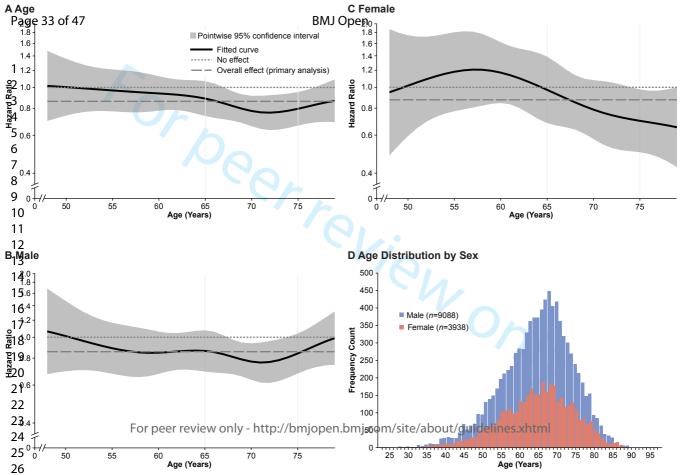
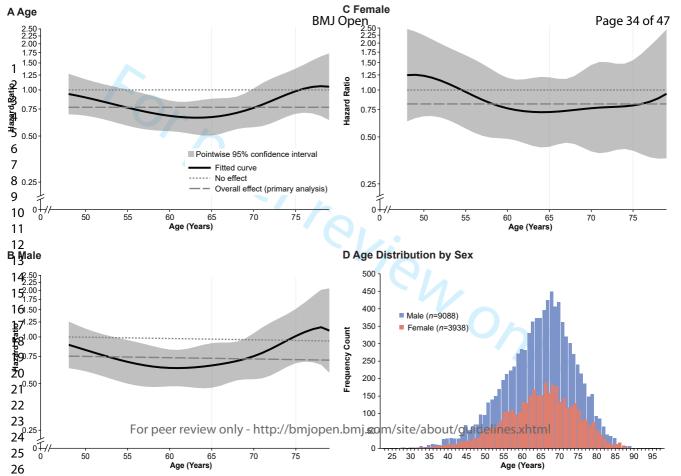

Figure 1. Analysis of CV composite outcome and HHF according to (A) age and (B) sex. CV composite outcome includes CV death, nonfatal myocardial infarction, nonfatal stroke, or HHF. CI = confidence interval; CV = cardiovascular; HHF = hospitalization for heart failure; PY = patientyears.

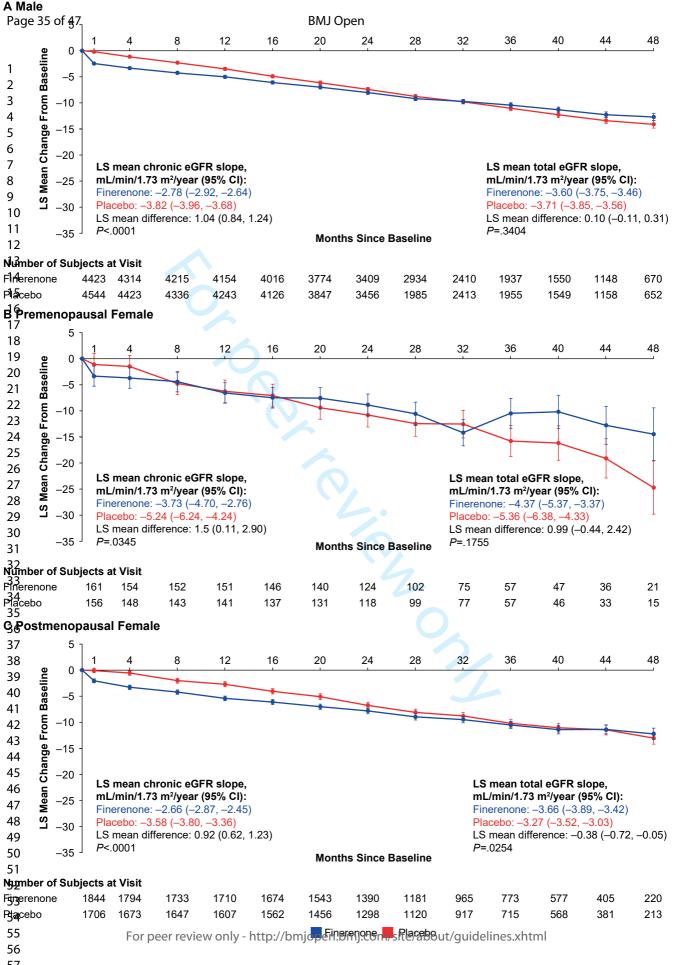
Figure 2. Analysis of kidney composite outcome according to (A) age and (B) sex. Kidney composite outcome includes kidney failure, sustained ≥57% eGFR decline, or renal death. CI = confidence interval; eGFR = estimated glomerular filtration rate; PY = patient-years.

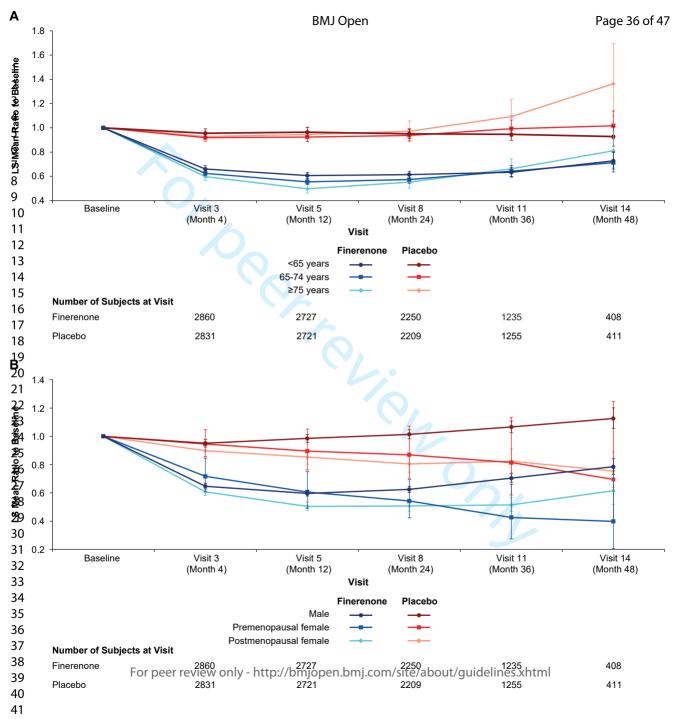

Figure 3. LS mean change in eGFR from baseline, chronic, and total slopes over time by age.


Chronic eGFR slope from month 4 to end-of-study visit.


CI = confidence interval; eGFR = estimated glomerular filtration rate; LS = least-squares




Α							-	
-	Endpoint	Fineren			_{bo} BMJ Ope	n Hazard Ratio (95% CI)	Page	F-value IUI
-	•	()	n/100 PY	n/N (%)	n/100 PY			Interaction
1	CV composite, ag	e (years)						
2	Overall	825/6519 (12.7)	4.34	939/6507 (14.4)	5.01	⊷ 0.86 (0.7	8-0.95)	
3	Age <65	323/2958 (10.9)	3.74	337/2931 (11.5)	3.93	0.94 (0.8	1-1.10)	
4	Age 65-74	339/2635 (12.9)	4.36	396/2586 (15.3)	5.3	0.84 (0.7	3-0.98)	.4198
5	Age ≥75	163/926 (17.6)	6.25	206/990 (20.8)	7.61	0.80 (0.6	5-0.99)	
6	HHF, age (years)							
7 8	Overall	256/6519 (3.9)	1.31	325/6507 (5.0)	1.68	⊷● 0.78 (0.6	6-0.92)	
0 9	Age <65	94/2958 (3.2)	1.06	112/2931 (3.8)	1.27	0.83 (0.6	3-1.10)	
-) Age 65-74	111/2653 (4.2)	1.38	135/2586 (5.2)	1.75	0.83 (0.6	5-1.08)	.6977
1	Age ≥75	51/926 (5.5)	1.91	78/990 (7.9)	2.78	0.66 (0.4	6-0.95)	
12	2				0.25	1.00 2.00		
13						Favors finerenone Favors placebo		
B 4								
1:	⊃ Endpoint	Fineren		Place		Hazard Ratio (95% CI)		P-Value for Interaction
		()	n/100 PY	n/N (%)	n/100 PY			Interaction
	7 CV composite, sez 3	x						
19	Overall	825/6519 (12.7)	4.34	939/6507 (14.4)	5.01	0.86 (0.7	8-0.95)	
20) Male	579/4481 (12.9)	4.39	675/4607 (14.7)	5.08	0.86 (0.7	7-0.96)	
2' 2'	Fremenopausai	11/163 (6.7)	2.29	12/160 (7.5)	2.62	0.89 (0.3	5-2.27)	.9942
23	Postmenopausal female	235/1875 (12.5)	4.38	252/1740 (14.5)	5.03	0.87 (0.7	3-1.05)	
24	1HHF, sex							
2! 26	Overall	256/6519 (3.9)	1.31	325/6507 (5.0)	1.68	⊷ 0.78 (0.6	6-0.92)	
20		163/4481 (3.6)	1.20	244/4607 (5.3)	1.78	⊷●→ 0.66 (0.5	4-0.81)	
28	temale	5/163 (3.1)	1.02	4/160 (2.5)	0.85	• 1.39 (0.3	3-5.93)	.0245
29 30	Postmenopausal	88/ 18 75 pieze)r	renkienwo	nly7/hn/atqo(:4/4b)n		j.com/site/aboutoguidelines.xhtml1.06 (0.7	8-1.44)	
3					(0.20 1.00 5.00		
33	,					Favors finerenone Favors placebo		



Cardiorenal Outcomes by Age and Sex in Patients Treated With Finerenone:

FIDELITY Post Hoc Analysis

Contents

Cardiorenal Outcomes by Age and Sex in Patients Treated With Finerenone: FIDELITY Post Hoc Analysis	1
Supplementary Tables and Figures	2
eTable 1. Patient Baseline Characteristics According to Age and Sex Stratified by Treatment Group	2
eFigure 1. Hazard ratio (finerenone vs. placebo) as a function of age modeled with cubic splines for CV composite outcome by age (A), spline for hazard ratio of CV composite outcomes by sex (B, C) and age distribution by sex (D)	
eFigure 2. Hazard ratio (finerenone vs. placebo) as a function of age modeled with cubic splines for kidney composite outcome by age (A), spline for hazard ratio of kidney composite outcomes by sex (B, C) and age distribution by sex (D).	6
eFigure 3. LS mean change in eGFR from baseline, chronic, and total slopes over time by sex eFigure 4. LS mean ratio to baseline UACR over time by age and sex	
eFigure 5. FIDELITY CONSORT diagram.	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Tables and Figures

eTable 1. Patient Baseline Characteristics According to Age and Sex Stratified by Treatment Group

			Age			Sex						
n (%)	<65 Y	ears	65-74 Y	ears	≥75 Years		Male		Female (Premenopausal)		Female (Postmenopausal)	
	Finerenone (<i>n</i> =2958)	Placebo (<i>n</i> =2931)	Finerenone (<i>n</i> =2635)	Placebo (<i>n</i> =2586)	Finerenone (<i>n</i> =926)	Placebo (<i>n</i> =990)	Finerenone (<i>n</i> =4481)	Placebo (<i>n</i> =4607)	Finerenone (<i>n</i> =163)	Placebo (<i>n</i> =160)	Finerenone (<i>n</i> =1875)	Placebo (<i>n</i> =1740
Sex, <i>n</i> (%)			NO						Age, y, me	ean ± SD		
Female	959 (32.4)	880 (30.0)	772 (29.3)	729 (28.2)	307 (33.2)	291 (29.4)	64.8 ± 9.3	64.9 ±	45 2 4 4 4	44.9 ±	66.2 + 8.0	66419
Male	1999 (67.6)	2051 (70.0)	1863 (70.7)	1857 (71.8)	619 (66.8)	699 (70.6)	04.0 ± 9.3	9.6	45.3 ± 4.4	5.4	66.2 ± 8.0	66.4 ± 8.0
Race, <i>n</i> (%)												
Asian	772 (26.1)	819 (27.9)	518 (19.7)	479 (18.5)	142 (15.3)	164 (16.6)	1032 (23.0)	1104 (24.0)	45 (27.6)	42 (26.3)	355 (18.9)	316 (18.
Black/African American	158 (5.3)	151 (5.2)	75 (2.8)	85 (3.3)	20 (2.2)	33 (3.3)	137 (3.1)	147 (3.2)	17 (10.4)	20 (12.5)	99 (5.3)	102 (5.9
White	1827 (61.8)	1765 (60.2)	1908 (72.4)	1909 (73.8)	714 (77.1)	746 (75.4)	3099 (69.2)	3132 (68.0)	84 (51.5)	83 (51.9)	1266 (67.5)	1205 (69
Other ^a	201 (6.8)	196 (6.7)	134 (5.1)	113 (4.4)	50 (5.4)	47 (4.7)	213 (4.8)	224 (4.9)	17 (10.4)	15 (9.4)	155 (8.3)	117 (6.7
Systolic blood pressure, mm Hg, mean (SD)	135.7 ± 13.9	135.5 ± 14.1	137.4 ± 14.2	137.5 ± 14.2	138.4 ± 14.6	138.5 ± 14.6	136.9 ± 14.1	136.7 ± 14.3	131.6 ± 13.1	134.4 ± 14.7	136.8 ± 14.4	136.9 ± 14.0
Diastolic blood pressure, mm Hg, mean (SD)	78.7 ± 9.2	79.0 ± 8.9	74.8 ± 9.4	74.9 ± 9.4	73.2 ± 9.8	72.4 ± 9.8	76.6 ± 9.7	76.5 ± 9.7	78.7 ± 8.2	81.6 ± 8.4	75.6 ± 9.6	75.6 ± 9
Duration of diabetes, y, mean (SD)	13.6 ± 7.6	13.3 ± 7.7	16.4 ± 8.7	16.5 ± 8.5	18.7 ± 10.7	18.5 ± 10.2	15.4 ± 8.6	15.3 ± 8.4	11.0 ± 7.4	10.1 ± 6.5	15.9 ± 9.0	16.0 ± 9
HbA1c, %, mean (SD)	7.9 ± 1.5	7.9 ± 1.5	7.6 ± 1.3	7.6 ± 1.3	7.5 ± 1.2	7.4 ± 1.2	7.6 ± 1.3	7.6 ± 1.3	8.1 ± 1.7	8.3 ± 1.6	7.9 ± 1.4	7.9 ± 1
Serum potassium, nmol/L, mean (SD)	4.3 ± 0.4	4.4 ± 0.5	4.4 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	4.3 ± 0.4	4.3 ± 0.5	4.3 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	4.4 ± 0

			Age						Se	X		
n (%)	<65 Y	ears	65-74 Y	ears	≥75 Years		Male		Female (Premenopausal)		Female (Postmenopausal)	
	Finerenone (<i>n</i> =2958)	Placebo (<i>n</i> =2931)	Finerenone (<i>n</i> =2635)	Placebo (<i>n</i> =2586)	Finerenone (<i>n</i> =926)	Placebo (<i>n</i> =990)	Finerenone (<i>n</i> =4481)	Placebo (<i>n</i> =4607)	Finerenone (<i>n</i> =163)	Placebo (<i>n</i> =160)	Finerenone (<i>n</i> =1875)	Placebo (<i>n</i> =1740
eGFR, mL/min/1.73 m², mean (SD)	63.9 ± 23.9	64.6 ± 24.0	53.7 ± 18.4	53.3 ± 18.6	48.0 ± 15.5	48.3 ± 14.8	57.8 ± 21.0	57.7 ± 21.4	76.3 ± 28.7	77.5 ± 29.1	55.3 ± 21.5	55.8 ± 21
eGFR, mL/min/1.73 m², <i>n</i> (%) ^b												
<25	24 (0.8)	29 (1.0)	35 (1.3)	37 (1.4)	22 (2.4)	15 (1.5)	44 (1.0)	54 (1.2)	0	2 (1.3)	37 (2.0)	25 (1.4)
25-<45	744 (25.2)	704 (24.0)	937 (35.6)	961 (37.2)	436 (47.1)	450 (45.5)	1392 (31.1)	1479 (32.1)	31 (19.0)	26 (16.3)	694 (37.0)	610 (35. ⁻
45-<60	666 (22.5)	649 (22.1)	775 (29.4)	739 (28.6)	276 (29.8)	329 (33.2)	1240 (27.7)	1228 (26.7)	26 (16.0)	24 (15.0)	451 (24.1)	465 (26.7
6	1523 (51.5)	1548 (52.8)	888 (33.7)	848 (32.8)	192 (20.7)	196 (19.8)	1805 (40.3)	1846 (40.1)	106 (65.0)	108 (67.5)	692 (36.9)	638 (36.
UACR, mg/g, median (IQR)	649.2 (308.0- 1331.8)	651.4 (322.5- 1382.2)	433.8 (150.7- 1025.7)	441.3 (157.8- 1032.8)	325.6 (107.00- 802.7)	340.5 (109.8- 871.7)	514.5 (205.3- 1116.5)	509.2 (195.4- 1143.0)	733.0 (336.3- 1522.7)	868.4 (398.5- 1604.2)	496.4 (169.9- 1124.4)	509.1 (185.0- 1174.5)
UACR, mg/g, <i>n</i> (%) ^c												
<30	39 (1.3)	40 (1.4)	53 (2.0)	50 (1.9)	28 (3.0)	20 (2.0)	69 (1.5)	68 (1.5)	2 (1.2)	1 (0.6)	49 (2.6)	41 (2.4)
30-<300	686 (23.2)	645 (22.0)	971 (36.9)	936 (36.2)	419 (45.2)	442 (44.6)	1422 (31.7)	1459 (31.7)	34 (20.9)	20 (12.5)	620 (33.1)	544 (31.3
6	2231 (75.4)	2244 (76.6)	1611 (61.1)	1599 (61.8)	479 (51.7)	528 (53.3)	2989 (66.7)	3079 (66.8)	127 (77.9)	139 (86.9)	1205 (64.3)	1153 (66.
BMI, kg/m², mean (SD)	32.1 ± 6.5	32.0 ± 6.3	31.1 ± 5.7	31.1 ± 5.7	29.5 ± 4.8	29.6 ± 5.1	30.9 ± 5.6	30.9 ± 5.6	34.0 ± 7.9	34.3 ± 7.9	32.0 ± 6.7	32.1 ± 6.
Current smoker, <i>n</i> (%)	657 (22.2)	626 (21.4)	351 (13.3)	335 (13.0)	57 (6.2)	67 (6.8)	874 (19.5)	856 (18.6)	17 (10.4)	18 (11.3)	174 (9.3)	154 (8.9
History of CV disease, present, <i>n</i> (%)	1127 (38.1)	1061 (36.2)	1330 (50.5)	1337 (51.7)	522 (56.4)	558 (56.4)	2152 (48.0)	2222 (48.2)	36 (22.1)	20 (12.5)	791 (42.2)	714 (41.0
History of heart failure	211 (7.1)	202 (6.9)	192 (7.3)	240 (9.3)	82 (8.9)	80 (8.1)	302 (6.7)	328 (7.1)	11 (6.7)	11 (6.9)	172 (9.2)	183 (10.

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Sex										
n (%)	<65 Y	ears	65-74 Y	ears	≥75 Years		Male		Female (Premenopausal)		Female (Postmenopausal)	
	Finerenone (<i>n</i> =2958)	Placebo (<i>n</i> =2931)	Finerenone (<i>n</i> =2635)	Placebo (<i>n</i> =2586)	Finerenone (<i>n</i> =926)	Placebo (<i>n</i> =990)	Finerenone (<i>n</i> =4481)	Placebo (<i>n</i> =4607)	Finerenone (<i>n</i> =163)	Placebo (<i>n</i> =160)	Finerenone (<i>n</i> =1875)	Placebo (<i>n</i> =1740)
History of atrial ïbrillation/atrial flutter	144 (4.9)	122 (4.2)	280 (10.6)	267 (10.3)	144 (15.6)	149 (15.1)	439 (9.8)	428 (9.3)	0	0	129 (6.9)	110 (6.3)
Baseline medications, <i>n</i> %) ^d												
RAS inhibitors (ACEis/ARBs)	2951 (99.8)	2925 (99.8)	2631 (99.8)	2582 (99.8)	926 (100.0)	988 (99.8)	4473 (99.8)	4596 (99.8)	163 (100.0)	160 (100.0)	1872 (99.8)	1739 (>99.9)
Beta-blockers	1311 (44.3)	1308 (44.6)	1419 (53.9)	1430 (55.3)	506 (54.6)	530 (53.5)	2237 (49.9)	2308 (50.1)	57 (35.0)	54 (33.8)	942 (50.2)	906 (52.2
Diuretics	1378 (46.6)	1412 (48.2)	1412 (53.6)	1401 (54.2)	535 (57.8)	572 (57.8)	2320 (51.8)	2386 (51.8)	67 (41.1)	70 (43.8)	938 (50.0)	929 (53.4
Statins	1993 (67.4)	2040 (69.6)	1975 (75.0)	1945 (75.2)	689 (74.4)	757 (76.5)	3291 (73.4)	3405 (73.9)	93 (57.1)	110 (68.8)	1273 (67.9)	1227 (70
Calcium channel blockers	1564 (52.9)	1563 (53.3)	1544 (58.6)	1508 (58.3)	556 (60.0)	623 (62.9)	2554 (57.0)	2654 (57.6)	74 (45.4%)	75 (46.9)	1036 (55.3)	965 (55.
6 glucose-lowering medication, <i>n</i> (%) ^d	2898 (98.0)	2881 (98.3)	2574 (97.7)	2537 (98.1)	882 (95.2)	948 (95.8)	4361 (97.3)	4499 (97.7)	161 (98.8)	156 (97.5)	1832 (97.7)	1711 (98
Insulin	1848 (62.5)	1789 (61.0)	1539 (58.4)	1481 (57.3)	479 (51.7)	494 (49.9)	2598 (58.0)	2605 (56.5)	94 (57.7)	99 (61.9)	1174 (62.6)	1060 (60
GLP-1RA	273 (9.2)	219 (7.5)	190 (7.2)	188 (7.3)	34 (3.7)	40 (4.0)	359 (8.0)	317 (6.9)	12 (7.4)	18 (11.3)	126 (6.7)	112 (6.
SGLT-2i	251 (8.5)	266 (9.1)	149 (5.7)	140 (5.4)	38 (4.1)	33 (3.3)	331 (7.4)	340 (7.4)	19 (11.7)	17 (10.6)	88 (4.7)	82 (4.7

ACEi = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; BMI = body mass index; CV = cardiovascular; eGFR = estimated glomerular filtration rate; GLP-1RA = glucagon-like peptide-1 receptor agonist; HbA1c = glycated hemoglobin; IQR = interquartile range; RAS = renin–angiotensin system; SD = standard deviation; SGLT-2i = sodium-glucose co-transporter-2 inhibitor; UACR = urine albumin-to-creatinine ratio.

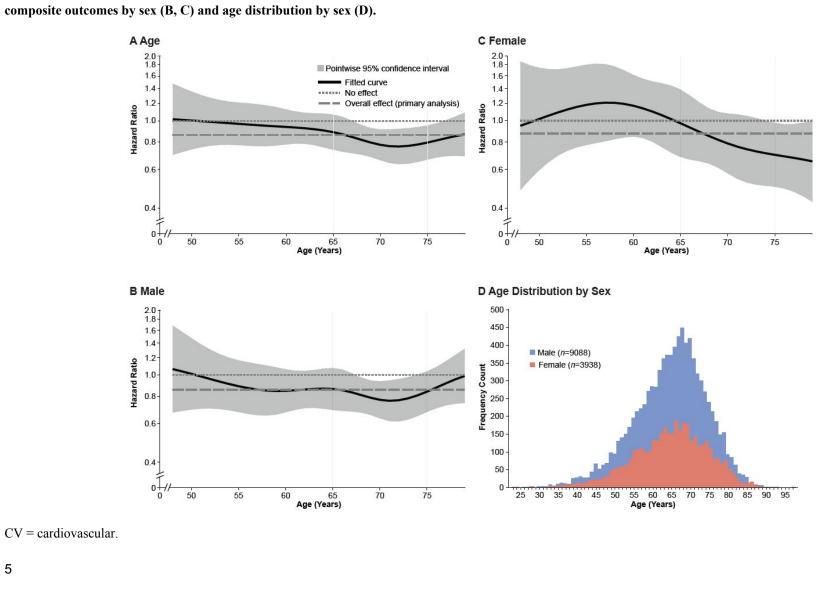
Values are based on available data.

^a Other: included American Indian/Alaska Native, Native Hawaiian/other Pacific, not reported, multiple.

^b Missing (eGFR): <65 years, *n*=2; 65 to 74 years, *n*=1; postmenopausal female, *n*=3.

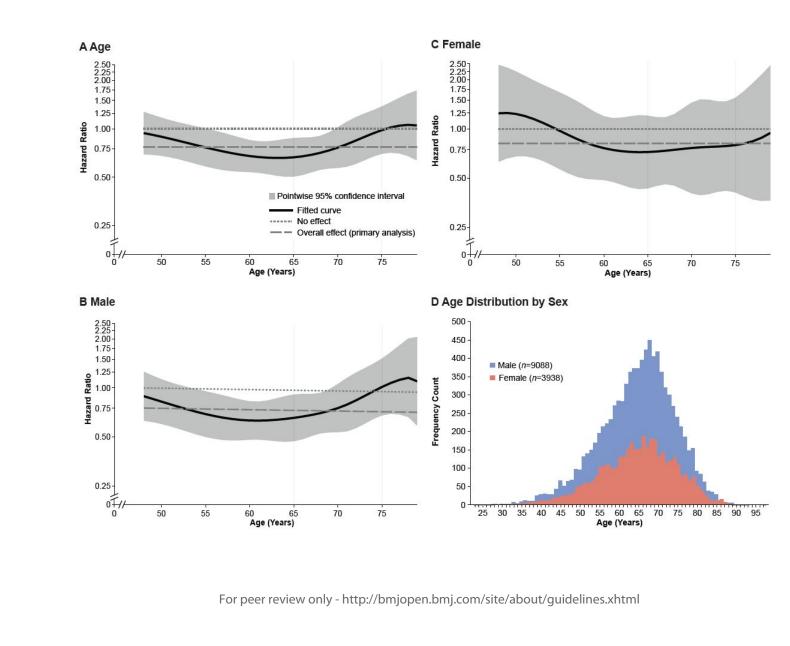
^c Missing (UACR): <65 years, *n*=4; 65 to 74 years, *n*=1; male, *n*=2; postmenopausal female, *n*=3.

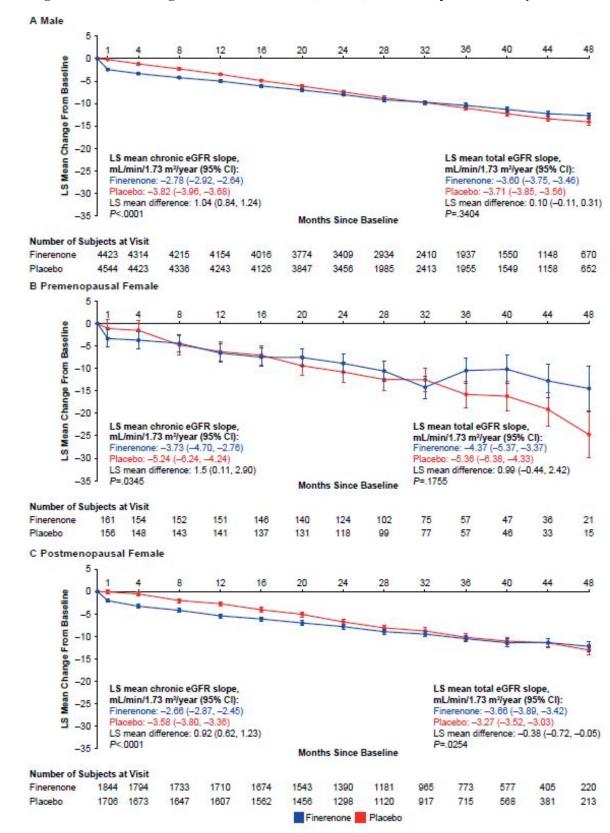
^d Analysis allowed multiple drug groups for the same drug.



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

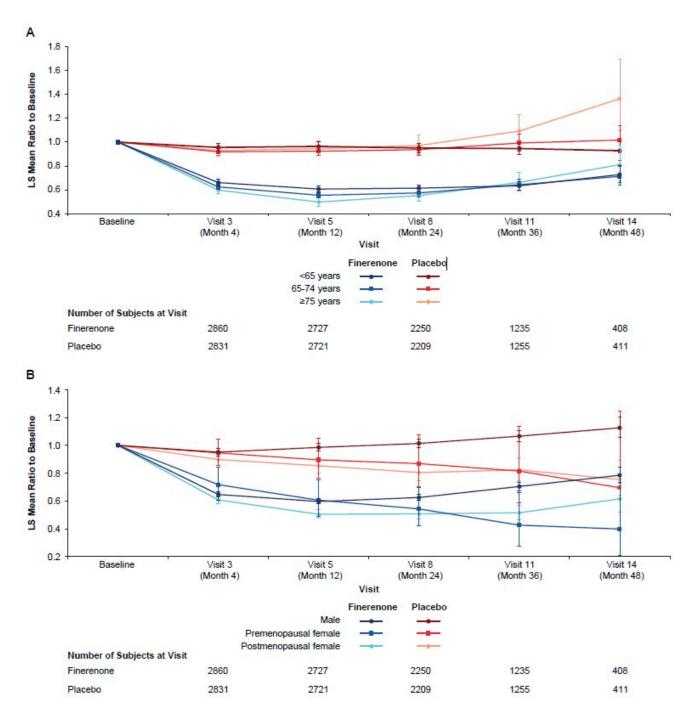
Page 41 of 47


BMJ Open

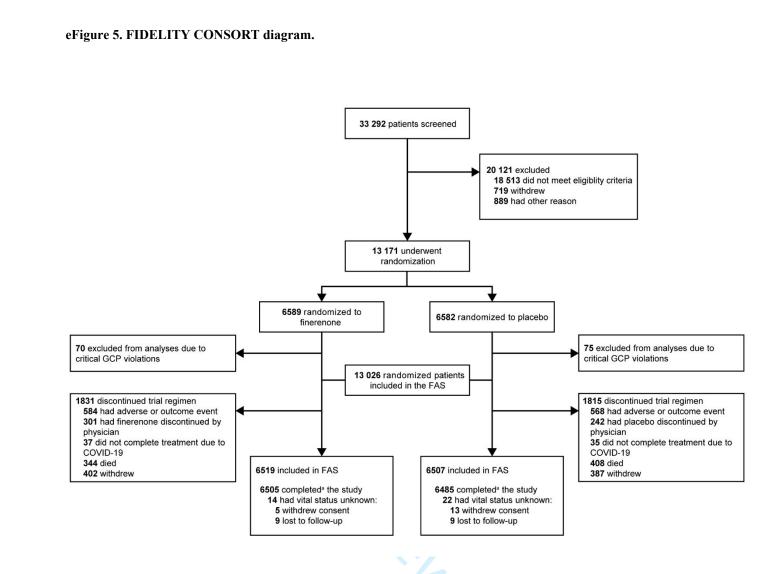

eFigure 1. Hazard ratio (finerenone vs. placebo) as a function of age modeled with cubic splines for CV composite outcome by age (A), spline for hazard ratio of CV

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

eFigure 2. Hazard ratio (finerenone vs. placebo) as a function of age modeled with cubic splines for kidney composite outcome by age (A), spline for hazard ratio of kidney composite outcomes by sex (B, C) and age distribution by sex (D).



eFigure 3. LS mean change in eGFR from baseline, chronic, and total slopes over time by sex.


Chronic eGFR slope from month 4 to end-of-study visit.

CI = confidence interval; eGFR = estimated glomerular filtration rate; LS = least-squares.

eFigure 4. LS mean ratio to baseline UACR over time by age and sex.

LS = least-squares; UACR = urine albumin-to-creatinine ratio.

^a The patient was considered as having completed the study if there was a contact with the patient after the endof-study notification or if the patient died.

FAS, full analysis set; GCP, Good Clinical Practice.

CONSORT 2010 checklist of information to include when reporting a randomised trial*

Section/Topic	ltem No	Checklist item	Reported on page No
Title and abstract			
	1a	Identification as a randomised trial in the title	1 —
			Secondary
			analysis of a
			previously
			reported RC
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts)	3-4
Introduction			
Background and	2a	Scientific background and explanation of rationale	5
objectives	2b	Specific objectives or hypotheses	6
-			
Methods			
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	6-7
	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons	6
Participants	4a	Eligibility criteria for participants	6
	4b	Settings and locations where the data were collected	Reported
			previously
Interventions	5	The interventions for each group with sufficient details to allow replication, including how and when they were actually administered	7
Outcomes	6a	Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed	7
	6b	Any changes to trial outcomes after the trial commenced, with reasons	N/A
Sample size	7a	How sample size was determined	Reported
			previously
	7b	When applicable, explanation of any interim analyses and stopping guidelines	Reported
			previously
Randomisation:			
Sequence	8a	Method used to generate the random allocation sequence	Reported
CONSORT 2010 checklist			Pa
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Fe

Page 47 of 47

45 46 BMJ Open

generation			previously
	8b	Type of randomisation; details of any restriction (such as blocking and block size)	Reported
			previously
Allocation	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers),	Reported
concealment mechanism		describing any steps taken to conceal the sequence until interventions were assigned	previously
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who assigned participants to	Reported
		interventions	previously
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those	Reported
		assessing outcomes) and how	previously
	11b	If relevant, description of the similarity of interventions	Reported
			previously
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	7-8
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses	7-8
Results			
Participant flow (a	13a	For each group, the numbers of participants who were randomly assigned, received intended treatment, and	8-9; Table 1
diagram is strongly	100	were analysed for the primary outcome	
recommended)	13b	For each group, losses and exclusions after randomisation, together with reasons	eFigure 5
Recruitment	14a	Dates defining the periods of recruitment and follow-up	Reported
	i ia	Batter demining the periode of residuation and follow up	previously
	14b	Why the trial ended or was stopped	Reported
			previously
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	Table 1
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was	8-9; Table 1
	10	by original assigned groups	
Outcomes and	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its	9-12
estimation		precision (such as 95% confidence interval)	Figures 1-2
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended	N/A
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing	eFigures 1-4
·		pre-specified from exploratory	er igeneer i
Harms	19	All important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	Table 2
Discussion			
CONSORT 2010 checklist		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Page

Limitations	20	Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses	14
Generalisability	21	Generalisability (external validity, applicability) of the trial findings	Reported
			previously
Interpretation	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	12-15
Other information			
Registration	23	Registration number and name of trial registry	6
Protocol	24	Where the full trial protocol can be accessed, if available	Primary
			publications
			with full
			protocols are
			cited (6)
	25	Sources of funding and other support (such as supply of drugs), role of funders	16-17

Additional extensions are forthcoming: for those and for up to date references relevant to this checklist, see <u>www.consort-statement.org</u>.

CONSORT 2010 checklist

BMJ Open

Finerenone Cardiovascular and Kidney Outcomes by Age and Sex: FIDELITY Post Hoc Analysis of Two Phase 3, Multicenter, Double-Blind Trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-076444.R1
Article Type:	Original research
Date Submitted by the Author:	05-Jan-2024
Complete List of Authors:	Bansal, Shweta ; University of Texas Health San Antonio, Department of Medicine Canziani, M. E. F.; Univ Fed Sao Paulo Birne, Rita; Centro Hospitalar Lisboa Ocidental, Department of Nephrology; University of Lisbon, Nova Medical School Anker, Stefan; Charité Universitätsmedizin, Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT) Bakris, George; University of Chicago, Hypertension Center Filippatos, Gerasimos; National and Kapodistrian University of Athens Rossing, Peter; Steno Diabetes Center AS; University of Copenhagen, Department of Clinical Medicine Ruilope, Luis M ; Institute of Research imas12, Cardiorenal Translational Laboratory and Hypertension Unit; Hospital Universitario 12 de Octubre, CIBER-CV Farjat, Alfredo; Bayer plc Kolkhof, Peter; Cardiovascular Precision Medicines Bayer AG Lage, Andrea; Bayer SA Brinker, Meike; Cardiology and Nephrology Clinical Development Pitt, B; University of Michigan
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Risk Factors, Diabetic nephropathy & vascular disease < DIABETES & ENDOCRINOLOGY, DIABETES & ENDOCRINOLOGY, Cardiovascular Disease

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

4 5 6	1	Finerenone Cardiovascular and Kidney Outcomes by Age
0 7 8 9	2	and Sex: FIDELITY Post Hoc Analysis of Two Phase 3,
9 10 11 12	3	Multicenter, Double-Blind Trials
13 14	4	Author(s)
15 16	5	Shweta Bansal, MD, ¹ Maria E.F. Canziani, MD, ² Rita Birne, MD, ^{3,4} Stefan D. Anker, MD,
17 18 19	6	PhD, ⁵ George L. Bakris, MD, ⁶ Gerasimos Filippatos, MD, ⁷ Peter Rossing, MD, DMSc, ^{8,9} Luis
19 20 21	7	M. Ruilope, MD, ^{10–12} Alfredo E. Farjat, PhD, ¹³ Peter Kolkhof, PhD, ¹⁴ Andrea Lage, MD, ¹⁵
22 23	8	Meike Brinker, MD, ¹⁶ Bertram Pitt, MD ¹⁷
24 25	9	
26 27	10	Institution(s)
28 29	11	¹ Division of Nephrology, Department of Medicine, University of Texas Health San Antonio,
30 31	12	San Antonio, Texas, USA
32 33	13	² Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
34 35	14	³ Department of Nephrology, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
36 37	15	⁴ Nova Medical School, University of Lisbon, Lisbon, Portugal
38 39 40	16	⁵ Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center
41 42	17	for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK)
43 44	18	partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
45 46	19	⁶ Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
47 48	20	⁷ National and Kapodistrian University of Athens, School of Medicine, Department of
49 50	21	Cardiology, Attikon University Hospital, Athens, Greece
51 52	22	⁸ Steno Diabetes Center Copenhagen, Gentofte, Denmark
53 54	23	⁹ Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
55 56	24	¹⁰ Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research imas12,
57 58 59	25	Madrid, Spain
60	26	¹¹ CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain 1

1 2		
2 3 4	27	¹² Faculty of Sport Sciences, European University of Madrid, Madrid, Spain
5 6	28	¹³ Research and Development, Clinical Data Sciences and Analytics, Bayer PLC, Reading,
7 8 0	29	UK
9 10	30	¹⁴ Research and Early Development, Cardiovascular Precision Medicines, Bayer AG,
11 12	31	Wuppertal, Germany
13 14	32	¹⁵ Cardiology and Nephrology Clinical Development, Bayer SA, São Paulo, Brazil
15 16	33	¹⁶ Cardiology and Nephrology Clinical Development, Bayer AG, Wuppertal, Germany
17 18 19	34	¹⁷ Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan,
20 21	35	USA
22 23	36	
24 25	37	Contact information for corresponding author:
26 27	38	Name: Shweta Bansal, MD, FASN
28 29 30 31	39	Address: Department of Medicine, Division of Nephrology, Joe R. & Teresa Lozano Long
	40	School of Medicine, UT Health, San Antonio, TX, USA
32 33	41	7703 Floyd Curl Drive, MSC 7882
34 35	42	San Antonio, TX-78229, USA
36 37	43	Phone no: 210-422-0438
38 39 40	44	Fax no: 210-567-4712
41 42	45	Email: bansals3@uthscsa.edu
43 44	46	Email: bansals3@uthscsa.edu
45 46	47	Journal: BMJ Open
47 48	48	Running head: Finerenone: Cardiovascular and Kidney Outcomes by Age and Sex
49 50	49	Key words: chronic kidney disease, type 2 diabetes, cardiovascular, finerenone, risk factors
51 52	50	Word count: 3050 of 4000
53 54	51	No. of figures and tables: 4 of 5 tables/figures
55 56 57 58 59 60	52	No. of references: 45

2		
3 4	53	ABSTRACT
5 6	54	Objectives: To evaluate the efficacy and safety of finerenone, a selective, nonsteroidal
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	55	mineralocorticoid receptor antagonist, on cardiovascular and kidney outcomes by age and/or
	56	Sex.
	57	Design: FIDELITY post hoc analysis; 3 years median follow-up.
	58	Setting: FIDELITY, a prespecified analysis of the multicenter, double-blind FIDELIO-DKD
	59	and FIGARO-DKD trials.
	60	Participants: Adults with type 2 diabetes and chronic kidney disease receiving optimized
	61	renin–angiotensin system inhibitor treatment (N=13 026 patients).
22 23	62	Interventions: Randomized 1:1 to finerenone or placebo.
24 25	63	Primary and secondary outcome measures: Cardiovascular (cardiovascular death,
26 27 28 29 30 31	64	nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure [HHF]) and
	65	kidney (kidney failure, sustained ≥57% estimated glomerular filtration rate decline, or renal
	66	death) composite outcomes.
32 33 34	67	Results: Mean age was 64.8 years; 45.2%, 40.1%, and 14.7% were aged <65, 65–74, and
34 35 36	68	≥75 years, respectively; 69.8% were male. Cardiovascular benefits of finerenone versus
37 38	69	placebo were consistent across age (hazard ratio 0.94 [<65 years], 0.84 [65–74 years], 0.80
39 40	70	[≥75 years]; <i>P</i> _{interaction} =.42) and sex categories (hazard ratio 0.86 [male], 0.89 [premenopausal
41 42	71	female], 0.87 [postmenopausal female]; <i>P_{interaction}=.</i> 99); effects on HHF reduction were not
43 44	72	modified by age ($P_{\text{interaction}}$ =.70) but appeared more pronounced in males ($P_{\text{interaction}}$ =.02).
45 46	73	Kidney events were reduced with finerenone versus placebo in patients aged <65 and 65–74
47 48	74	but not \geq 75; no heterogeneity in treatment effect was observed ($P_{\text{interaction}}$ =.51). In sex
49 50	75	subgroups, finerenone consistently reduced kidney events (<i>P</i> _{interaction} =.85). Finerenone
51 52 53	76	reduced albuminuria and estimated glomerular filtration rate decline regardless of age and
55 55	77	sex. Hyperkalemia increased with finerenone, but discontinuation rates were <3% across
55 56 57	78	subgroups. Gynecomastia in males was uncommon across age subgroups and identical
58 59 60	79	between treatment groups.

Page 5 of 49

2 3	80	Conclusions: Finerenone improved cardiovascular and kidney composite outcomes with no						
4 5 6	81	significant heterogeneity between age and sex subgroups; however, the effect on HHF						
7 8	82	appeared more pronounced in males. Finerenone demonstrated a similar safety profile						
9 10	83	across age and sex subgroups.						
11 12	84	Registration: FIDELIO-DKD (NCT02540993); FIGARO-DKD (NCT02545049)						
13 14	85							
15 16	86	Abstract word count: 300 of 300						
17 18 19 20	87	STRENGTHS AND LIMITATIONS OF THIS STUDY						
21 22	88	An advantage of this study was the use of combined individual-level data from the						
23 24	89	FIDELIO-DKD and FIGARO-DKD phase 3 clinical trials, resulting in a large number of						
25 26	90	patients included in the full analysis set						
27 28	91	• This study did not use predefined age categories, as it was a post hoc analysis, which						
29 30	92	may have resulted in some of the tests performed being underpowered						
31 32 33	93	• Limitations present in FIDELITY are present in this analysis, such as the small proportion						
33 34 35	94	of Black patients and exclusion of patients with nonalbuminuric CKD						
36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60	95							

96 INTRODUCTION

In patients with diabetes, the risk of cardiovascular (CV) disease and chronic kidney disease
(CKD) increases with age.[1] Likewise, vascular complications are affected by sex and are
increased in females more than males in patients with diabetes.[2]

Among individuals aged 50-75 years without baseline diabetes, CKD, or CV disease, males have a steeper decline in glomerular filtration rate (GFR) than females.[3] However, reported effects of sex on risk of incidental and progressive CKD in patients with type 2 diabetes (T2D) have been inconsistent.[4-6] In trials including patients with CKD, female representation varies (25-40%),[7-11] whereas in real-world studies, females make up over

106 half of patients.[12,13]

27 107

Overactivation of the mineralocorticoid receptor (MR) is associated with CV and kidney diseases.[14,15] In epithelial cells, the 11 β -hydroxysteroid dehydrogenase type 2 (11 β -HSD2) enzyme prevents inappropriate MR activation by cortisol.[16-18] The activity of 11β-HSD2 decreases with age, resulting in MR overactivation in the elderly despite low circulating aldosterone levels. [16-18] Sex also influences 11β-HSD2 activity, particularly in patients with hypertension, where 11β-HSD2 activity is reduced in males versus females.[16] The MR is also expressed in nonepithelial cells, including endothelial cells, vascular smooth muscle cells, adipocytes, and immune cells.[17] In many of these, the MR may be activated by cortisol because of a lack of protection by 11β-HSD2.[19,20]

Despite management with recommended treatments for CKD in T2D, 10–13% of patients experience CKD progression or kidney failure and are at high risk of CV events, including CV death within 2–3 years following treatment initiation.[10,21,22] Finerenone, a selective, nonsteroidal MR antagonist (MRA), reduced the risk of CKD progression and CV outcomes compared with placebo in patients with CKD and T2D in FIDELITY (The FInerenone in

BMJ Open

chronic kiDney diseasE and type 2 diabetes: Combined FIDELIO-DKD and FIGARO-DKD Trial programme analysis), a prespecified pooled analysis of the FIDELIO-DKD (FInerenone in reducing kiDnEy faiLure and dlsease progression in Diabetic Kidney Disease; NCT02540993) and FIGARO-DKD (FInerenone in reducinG cArdiovascular moRtality and mOrbidity in Diabetic Kidney Disease; NCT02545049) phase 3 trials.[21] However, the influence of age and sex on outcomes with finerenone is unknown. This post hoc analysis evaluated whether the cardiovascular and kidney benefits and safety profile of finerenone observed in FIDELITY are consistent in patients with CKD and T2D across ages and in both sexes.

132 METHODS

133 Study design and patients

FIDELITY combined individual patient-level data from the FIDELIO-DKD and FIGARO-DKD phase 3 clinical trials. The study design, procedures, and outcomes for the trials have been previously published.[23-25] The FIDELIO-DKD and FIGARO-DKD trials were conducted in accordance with the principles of the Declaration of Helsinki. Protocol approvals were obtained from local regulatory authorities and ethics committees. Written informed consent was provided by all participants. These studies were reported following the Consolidated Standards of Reporting Trials (CONSORT) reporting guideline. Eligible patients were aged ≥18 years with CKD and T2D, receiving maximum tolerated renin-angiotensin system inhibitor, and with serum potassium levels <4.8 mmol/L at screening. Patients had either a urine albumin-to-creatinine ratio (UACR) \geq 30–<300 mg/g and an estimated GFR (eGFR) \geq 25– \leq 90 mL/min/1.73 m², or UACR \geq 300– \leq 5000 mg/g and eGFR \geq 25 mL/min/1.73 m². Patients with symptomatic heart failure (HF) with reduced ejection fraction were excluded because this implies an indication for a steroidal MRA.

1 2		
3 4	149	Standard-of-care therapy with a renin-angiotensin system inhibitor was optimized during the
5 6	150	run-in period. Patients were randomly assigned (1:1) to receive finerenone at titrated doses
7 8 9	151	(10 or 20 mg) once-daily oral treatment or matching placebo.
10 11	152	Key outcomes
12 13 14	153	Efficacy outcomes included a CV composite outcome of CV death, nonfatal myocardial
15 16	154	infarction, nonfatal stroke, or hospitalization for HF (HHF), and a kidney composite outcome
17 18	155	of kidney failure, sustained ≥57% eGFR decline, or renal death. Additional outcomes
19 20	156	included HHF and change in UACR and eGFR over time.
21 22	157	
23 24	158	Safety outcomes included incidence of investigator-reported adverse events (AEs), including
25 26 27 28 29 30	159	those leading to treatment discontinuation, central laboratory assessment of serum
	160	potassium levels >5.5 and >6.0 mmol/L, and other safety events of interest, such as
	161	hypotension, hyperkalemia, and gynecomastia in males.
31 32 33	162	
33 34 35	163	Outcomes were analyzed according to patient age at baseline (<65, 65–75, ≥75 years) and
36 37	164	sex. Females were categorized as either pre- or postmenopausal if they were aged <51.4 or
38 39	165	≥51.4 years at baseline, respectively (based on the median age of menopause onset from
40 41	166	the Massachusetts Women's Health Study).[26]
42 43 44	167	Statistical analysis
45 46 47	168	Statistical analyses were performed as described in FIDELITY.[23] The full analysis set
47 48 49	169	comprised all randomized patients (except those with critical Good Clinical Practice
50 51	170	violations, who were prospectively excluded). Safety analyses were performed in the safety
52 53	171	analysis set (randomized patients without critical Good Clinical Practice violations who took
54 55	172	>1 dose of study drug). The analyses were prespecified exploratory evaluations of outcomes
56 57	173	according to age and sex, with events reported from randomization up to the end-of-study
58 59 60	174	visit. Stratified Cox proportional hazards models, [27,28] including stratification factors:

1 2		
3 4	175	geographic region, eGFR and albuminuria category at screening, history of CV disease, and
5 6	176	study, were used for the analysis of time-to-event clinical outcomes. The <i>P</i> -values for
7 8	177	interaction between the treatment group (finerenone or placebo) and each baseline subgroup
9 10	178	(age or sex) were based on stratified Cox proportional hazards models, accounting for the
11 12	179	treatment effect, the subgroup effect, and their interaction.
13 14	180	
15 16	181	Changes in UACR and eGFR over time were assessed using a linear mixed-model analysis
17 18 19 20 21	182	accounting for repeated measurements over time. The least-squares mean ratio and
	183	absolute change from baseline were estimated from the models for changes in UACR and
21 22 23	184	eGFR, respectively. The 2-slope, linear spline, mixed-model, repeated measure method[29]
23 24 25	185	was used to estimate the rate of change in eGFR across time, specifically total (annualized
26 27 28 29 30 31 32 33	186	rate of change in eGFR from baseline to permanent discontinuation or end of study) and
	187	chronic (from month 4 to permanent discontinuation or end of study) eGFR slopes. To
	188	account for possible nonlinear effects of age on clinical outcomes, age was modeled with
	189	cubic splines with 3 knots in Cox proportional hazards models, to produce plots of the hazard
34 35	190	ratios (HRs) and 95% confidence interval as functions of age and sex.
36 37	101	Betievete and multiplication of
38 39	191	Patients and public involvement
40 41 42	192	No patient or public involvement in the current study. RESULTS
42 43 44	193	RESULTS
45 46		
47 48	194	Patients
49 50	195	FIDELITY included 13 026 patients.[23] Median follow-up was 3 years (interquartile range
51 52	196	2.3–3.8).[23] Mean age at baseline was 64.8 years (standard deviation 9.5), with 45.2%,
53 54	197	40.1%, and 14.7% of patients aged <65, 65–74, and ≥75 years at baseline, respectively.
55 56	198	Most patients (69.8%) were male; 2.5% were premenopausal females, and 27.8% were
57 58 59	199	postmenopausal females. Patients were distributed evenly between treatment arms within
60	200	age and sex subgroups (eTable 1). 8

3 4	
5	
6 7	
8 9 10	,
10 11	
12 13	
14	
15 16 17	
18	
19 20	
20 21 22	
23 24	
25	
26 27	
28 29	
30 31	
32	
33 34	
35 36 37	
37 38	
39 40	
41	
42 43	
44 45	
46 47	
48 49	
50	
51 52	
53 54	
55 56	
57 58	
59	
60	

Baseline characteristics 201

202 Baseline characteristics were similar across age subgroups except for some key differences 203 (Table 1). The overall FIDELITY population was predominantly White (68.1%), the proportion 204 of which increased with age. Mean eGFR was 64, 54, and 48 mL/min/1.73 m² in patients 205 aged <65, 65–75, and ≥75 years, respectively. Median UACR was 650, 439, and 332 mg/g in 206 patients aged <65, 65–75, and ≥75 years, respectively. History of CV disease was more .ρ; this ex subgroup. 207 common in the ≥75 years group; this trend was also observed for atrial fibrillation/atrial flutter.

208 Baseline characteristics in sex subgroups are shown in Table 1.

BMJ Open

209	Table 1. Patient Baseline Characteristics According to Age and Sex					

		Age			Sex			
Characteristic	All (<i>N</i> =13 026)	<65 Years (<i>n</i> =5889)	65–74 Years (<i>n</i> =5221)	≥75 Years (<i>n</i> =1916)	Male (<i>n</i> =9088)	Premenopausal Female (<i>n</i> =323)	Postmenopausal Female (<i>n</i> =3615)	
Age, y, mean ± SD	64.8 ± 9.5	56.4 ± 6.6	69.2 ± 2.8	78.4 ± 3.1	64.8 ± 9.5	45.1 ± 4.9	66.3 ± 8.0	
Sex, <i>n</i> (%)		,		I		1	1	
Female	3938 (30.2)	1839 (31.2)	1501 (28.7)	598 (31.2)	9088 (100)	0 (0.0)	0 (0.0)	
Male	9088 (69.8)	4050 (68.8)	3720 (71.3)	1318 (68.8)	0 (0.0)	323 (100)	3615 (100)	
Race, <i>n</i> (%)		20					•	
Asian	2894 (22.2)	1591 (27.0)	997 (19.1)	306 (16.0)	2136 (23.5)	87 (26.9)	671 (18.6)	
Black/African American	522 (4.0)	309 (5.2)	160 (3.1)	53 (2.8)	284 (3.1)	37 (11.5)	201 (5.6)	
White	8869 (68.1)	3592 (61.0)	3817 (73.1)	1460 (76.2)	6231 (68.6)	167 (51.7)	2471 (68.4)	
Other ^a	741 (5.7)	397 (6.7)	247 (4.7)	97 (5.1)	437 (4.8)	32 (9.9)	272 (7.5)	
Systolic blood pressure, mm Hg, mean (SD)	136.7 ± 14.2	135.6 ± 14.0	137.4 ± 14.2	138.4 ± 14.6	136.8 ± 14.2	133.0 ± 14.0	136.9 ± 14.3	
Diastolic blood pressure, mm Hg, mean (SD)	76.4 ± 9.6	78.8 ± 9.1	74.9 ± 9.4	72.8 ± 9.8	76.5 ± 9.7	80.1 ± 8.4	75.6 ± 9.5	
Duration of diabetes, years, mean (SD)	15.4 ± 8.7	13.5 ± 7.6	16.4 ± 8.6	18.6 ± 10.4	15.3 ± 8.5	10.6 ± 7.0	16.0 ± 9.1	
HbA1c, %, mean (SD)	7.7 ± 1.4	7.9 ± 1.5	7.6 ± 1.3	7.4 ± 1.2	7.6 ± 1.3	8.2 ± 1.7	7.9 ± 1.4	
Serum potassium, mmol/L, mean (SD)	4.4 ± 0.4	4.4 ± 0.5	4.4 ± 0.4	4.4 ± 0.4	4.3 ± 0.4	4.3 ± 0.4	4.4 ± 0.4	
eGFR, mL/min/1.73 m², mean (SD)	57.6 ± 21.7	64.3 ± 24.0	53.5 ± 18.5	48.1 ± 15.1	57.7 ± 21.2	77.0 ± 28.9	55.6 ± 21.3	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

UAC	CR, mg/g, median (Q1–Q3)	514.68 (197.8–1147.1)	650.48 (315.2– 1363.5)	438.63 (154.1– 1030.7)	332.29 (107.8– 830.5)	511.53 (200.9– 1130.1)	793.52 (376.6–1547.3)	501.47 (173.6–1149.1)	
BMI	, kg/m², mean (SD)	31.3 ± 6.0	32.0 ± 6.4	31.1 ± 5.7	29.6 ± 5.0	31.0 ± 5.6	34.1 ± 7.9	32.0 ± 6.6	
Curr	rent smoker, <i>n</i> (%)	2093 (16.1)	1283 (21.8)	686 (13.1)	124 (6.5)	1730 (19.0)	35 (10.8)	328 (9.1)	
Histon Histor	ory of CV disease, present, ه)	5935 (45.6)	2188 (37.2)	2667 (51.1)	1080 (56.4)	4374 (48.1)	56 (17.3)	1505 (41.6)	
Histo	ory of heart failure	1007 (7.7)	413 (7.0)	432 (8.3)	162 (8.5)	630 (6.9)	22 (6.8)	355 (9.8)	
Histe flutte	ory of atrial fibrillation/atrial er	1106 (8.5)	266 (4.5)	547 (10.5)	293 (15.3)	867 (9.5)	0	239 (6.6)	
Base	eline medications, <i>n</i> (%) ^b		\mathcal{O}_{A}					<u> </u>	
RA	S inhibitors (ACEis/ARBs)	13003 (99.8)	5876 (99.8)	5213 (99.8)	1914 (99.9)	9069 (99.8)	323 (100.0)	3611 (99.9)	
Be	ta-blockers	6504 (49.9)	2619 (44.5)	2849 (54.6)	1036 (54.1)	4545 (50.0)	111 (34.4)	1848 (51.1)	
Diu	uretics	6710 (51.5)	2790 (47.4)	2813 (53.9)	1107 (57.8)	4706 (51.8)	137 (42.4)	1867 (51.6)	
Sta	atins	9399 (72.2)	4033 (68.5)	3920 (75.1)	1446 (75.5)	6696 (73.7)	203 (62.8)	2500 (69.2)	
Ca	lcium channel blockers	7358 (56.5)	3127 (53.1)	3052 (58.5)	1179 (61.5)	5208 (57.3)	149 (46.1)	2001 (55.4)	
Ins	sulin	7630 (58.6)	3637 (61.8)	3020 (57.8)	973 (50.8)	5203 (57.3)	193 (59.8)	2234 (61.8)	
GL	.P-1RA	944 (7.2)	492 (8.4)	378 (7.2)	74 (3.9)	676 (7.4)	30 (9.3)	238 (6.6)	
SG	GLT-2i	877 (6.7)	517 (8.8)	289 (5.5)	71 (3.7)	671 (7.4)	36 (11.1)	170 (4.7)	
ACEi	= angiotensin-converting en	zyme inhibitor; ARE	3 = angiotensin ı	receptor blocker	; BMI = body ma	ss index; CV = ca	ardiovascular; eGFF	R = estimated	
glome	erular filtration rate; GLP-1R	A = glucagon-like p	eptide-1 recepto	r agonist; HbA1	c = glycated hen	noglobin; Q = qua	artile; RAS = renin–a	angiotensin syster	
U								0 ,	
5D -	standard deviation; SGLT-2i	- sodium-glucose	co-transporter-2		c – unne albumir	I-lo-creatinine rat	10.		
^a Othe	er: included American Indian	/Alaska Native, Nat	tive Hawaiian/otl	her Pacific Island	der, not reported	, multiple.			
[♭] Ana	lysis allowed multiple drug g	roups for the same	drug.						
11									

BMJ Open

2		
3 4 5	215	Efficacy
6 7 8	216	CV composite outcome by age
9 10 11	217	CV composite event rates, including the components of the composite outcome, increased
12 13	218	with patient age in both treatment arms (Figure 1A and eFigure 1A). Treatment with
14 15	219	finerenone resulted in a numerical reduction in CV composite event rates versus placebo in
16 17 18	220	all age groups (Figure 1A); however, no significant heterogeneity was observed for the effect
	221	of finerenone across categorical age subgroups ($P_{interaction}$ =.42). There was also no evidence
20 21	222	of treatment effect modification when age was modeled as a continuous variable
22 23	223	(<i>P</i> _{interaction} =.10). The trend of HR as a function of age was modeled with cubic splines
24 25	224	(eFigure 2A).
26 27	225	
28 29	226	HHF event rates were numerically lower with finerenone than placebo in all age subgroups
30 31 32	227	(Figure 1A). The effect of finerenone on HHF risk reduction was consistent across age
33 34	228	subgroups, with no significant heterogeneity observed (<i>P</i> _{interaction} =.70).
35 36 37	229	CV composite outcome by sex
38 39	230	CV composite event rates were numerically lower with finerenone than placebo for males,
40 41 42	231	premenopausal females, and postmenopausal females (Figure 1B and eFigure 1B). There
43 44	232	was no significant heterogeneity in the effect of finerenone on reducing the risk of the CV
45 46	233	composite outcome across sex subgroups ($P_{interaction}$ =.99). When age was modeled with cubic
47 48	234	splines by sex, the effect of finerenone was consistent with advancing age in males;
49 50	235	however, a trend toward a stronger effect in older versus younger females was noted
51 52	236	(eFigure 2B, eFigure 2C). Age distribution by sex is demonstrated in eFigure 2D.
53 54	237	
55 56	238	No heterogeneity was observed in the effect of finerenone on reducing the risk of the CV
57 58	239	death, nonfatal myocardial infarction, and nonfatal stroke components of the CV composite
59 60	240	outcome (eFigure 1B). However, statistical heterogeneity was observed in the reduction of 12

> HHF with finerenone versus placebo ($P_{interaction}$ =.02), and the effect appeared to be more pronounced in males than premenopausal/postmenopausal females (**Figure 1B**). These results persisted after adjustment for differences in baseline age, body mass index, systolic blood pressure, hemoglobin, eGFR, UACR, smoking history, and history of atrial fibrillation between sex subgroups ($P_{interaction}$ =.02).

246 Kidney composite outcome by age

Kidney composite event rates were lower with finerenone than placebo in the <65 years and the 65–74 years groups but were similar in the ≥75 years group (**Figure 2A**). The effect of finerenone on reducing the risk of the kidney composite outcome was consistent across age subgroups, with no significant heterogeneity detected ($P_{interaction}$ =.51) and no evidence of treatment effect modification when age was modeled as a continuous variable ($P_{interaction}$ =.77). The trend of HR as function of age was modeled with cubic splines (**eFigure 3A**).

253 Kidney composite outcome by sex

Kidney composite event rates were lower with finerenone than placebo in males but were
 similar in premenopausal and postmenopausal females (Figure 2B). There was no
 significant heterogeneity in the effect of finerenone on reducing the risk of the kidney
 composite outcome across sex subgroups (*P*_{interaction}=.85). When age was modeled with cubic
 splines by sex subgroups, the effect of finerenone suggests trends similar to overall results in
 males and females across all age groups (eFigure 3B, eFigure 3C). Age distribution by sex
 is demonstrated in eFigure 3D.

Effect of finerenone on markers of kidney function and damage by age and sex Finerenone significantly attenuated the least-squares mean change in eGFR from month 4 to end of treatment (chronic eGFR slope) compared with placebo across all age (*P*<.0001 for all 3 subgroups) (**Figure 3**) and sex subgroups (**eFigure 4**). Finerenone reduced UACR over time compared with placebo regardless of age and sex (**eFigure 5**).

BMJ Open

2		
3 4	266	Safety
5 6	267	The incidence of any AE was similar between treatment groups irrespective of age or sex
7 8	268	(eTable 2). There were more drug-related AEs with finerenone than placebo in age and sex
9 10 11	269	subgroups except premenopausal females, where the incidence was similar. AEs leading to
11 12 13	270	drug discontinuation were more frequent in patients given finerenone than placebo (6.4%
14 15	271	and 5.4%, respectively), with higher incidences in the 65–74 and ≥75 years groups than the
16 17	272	<65 years group; there were more AEs leading to drug discontinuation with finerenone than
18 19	273	placebo in males and premenopausal females but not in postmenopausal females.
20 21	274	
22 23	275	Although the incidences of any serious AEs (SAEs), study drug-related SAEs, or SAEs
24 25	276	leading to drug discontinuation were similar between treatment arms across all age and sex
26 27	277	subgroups, the overall incidences of SAEs increased with age and was highest in males,
28 29 30	278	followed by postmenopausal females, then premenopausal females.
31 32	279	
33 34	280	In all age and sex subgroups, the incidences of treatment-emergent hypotension AEs were
35 36	281	higher with finerenone than placebo but did not have a substantial impact on related clinical
37 38	282	outcomes, including falls, dizziness, and fatigue. A trend of increased incidence of
39 40	283	hypotension with increasing age was observed in patients treated with finerenone; however,
41 42	284	the incidence of hypotension was generally low across all age subgroups (<6%; eTable 2).
43 44	285	
45 46 47	286	In FIDELITY, finerenone increased the risk of any hyperkalemia event versus placebo;
47 48 49	287	similar findings were observed in all age and sex subgroups, except premenopausal females
50 51	288	(eTable 2). The incidences of any hyperkalemia AEs leading to discontinuation of study drug
52 53	289	and any serious hyperkalemia AEs leading to hospitalization were low across all age and sex
54 55	290	subgroups (<3% and <2%, respectively). However, the relative risk of treatment
56 57	291	discontinuation because of hyperkalemia with finerenone versus placebo increased with
58 59	292	advancing age (relative risk [95% confidence interval] for ages 45–64, 65–74, and ≥75 years:
60		14

2.2 [1.2–4.3], 2.8 [1.7–4.7], and 4.4 [1.8–10.8], respectively; eFigure 6). Treatment-emergent
serum potassium levels >5.5 mmol/L and >6.0 mmol/L were more frequent with finerenone
than placebo, being consistent across all age and sex subgroups. The incidence of
gynecomastia in males was the same with finerenone (0.2%) and placebo (0.2%) across all
ages.

DISCUSSION

The findings of this post hoc analysis suggest that finerenone reduced the risk of CV and
kidney composite outcomes versus placebo across all age and sex subcategories. In
FIDELITY, HHF was the main driver of CV benefit with finerenone[23]; lower incidences of
HHF with finerenone versus placebo were observed in this analysis across all age
subgroups, with some differences noted between sex subgroups. Moreover, the incidences
of any AEs or SAEs were similar between the treatment groups regardless of age and sex.

The current results are supported by findings from a pharmacokinetics (PK) analysis based on FIDELIO-DKD and FIGARO-DKD data, in which both age and sex were tested as covariates for a population PK model, and their effect on finerenone exposure was not significant, suggesting a lack of influence of these factors on the PK of the drug.[30] Additionally, the results for the CV outcome in this analysis are similar to findings from other studies of MRAs in HF. In TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist), age did not affect the efficacy of spironolactone in patients with HF with reduced ejection fraction (primary composite outcome: CV death, aborted cardiac arrest and HHF; secondary outcomes included CV death, all-cause death and HHF).[31] Moreover, in analyses of HF studies (RALES [Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure], EMPHASIS-HF [Eplerenone in Patients with Systolic Heart Failure and Mild Symptoms], and TOPCAT), MRAs reduced morbidity and mortality in elderly patients, [32] demonstrating a consistent benefit regardless of sex.[33] In contrast to our results, female sex was associated with poorer kidney outcomes

BMJ Open

3 4	320	versus male sex in patients receiving a steroidal MRA for bilateral primary aldosteronism.[34]
5 6 7 8 9 10	321	The MR can be activated by different drivers in different diseases; MR activation in diabetes
	322	is driven by additional factors other than high aldosterone in comparison with primary
	323	aldosteronism, which may account for differences in outcomes observed across different
11 12	324	indications.[35]
13 14 15 16	325	
16	326	In this study, the elderly population had higher risk of certain AEs including hypotension, AEs
17 18 19	327	leading to discontinuation, and death. Hypotension occurred more frequently in the
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	328	finerenone group but did not seem to substantially affect related clinical outcomes.
	329	Hyperkalemia was more prevalent with finerenone but was generally similar across age and
	330	sex. In a FIDELIO-DKD subanalysis, younger age and female sex were independent risk
	331	factors for hyperkalemia (>6.0 mmol/L).[36] Similar findings for age were observed in
	332	TOPCAT post hoc data for patients with HF.[31] Steroidal MRAs have been associated with
	333	gynecomastia in males,[37,38] which was not observed in this study, most likely because
	334	finerenone has no detectable affinity for androgen receptors.[38]
	335	
	336	Preclinical data suggest that different molecular mechanisms drive endothelial dysfunction in
	337	male and female mice[39,40] and that increased age and male sex are associated with MR
	338	overactivation, which is linked to vascular stiffness and endothelial dysfunction.[41,42] In
43 44	339	human aortic smooth muscle cells, MR expression increased with age, leading to epigenetic
45 46	340	changes associated with increased vascular stiffness. These effects were reversed with MR
47 48	341	inhibition.[43] In vitro, MR expression in the whole aortae and early passage aortic vascular
49 50	342	smooth muscle cells was increased in aged (30 months) versus adult (8 months) rat
51 52	343	cells.[41] In a preclinical mouse model, aortic stiffness occurred earlier in male than female
53 54	344	mice and correlated with the timing of increased aortic MR expression; vascular stiffness was
55 56 57	345	prevented in smooth muscle cell MR-deficient mice.[42] These data suggest that elderly
57 58 59	346	males may derive the greatest benefit from finerenone; indeed, in this analysis, finerenone-
60	347	treated males had lower risk of the CV composite outcome and HHF versus placebo across 16

age groups, including >75 years. Moreover, statistical heterogeneity was observed for HHF by sex, persisting after adjustment for differences in baseline characteristics, which might suggest a more pronounced effect of finerenone on HHF reduction in the male subgroup compared with the 2 female subgroups. However, because of the small sample size of the sex subgroups (especially that of the premenopausal female subgroup), definitive conclusions cannot be reached based on this finding. In this study, markers of kidney damage (eGFR decline and UACR) were reduced with finerenone in age subgroups; however, no benefit on kidney outcomes was observed in the >75 years age group. The small sample size of this subgroup precluded definitive conclusions, which may be accounted for by the slowing rate of CKD progression with advancing age.[44,45] Limitations include the study being a post hoc analysis and the chosen age categories not being predefined. In addition, patients may have initiated other treatments during the study. Sample size and number of events for females, particularly premenopausal females, were small. Therefore, there is uncertainty around the estimates and the analysis was underpowered to draw meaningful conclusions in this subgroup. Results for premenopausal females versus postmenopausal females/males should be interpreted with caution because age may partly account for differences observed; the average age of premenopausal females was ~45 years old compared with postmenopausal females (~66 years old) and males (~65 years old) (Table 1). As such, these groups had different baseline characteristics. Higher baseline mean eGFR and median UACR, and lower history of CV comorbidities and hypotension were observed in premenopausal females versus males and postmenopausal females. Additionally, the study design and tests performed may have been underpowered to address the research questions. Furthermore, FIDELITY limitations, mainly the small proportion of Black patients and exclusion of patients with nonalbuminuric CKD, were present in this analysis.

1 2		
- 3 4	376	
4 5 6	377	In conclusion, this post hoc FIDELITY analysis suggests that finerenone effectively lowers
7 8	378	the risk of clinically important cardiovascular and kidney outcomes in patients with CKD and
9 10	379	T2D across ages and sexes, with a potentially more pronounced effect on HHF in males than
11 12	380	in females. No new safety concerns were identified in those aged >65 years or by sex.
12 13 14 15 17 18 19 21 22 34 25 27 28 9 31 32 33 45 37 38 90 12 34 44 45 47 48 90 12 23 45 67 89 31 32 34 56 78 90 41 23 44 56 78 90 51 52 34 56 78 90 57 57 56 78 90 77 78 90 78 78 78 90 78 78 90 78 78 78 90 78 78 90 78 78 78 78 78 90 78 78 78 78 78 78 78 78 78 78 78 78 78	381	
59 60		

382 ACKNOWLEDGMENTS

383 Medical writing assistance was provided by Fay Nikolopoulou, MSc and Ines Neves, MSc of 384 Chameleon Communications International, and was funded by Bayer AG.

386 FUNDING

This work was supported by Bayer AG, who funded the FIDELIO-DKD and FIGARO-DKDstudies and combined analysis. Grant/ award number: Not applicable

390 CONTRIBUTORS

SB prepared the initial analysis; SB, MEFC, RB, SDA, GLB, GF, PR, LMR, AEF, PK, AL, MB, and BP had access to and participated in the interpretation of the data. SB developed the initial manuscript draft, which was then reviewed and edited by MEFC, RB, SDA, GLB, GF, PR, LMR, AEF, PK, AL, MB, and BP. SB, MEFC, RB, SDA, GLB, GF, PR, LMR, AEF, PK, AL, MB, and BP vouch for the completeness and accuracy of the data and agreed to submit the manuscript for publication. The Executive Committee (including SDA, GLB, GF, PR, LMR and BP) in collaboration with the funder (including AEF, PK, AL, and MB) designed the trials and protocols and supervised trial conduct. The funder also had a role in the management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

DISCLOSURES

402 SB reports research support from 3ive, Bayer, Boehringer Ingelheim, Novartis, and Novo
 403 Nordisk; honorarium from UpToDate; consultancy fees from Baxter; and speaker bureau fees
 404 from Home Dialysis University and PD Excellence Academy.

MEFC reports consultancy fees from AstraZeneca, Bayer, Boehringer Ingelheim, and

406 Fresenius Medical Care, and research support from Baxter and Fresenius.

1 2		
2 3 4	407	RB reports consultancy fees from AstraZeneca, Bayer, Boehringer Ingelheim, Gilead, MSD,
5 6 7 8	408	Mundipharma, Sanofi, and Servier.
	409	SDA reports grants from Abbott Vascular and Vifor International; and personal fees
9 10	410	from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, BioVentrix, Brahms, Cardiac
11 12	411	Dimensions, Cardior, Cordio, CVRx, Edwards, Impulse Dynamics, Janssen, Novartis,
13 14	412	Occlutech, Respicardia, Servier, Vectorious, and V-Wave.
15 16 17	413	GLB reports consultancy fees from Alnylam, Ionis, and Merck.
17 18 10	414	GF is a trial committee member for Amgen, Bayer (no fees received), Boehringer Ingelheim,
19 20 21	415	Medtronic, Novartis, Servier, and Vifor.
22 22 23	416	PR reports personal fees from Bayer during the conduct of the study; he has received
24 25 26 27 28 29	417	research support and personal fees from AstraZeneca and Novo Nordisk, and personal fees
	418	from Astellas, Boehringer Ingelheim, Eli Lilly, Gilead, Mundipharma, Sanofi, and Vifor; all
	419	fees are given to Steno Diabetes Center Copenhagen.
30 31	420	LMR reports consultancy fees from Bayer.
32 33	421	AEF, PK, AL, and MA are all full-time employees of Bayer.
34 35	422	BP reports consultant fees for AstraZeneca, Bayer, Boehringer Ingelheim, Brainstorm
36 37 38	423	Medical, Cereno Scientific, G3 Pharmaceuticals, KBP Biosciences, PhaseBio, Proton Intel,
38 39 40	424	Sanofi/Lexicon, Sarfez, scPharmaceuticals, SQ Innovation, Tricida, and Vifor/Relypsa; he
40 41 42	425	has stock options for Brainstorm Medical, Cereno Scientific, G3 Pharmaceuticals, KBP
43 44	426	Biosciences, Proton Intel, Sarfez, scPharmaceuticals, SQ Innovation, Tricida, and
45 46	427	Vifor/Relypsa; he also holds a patent for site-specific delivery of eplerenone to the
47 48	428	myocardium (US patent #9931412) and a provisional patent for histone-acetylation-
49 50	429	modulating agents for the treatment and prevention of organ injury (provisional patent US
51 52 53 54 55	430	63/045,784).

431 DATA SHARING STATEMENT

432 Availability of the data underlying this publication will be determined according to Bayer's
433 commitment to the EFPIA/PhRMA "Principles for responsible clinical trial data sharing". This

434 pertains to scope, timepoint, and process of data access.

435 As such, Bayer commits to sharing upon request from qualified scientific and medical
436 researchers, patient-level clinical trial data, study-level clinical trial data, and protocols from
437 clinical trials in patients for medicines and indications approved in the United States (US) and
438 European Union (EU) as necessary for conducting legitimate research. This applies to data
439 on new medicines and indications that have been approved by the EU and US regulatory
440 agencies on or after January 01, 2014.

Interested researchers can use www.vivli.org to request access to anonymized patient-level data and supporting documents from clinical studies to conduct further research that can help advance medical science or improve patient care. Information on the Bayer criteria for listing studies and other relevant information is provided in the member section of the portal. Data access will be granted to anonymized patient-level data, protocols, and clinical study reports after approval by an independent scientific review panel. Bayer is not involved in the decisions made by the independent review panel. Bayer will take all necessary measures to ensure that patient privacy is safeguarded.

1 2 3 4 5	449	REF	ERENCES
6 7	450	1.	Halter JB, Musi N, McFarland Horne F, et al. Diabetes and cardiovascular disease in
8 9	451		older adults: Current status and future directions. <i>Diabetes</i> 2014;63:2578–89.
10 11	452	2.	Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of
12 13	453		diabetes mellitus. Clinical science (London, England : 1979) 2017;131:833–46.
14 15	454	3.	Melsom T, Norvik JV, Enoksen IT, et al. Sex differences in age-related loss of kidney
16 17	455		function. J Am Soc Nephrol 2022;33:1891–902.
18 19	456	4.	Bairey Merz CN, Dember LM, Ingelfinger JR, et al. Sex and the kidneys: Current
20 21	457		understanding and research opportunities. Nat Rev Nephrol 2019;15:776–83.
22 23 24	458	5.	Maric-Bilkan C. Sex differences in diabetic kidney disease. Mayo Clin Proc
24 25 26	459		2020;95:587–99.
27 28	460	6.	Yu MK, Lyles CR, Bent-Shaw LA, et al. Risk factor, age and sex differences in
29 30	461		chronic kidney disease prevalence in a diabetic cohort: The Pathways Study. Am J
31 32	462		Nephrol 2012;36:245–51.
33 34	463	7.	Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in
35 36	464		type 2 diabetes. <i>N Engl J Med</i> 2019;380:347–57.
37 38	465	8.	Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with
39 40	466		chronic kidney disease. N Engl J Med 2020;383:1436–46.
41 42	467	9.	Zannad F, Ferreira JP, Pocock SJ, et al. Cardiac and kidney benefits of empagliflozin
43 44 45	468		in heart failure across the spectrum of kidney function: Insights from EMPEROR-
45 46 47	469		Reduced. Circulation 2021;143:310–21.
48 49	470	10.	Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2
50 51	471		diabetes and nephropathy. N Engl J Med 2019;380:2295–306.
52 53	472	11.	Chertow GM, Block GA, Correa-Rotter R, et al. Effect of cinacalcet on cardiovascular
54 55 56 57 58 59 60	473		disease in patients undergoing dialysis. <i>N Engl J Med</i> 2012;367:2482–94.

Page 24 of 49

BMJ Open

Tuttle KR, Alicic RZ, Duru OK, et al. Clinical characteristics of and risk factors for 12. chronic kidney disease among adults and children: An analysis of the CURE-CKD registry. JAMA Netw Open 2019;2:e1918169. 13. Gasparini A, Evans M, Coresh J, et al. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol Dial Transplant 2016;31:2086–94. 14. Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid receptor and cardiovascular disease. American journal of hypertension 2018;31:1165–74. 15. Luther JM, Fogo AB. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis. Kidney Int Suppl 2022;12:63-8. 16. Henschkowski J, Stuck AE, Frey BM, et al. Age-dependent decrease in 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) activity in hypertensive patients. Am J Hypertens 2008;21:644-9. 17. Kolkhof P, Jaisser F, Kim SY, et al. Steroidal and novel non-steroidal mineralocorticoid receptor antagonists in heart failure and cardiorenal diseases: comparison at bench and bedside. Handb Exp Pharmacol 2017;243:271–305. 18. Pitt B. The role of mineralocorticoid receptor antagonists (MRAs) in very old patients with heart failure. Heart Fail Rev 2012;17:573-9. 19. Cole TJ, Young MJ. 30 years of the mineralocorticoid receptor: Mineralocorticoid receptor null mice: Informing cell-type-specific roles. J Endocrinol 2017;234:T83–T92. 20. Nakamura T, Girerd S, Jaisser F, et al. Nonepithelial mineralocorticoid receptor activation as a determinant of kidney disease. Kidney Int Suppl 2022;12:12-8. 21. Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: A prespecified analysis from the DAPA-CKD trial. The lancet Diabetes & endocrinology 2021;9:22–31. Mann JFE, Fonseca V, Mosenzon O, et al. Effects of liraglutide versus placebo on 22. cardiovascular events in patients with type 2 diabetes mellitus and chronic kidney disease. Circulation 2018;138:2908-18.

Page 25 of 49

1 2			
2 3 4	502	23.	Agarwal R, Filippatos G, Pitt B, et al. Cardiovascular and kidney outcomes with
5 6	503		finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY
7 8	504		pooled analysis. European heart journal 2022;43:474–84.
9 10	505	24.	Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease
11 12	506		outcomes in type 2 diabetes. N Engl J Med 2020;383:2219–29.
13 14	507	25.	Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular events with finerenone in kidney
15 16	508		disease and type 2 diabetes. N Engl J Med 2021;385:2252–63.
17 18	509	26.	McKinlay SM, Brambilla DJ, Posner JG. The normal menopause transition. Maturitas
19 20 21	510		1992;14:103–15.
21 22 23	511	27.	Kleinbaum DG, Klein M. The stratified Cox procedure. In: Kleinbaum DG, Klein M
24 25	512		eds. Survival analysis: A self-learning text. New York, NY: Springer New York
26 27	513		2012:201–40.
28 29	514	28.	Therneau TM, Grambsch PM. The Cox model. In: Therneau TM, Grambsch PM eds.
30 31	515		Modeling survival data: Extending the Cox model. New York, NY: Springer New York
32 33	516		2000:39–77.
34 35	517	29.	Vonesh E, Tighiouart H, Ying J, et al. Mixed-effects models for slope-based endpoints
36 37	518		in clinical trials of chronic kidney disease. Stat Med 2019;38:4218–39.
38 39	519	30.	Eissing T, Goulooze SC, van den Berg P, et al. Pharmacokinetics and
40 41 42	520		pharmacodynamics of finerenone in patients with chronic kidney disease and type 2
42 43 44	521		diabetes: Insights based on FIGARO-DKD and FIDELIO-DKD. Diabetes, obesity &
45 46	522		metabolism 2023: doi:10.1111/dom.15387.
47 48	523	31.	Vardeny O, Claggett B, Vaduganathan M, et al. Influence of age on efficacy and
49 50	524		safety of spironolactone in heart failure. JACC Heart failure 2019;7:1022-8.
51 52	525	32.	Ferreira JP, Rossello X, Eschalier R, et al. MRAs in elderly HF patients: Individual
53 54	526		patient-data meta-analysis of RALES, EMPHASIS-HF, and TOPCAT. JACC Heart
55 56	527		failure 2019;7:1012–21.
57 58			
59 60			

Page 26 of 49

BMJ Open

1 2			
3 4	528	33.	Rossello X, Ferreira JP, Pocock SJ, et al. Sex differences in mineralocorticoid
5 6	529		receptor antagonist trials: A pooled analysis of three large clinical trials. European
7 8	530		journal of heart failure 2020;22:834–44.
9 10	531	34.	Nakamaru R, Yamamoto K, Akasaka H, et al. Sex differences in renal outcomes after
11 12	532		medical treatment for bilateral primary aldosteronism. Hypertension 2021;77:537-45.
13 14	533	35.	Kawanami D, Takashi Y, Muta Y, et al. Mineralocorticoid receptor antagonists in
15 16	534		diabetic kidney disease. Front Pharmacol 2021;12:754239.
17 18	535	36.	Agarwal R, Joseph A, Anker SD, et al. Hyperkalemia risk with finerenone: results
19 20	536		from the FIDELIO-DKD trial. J Am Soc Nephrol 2022;33:225–37.
21 22 23	537	37.	Hasegawa T, Nishiwaki H, Ota E, et al. Aldosterone antagonists for people with
23 24 25	538		chronic kidney disease requiring dialysis. Cochrane Database of Systematic Reviews
26 27	539		2021;2:Cd013109.
28 29	540	38.	Kolkhof P, Joseph A, Kintscher U. Nonsteroidal mineralocorticoid receptor
30 31	541		antagonism for cardiovascular and renal disorders – new perspectives for
32 33	542		combination therapy. Pharmacol Res 2021;172:105859.
34 35	543	39.	Davel AP, Jaffe IZ, Tostes RC, et al. New roles of aldosterone and mineralocorticoid
36 37	544		receptors in cardiovascular disease: Translational and sex-specific effects. Am J
38 39	545		Physiol Heart Circ Physiol 2018;315:H989–H99.
40 41 42	546	40.	Faulkner JL, Kennard S, Huby AC, et al. Progesterone predisposes females to
42 43 44	547		obesity-associated leptin-mediated endothelial dysfunction via upregulating
45 46	548		endothelial MR (mineralocorticoid receptor) expression. Hypertension 2019;74:678–
47 48	549		86.
49 50	550	41.	Krug AW, Allenhofer L, Monticone R, et al. Elevated mineralocorticoid receptor
51 52	551		activity in aged rat vascular smooth muscle cells promotes a proinflammatory
53 54	552		phenotype via extracellular signal-regulated kinase 1/2 mitogen-activated protein
55 56	553		kinase and epidermal growth factor receptor-dependent pathways. Hypertension
57 58	554		2010;55:1476–83.
59 60			

25

1			
2 3	555	42.	DuPont JJ, Kim SK, Kenney RM, et al. Sex differences in the time course and
4 5	556		mechanisms of vascular and cardiac aging in mice: Role of the smooth muscle cell
6 7	557		mineralocorticoid receptor. Am J Physiol Heart Circ Physiol 2021;320:H169–H80.
8 9	558	43.	Ibarrola J, Kim SK, Lu Q, et al. Smooth muscle mineralocorticoid receptor as an
10 11 12	559		epigenetic regulator of vascular aging. <i>Cardiovascular research</i> 2023;118:3386–400.
12 13 14	560	44.	Mathur R, Dreyer G, Yaqoob MM, et al. Ethnic differences in the progression of
15 16	561		chronic kidney disease and risk of death in a UK diabetic population: An
17 18	562		observational cohort study. <i>BMJ Open</i> 2018;8:e020145.
19 20	563	45.	Go AS, Yang J, Tan TC, et al. Contemporary rates and predictors of fast progression
21 22	564		of chronic kidney disease in adults with and without diabetes mellitus. <i>BMC Nephrol</i>
23 24	565		
25 26	566		2018;19:146.
27 28			
29 30			
31 32			
33 34			
35 36			
37 38			
39 40			
41 42 43			
43 44 45			
43 46 47			
48			
49 50			
51 52			
53 54			
55 56			
57 58			
59 60			

FIGURE LEGENDS

Figure 1. Analysis of CV composite outcome and HHF according to (A) age and (B) sex.

CV composite outcome includes CV death, nonfatal myocardial infarction, nonfatal stroke, or

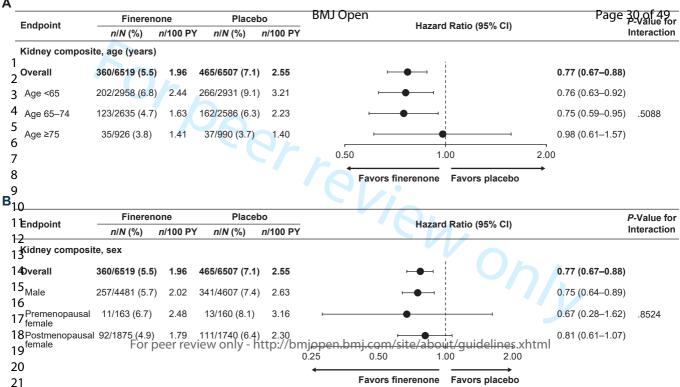
HHF.

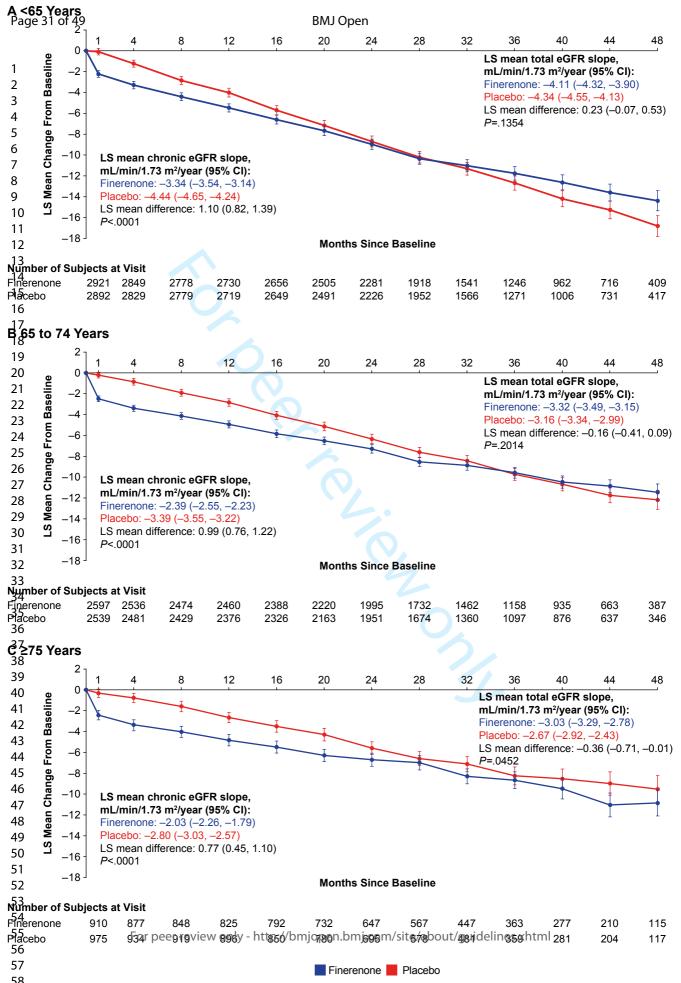
CI = confidence interval; CV = cardiovascular; HHF = hospitalization for heart failure; PY = patient-years.

Figure 2. Analysis of kidney composite outcome according to (A) age and (B) sex.

Kidney composite outcome includes kidney failure, sustained ≥57% eGFR decline, or renal death.

CI = confidence interval; eGFR = estimated glomerular filtration rate; PY = patient-years.


Figure 3. LS mean change in eGFR from baseline, chronic, and total slopes over time by age.


Chronic eGFR slope from month 4 to end-of-study visit.

CI = confidence interval; eGFR = estimated glomerular filtration rate; LS = least-squares.

Α								
Pā	age 29 of 49 Endpoint	Finerend	one	Place	_{bo} BMJ Ope	N Hazard Ratio (95% CI)		P-Value for
_	Enapoint	n/N (%)	<i>n</i> /100 PY	n/N (%)	<i>n</i> /100 PY			Interaction
1	CV composite, ag	e (years)						
1 2	Overall	825/6519 (12.7)	4.34	939/6507 (14.4)	5.01		0.86 (0.78-0.95)	
3	Age <65	323/2958 (10.9)	3.74	337/2931 (11.5)	3.93		0.94 (0.81–1.10)	
4	Age 65–74	339/2635 (12.9)	4.36	396/2586 (15.3)	5.3	⊢●	0.84 (0.73–0.98)	.4198
5	Age ≥75	163/926 (17.6)	6.25	206/990 (20.8)	7.61	⊢	0.80 (0.65–0.99)	
	HHF, age (years)							
7 8	Overall	256/6519 (3.9)	1.31	325/6507 (5.0)	1.68	⊢ ●1	0.78 (0.66–0.92)	
9	Age <65	94/2958 (3.2)	1.06	112/2931 (3.8)	1.27		0.83 (0.63–1.10)	
10) Age 65–74	111/2653 (4.2)	1.38	135/2586 (5.2)	1.75		0.83 (0.65–1.08)	.6977
11	Age ≥75	51/926 (5.5)	1.91	78/990 (7.9)	2.78	••	0.66 (0.46-0.95)	
12					0.25	1.00 2.00		
13						Favors finerenone Favors placebo		
B ²								
15) Endpoint	Finerend		Place		Hazard Ratio (95% CI)		P-Value for
	-	()	<i>n</i> /100 PY	<i>n</i> /N (%)	<i>n</i> /100 PY			Interaction
	7 CV composite, se }	x						
19	Overall	825/6519 (12.7)	4.34	939/6507 (14.4)	5.01	I	0.86 (0.78–0.95)	
20) Male	579/4481 (12.9)	4.39	675/4607 (14.7)	5.08	H e H	0.86 (0.77–0.96)	
21 22	remenopausa	11/163 (6.7)	2.29	12/160 (7.5)	2.62	• • • • • • • • • • • • • • • • • • • •	0.89 (0.35–2.27)	.9942
23	Postmenopausal female	235/1875 (12.5)	4.38	252/1740 (14.5)	5.03	Let i	0.87 (0.73–1.05)	
	₩HF, sex							
25 26	Overall	256/6519 (3.9)	1.31	325/6507 (5.0)	1.68		0.78 (0.66–0.92)	
27		163/4481 (3.6)	1.20	244/4607 (5.3)	1.78	⊢● -1	0.66 (0.54–0.81)	
28	3 Premenopausal female	5/163 (3.1)	1.02	4/160 (2.5)	0.85	•	1.39 (0.33–5.93)	.0245
29 30	Postmenopausal	88/ 1875 pieze)r	renkiatwo	n 1 yr 7/ hriatop(4/40) n	njo p.so .bm	j.com/site/abo ut/gu idelines.xh	tml1.06 (0.78–1.44)	
31	-				(0.20 1.00 5	00	
32						Favors finerenone Favors placebo		

Α

Finerenone Cardiovascular and Kidney Outcomes by Age and Sex: FIDELITY Post Hoc Analysis of Two Phase 3, Multicenter, Double-Blind Trials

Contents

Finerenone Cardiovascular and Kidney Outcomes by Age and Sex: FIDELITY Post Hoc
Analysis of Two Phase 3, Multicenter, Double-Blind Trials 1
Supplementary Tables and Figures
eTable 1. Patient Baseline Characteristics According to Age and Sex Stratified by
Treatment Group2
eTable 2. Treatment-Emergent AEs According to Age and Sex
eFigure 1. Analysis of CV composite outcome and subcomponents according to (A) age and (B) sex
eFigure 2. Hazard ratio (finerenone vs placebo) as a function of age modeled with cubic splines for CV composite outcome by age (A), spline for hazard ratio of CV composite outcomes by sex (B, C), and age distribution by sex (D)
eFigure 3. Hazard ratio (finerenone vs placebo) as a function of age modeled with cubic splines for kidney composite outcome by age (A), spline for hazard ratio of kidney
composite outcomes by sex (B, C), and age distribution by sex (D)
eFigure 4. LS mean change in eGFR from baseline, chronic, and total slopes over time
by sex13
eFigure 5. LS mean ratio to baseline UACR over time by age and sex14
eFigure 6. Relative risk of treatment-emergent hyperkalemia causing permanent
discontinuation of study drug by age and sex15
eFigure 7. FIDELITY CONSORT diagram16

Page 33 of 49

Supplementary Tables and Figures

eTable 1. Patient Baseline Characteristics According to Age and Sex Stratified by Treatment Group

n (%)	All				A	ge		Sex						
			<65 Years		65–74	Years	≥75 \	/ears	Ma	ale	Female (Premenopausal)			nale nopausal)
	FIN	PBO	FIN	PBO	FIN	PBO	FIN	PBO	FIN	PBO	FIN	PBO	FIN	PBO
	(<i>n</i> =6519)	(<i>n</i> =6507)	(<i>n</i> =2958)	(<i>n</i> =2931)	(<i>n</i> =2635)	(<i>n</i> =2586)	(<i>n</i> =926)	(<i>n</i> =990)	(<i>n</i> =4481)	(<i>n</i> =4607)	(<i>n</i> =163)	(<i>n</i> =160)	(<i>n</i> =1875)	(<i>n</i> =1740)
Age, y, mean ±	64.7	64.8	56.5	56.3	69.1	69.2	78.4	78.4	64.8	64.9	45.3	44.9	66.2	66.4
SD	± 9.4	± 9.7	± 6.4	± 6.7	± 2.7	± 2.8	± 3.0	± 3.1	± 9.3	± 9.6	± 4.4	± 5.4	± 8.0	± 8.0
Sex, <i>n</i> (%)				I				I	1		I	I		
Female	2038	1900	959	880	772	729	307	291	0	0	163	160	1875	1740
	(31.3)	(29.2)	(32.4)	(30.0)	(29.3)	(28.2)	(33.2)	(29.4)	(0.0)	(0.0)	(100)	(100)	(100)	(100)
Male	4481	4607	1999	2051	1863	1857	619	699	4481	4607	0	0	0	0
	(68.7)	(70.8)	(67.6)	(70.0)	(70.7)	(71.8)	(66.8)	(70.6)	(100)	(100)	(0.0)	(0.0)	(0.0)	(0.0)
Race, <i>n</i> (%)														
Asian	1432	1462	772	819	518	479	142	164	1032	1104	45	42	355	316
	(22.0)	(22.5)	(26.1)	(27.9)	(19.7)	(18.5)	(15.3)	(16.6)	(23.0)	(24.0)	(27.6)	(26.3)	(18.9)	(18.2)
Black/African	253	269	158	151	75	85	20	33	137	147	17	20	99	102
American	(3.9)	(4.1)	(5.3)	(5.2)	(2.8)	(3.3)	(2.2)	(3.3)	(3.1)	(3.2)	(10.4)	(12.5)	(5.3)	(5.9)
White	4449	4420	1827	1765	1908	1909	714	746	3099	3132	84	83	1266	1205
	(68.2)	(67.9)	(61.8)	(60.2)	(72.4)	(73.8)	(77.1)	(75.4)	(69.2)	(68.0)	(51.5)	(51.9)	(67.5)	(69.3)
Other ^a	385	356	201	196	134	113	50	47	213	224	17	15	155	117
	(5.9)	(5.5)	(6.8)	(6.7)	(5.1)	(4.4)	(5.4)	(4.7)	(4.8)	(4.9)	(10.4)	(9.4)	(8.3)	(6.7)
Systolic blood pressure, mm Hg, mean (SD)	136.8 ± 14.2	136.7 ± 14.3	135.7 ± 13.9	135.5 ± 14.1	137.4 ± 14.2	137.5 ± 14.2	138.4 ± 14.6	138.5 ± 14.6	136.9 ± 14.1	136.7 ± 14.3	131.6 ± 13.1	134.4 ± 14.7	136.8 ± 14.4	136.9 ± 14.0
Diastolic blood pressure, 2	76.3 ± 9.6	76.4 ± 9.6	78.7 ± 9.2	79.0 ± 8.9	74.8 ± 9.4	74.9 ± 9.4	73.2 ± 9.8	72.4 ± 9.8	76.6 ± 9.7	76.5 ± 9.7	78.7 ± 8.2	81.6 ± 8.4	75.6 ± 9.6	75.6 ± 9.4

n (%)	All				A	ge		Sex							
			<65 ነ	<65 Years		Years	≥75 \	/ears	Ма	ale		nale opausal)	Fen (Postmer	nale nopausal	
	FIN (<i>n</i> =6519)	PBO (<i>n</i> =6507)	FIN (<i>n</i> =2958)	PBO (<i>n</i> =2931)	FIN (<i>n</i> =2635)	PBO (<i>n</i> =2586)	FIN (<i>n</i> =926)	PBO (<i>n</i> =990)	FIN (<i>n</i> =4481)	PBO (<i>n</i> =4607)	FIN (<i>n</i> =163)	PBO (<i>n</i> =160)	FIN (<i>n</i> =1875)	PBO (<i>n</i> =1740)	
mm Hg, mean (SD)															
Duration of diabetes, y, mean (SD)	15.4 ± 8.7	15.4 ± 8.7	13.6 ± 7.6	13.3 ± 7.7	16.4 ± 8.7	16.5 ± 8.5	18.7 ± 10.7	18.5 ±10.2	15.4 ± 8.6	15.3 ± 8.4	11.0 ± 7.4	10.1 ± 6.5	15.9 ± 9.0	16.0 ± 9.2	
HbA1c, %, mean (SD)	7.7 ± 1.4	7.7 ± 1.4	7.9 ± 1.5	7.9 ± 1.5	7.6 ± 1.3	7.6 ± 1.3	7.5 ± 1.2	7.4 ± 1.2	7.6 ± 1.3	7.6 ± 1.3	8.1 ± 1.7	8.3 ± 1.6	7.9 ± 1.4	7.9 ± 1.5	
Serum potassium, mmol/L, mean (SD)	4.4 ± 0.4	4.4 ± 0.4	4.3 ± 0.4	4.4 ± 0.5	4.4 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	4.3 ± 0.4	4.3 ± 0.5	4.3 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	
eGFR, mL/min/1.73 m², mean (SD)	57.5 ± 21.6	57.7 ± 21.8	63.9 ± 23.9	64.6 ± 24.0	53.7 ± 18.4	53.3 ± 18.6	48.0 ± 15.5	48.3 ± 14.8	57.8 ± 21.0	57.7 ± 21.4	76.3 ± 28.7	77.5 ± 29.1	55.3 ± 21.5	55.8 ± 21.1	
eGFR, mL/min/1	.73 m², <i>n</i> ((%) ^b						\mathbf{N}							
<25	81 (1.2)	81 (1.2)	24 (0.8)	29 (1.0)	35 (1.3)	37 (1.4)	22 (2.4)	15 (1.5)	44 (1.0)	54 (1.2)	0	2 (1.3)	37 (2.0)	25 (1.4)	
25–<45	2117 (32.5)	2115 (32.5)	744 (25.2)	704 (24.0)	937 (35.6)	961 (37.2)	436 (47.1)	450 (45.5)	1392 (31.1)	1479 (32.1)	31 (19.0)	26 (16.3)	694 (37.0)	610 (35.1)	
45-<60	1717 (26.3)	1717 (26.4)	666 (22.5)	649 (22.1)	775 (29.4)	739 (28.6)	276 (29.8)	329 (33.2)	1240 (27.7)	1228 (26.7)	26 (16.0)	24 (15.0)	451 (24.1)	465 (26.7)	
≥60	2603 (39.9)	2592 (39.8)	1523 (51.5)	1548 (52.8)	888 (33.7)	848 (32.8)	192 (20.7)	196 (19.8)	1805 (40.3)	1846 (40.1)	106 (65.0)	108 (67.5)	692 (36.9)	638 (36.7)	
UACR, mg/g, median (Q1– Q3)	514.2 (197.5– 1129.4)	514.9 (198.2– 1163.4)	649.2 (308.0- 1331.8)	651.4 (322.5- 1382.2)	433.8 (150.7- 1025.7)	441.3 (157.8- 1032.8)	325.6 (107.00- 802.7)	340.5 (109.8- 871.7)	514.5 (205.3- 1116.5)	509.2 (195.4- 1143.0)	733.0 (336.3- 1522.7)	868.4 (398.5- 1604.2)	496.4 (169.9- 1124.4)	509.1 (185.0- 1174.5)	
UACR, mg/g, <i>n</i> (%) ^c														
<30	120 (1.8)	110 (1.7)	39 (1.3)	40 (1.4)	53 (2.0)	50 (1.9)	28 (3.0)	20 (2.0)	69 (1.5)	68 (1.5)	2 (1.2)	1 (0.6)	49 (2.6)	41 (2.4)	
30-<300	2076 (31.8)	2023 (31.1)	686 (23.2)	645 (22.0)	971 (36.9)	936 (36.2)	419 (45.2)	442 (44.6)	1422 (31.7)	1459 (31.7)	34 (20.9)	20 (12.5)	620 (33.1)	544 (31.3)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3	
4 5 6	
7 8 9	
10 11 12	
13 14	
15 16 17	
11 12 13 14 15 16 17 18 19 20	
21 22 23	
24 25 26	
27 28	
29 30 31	
32 33 34	
32 33 34 35 36 37	
38 39 40	
41 42	
43 44 45	
46	

n (%)	A	.11			A	ge					Sex							
			<65 \	Years	65–74	Years	≥75 ∖	r ears	Ма	ale		nale		nale				
											(Premenopausal)		· · ·					
	FIN (<i>n</i> =6519)	PBO (<i>n</i> =6507)	FIN (<i>n</i> =2958)	PBO (<i>n</i> =2931)	FIN (<i>n</i> =2635)	PBO (<i>n</i> =2586)	FIN (<i>n</i> =926)	PBO (<i>n</i> =990)	FIN (<i>n</i> =4481)	PBO (<i>n</i> =4607)	FIN (<i>n</i> =163)	PBO (<i>n</i> =160)	FIN (<i>n</i> =1875)	PBO (<i>n</i> =1740				
≥300	4321 (66.3)	4371 (67.2)	2231 (75.4)	2244 (76.6)	1611 (61.1)	1599 (61.8)	479 (51.7)	528 (53.3)	2989 (66.7)	3079 (66.8)	127 (77.9)	139 (86.9)	1205 (64.3)	1153 (66.3)				
BMI, kg/m², mean (SD)	31.3 ± 6.0	31.3 ± 6.0	32.1 ± 6.5	32.0 ± 6.3	31.1 ± 5.7	31.1 ± 5.7	29.5 ± 4.8	29.6 ± 5.1	30.9 ± 5.6	30.9 ± 5.6	34.0 ± 7.9	34.3 ± 7.9	32.0 ± 6.7	32.1 ± 6.5				
Current smoker, n (%)	1065 (16.3)	1028 (15.8)	657 (22.2)	626 (21.4)	351 (13.3)	335 (13.0)	57 (6.2)	67 (6.8)	874 (19.5)	856 (18.6)	17 (10.4)	18 (11.3)	174 (9.3)	154 (8.9)				
History of CV disease, present, <i>n</i> (%)	2979 (45.7)	2956 (45.4)	1127 (38.1)	1061 (36.2)	1330 (50.5)	1337 (51.7)	522 (56.4)	558 (56.4)	2152 (48.0)	2222 (48.2)	36 (22.1)	20 (12.5)	791 (42.2)	714 (41.0)				
History of heart failure	485 (7.4)	522 (8.0)	211 (7.1)	202 (6.9)	192 (7.3)	240 (9.3)	82 (8.9)	80 (8.1)	302 (6.7)	328 (7.1)	11 (6.7)	11 (6.9)	172 (9.2)	183 (10.5)				
History of atrial fibrillation/atrial flutter	568 (8.7)	538 (8.3)	144 (4.9)	122 (4.2)	280 (10.6)	267 (10.3)	144 (15.6)	149 (15.1)	439 (9.8)	428 (9.3)	0	0	129 (6.9)	110 (6.3)				
Baseline medica	tions, <i>n</i> (%	b)d						RI.										
RAS inhibitors (ACEis/ARBs)	6508 (99.8)	6495 (99.8)	2951 (99.8)	2925 (99.8)	2631 (99.8)	2582 (99.8)	926 (100.0)	988 (99.8)	4473 (99.8)	4596 (99.8)	163 (100.0)	160 (100.0)	1872 (99.8)	1739 (>99.9)				
Beta-blockers	3236 (49.6)	3268 (50.2)	1311 (44.3)	1308 (44.6)	1419 (53.9)	1430 (55.3)	506 (54.6)	530 (53.5)	2237 (49.9)	2308 (50.1)	57 (35.0)	54 (33.8)	942 (50.2)	906 (52.1)				
Diuretics	3325 (51.0)	3385 (52.0)	1378 (46.6)	1412 (48.2)	1412 (53.6)	1401 (54.2)	535 (57.8)	572 (57.8)	2320 (51.8)	2386 (51.8)	67 (41.1)	70 (43.8)	938 (50.0)	929 (53.4)				
Statins	4657 (71.4)	4742 (72.9)	1993 (67.4)	2040 (69.6)	1975 (75.0)	1945 (75.2)	689 (74.4)	757 (76.5)	3291 (73.4)	3405 (73.9)	93 (57.1)	110 (68.8)	1273 (67.9)	1227 (70.5)				
Calcium channel blockers	3664 (56.2)	3694 (56.8)	1564 (52.9)	1563 (53.3)	1544 (58.6)	1508 (58.3)	556 (60.0)	623 (62.9)	2554 (57.0)	2654 (57.6)	74 (45.4%)	75 (46.9)	1036 (55.3)	965 (55.5)				
≥1 glucose- lowering medication	6354 (97.5)	6366 (97.8)	2898 (98.0)	2881 (98.3)	2574 (97.7)	2537 (98.1)	882 (95.2)	948 (95.8)	4361 (97.3)	4499 (97.7)	161 (98.8)	156 (97.5)	1832 (97.7)	1711 (98.3)				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

י ר
2
3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
2/
24
25
26
27
28
29
30
31
37
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 7 8 9 30 12 33 4 5 6 7 8 9 10 11 23 24 25 26 27 28 9 30 31 23 34 32 34 33 34 35 34 35 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37
22
34
34 35 36 37
36
37
37 38
39
40
40
42
43
44
45

5

1

n (%)	All				A	ge		Sex						
			<65 Years		65–74 Years		≥75 Years		Male		Female (Premenopausal)		Female (Postmenopausal)	
	FIN	PBO	FIN	PBO	FIN	PBO	FIN	РВО	FIN	PBO	FIN	PBO	FIN	PBO
	(<i>n</i> =6519)	(<i>n</i> =6507)	(<i>n</i> =2958)	(<i>n</i> =2931)	(<i>n</i> =2635)	(<i>n</i> =2586)	(<i>n</i> =926)	(<i>n</i> =990)	(<i>n</i> =4481)	(<i>n</i> =4607)	(<i>n</i> =163)	(<i>n</i> =160)	(<i>n</i> =1875)	(<i>n</i> =1740)
<i>n</i> (%) ^d														
Insulin	3866	3764	1848	1789	1539	1481	479	494	2598	2605	94	99	1174	1060
	(59.3)	(57.8)	(62.5)	(61.0)	(58.4)	(57.3)	(51.7)	(49.9)	(58.0)	(56.5)	(57.7)	(61.9)	(62.6)	(60.9)
GLP-1RA	497	447	273	219	190	188	34	40	359	317	12	18	126	112
	(7.6)	(6.9)	(9.2)	(7.5)	(7.2)	(7.3)	(3.7)	(4.0)	(8.0)	(6.9)	(7.4)	(11.3)	(6.7)	(6.4)
SGLT-2i	438	439	251	266	149	140	38	33	331	340	19	17	88	82
	(6.7)	(6.7)	(8.5)	(9.1)	(5.7)	(5.4)	(4.1)	(3.3)	(7.4)	(7.4)	(11.7)	(10.6)	(4.7)	(4.7)

ACEi = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; BMI = body mass index; CV = cardiovascular; eGFR = estimated

glomerular filtration rate; FIN = finerenone; GLP-1RA = glucagon-like peptide-1 receptor agonist; HbA1c = glycated hemoglobin; PBO = placebo; Q = quartile;

RAS = renin–angiotensin system; SD = standard deviation; SGLT-2i = sodium-glucose co-transporter-2 inhibitor; UACR = urine albumin-to-creatinine ratio.

Values are based on available data.

^a Other: included American Indian/Alaska Native, Native Hawaiian/other Pacific, not reported, multiple.

^b Missing (eGFR): <65 years, *n*=2; 65 to 74 years, *n*=1; postmenopausal female, *n*=3.

^c Missing (UACR): <65 years, *n*=4; 65 to 74 years, *n*=1; male, *n*=2; postmenopausal female, *n*=3.

^d Analysis allowed multiple drug groups for the same drug.

BMJ Open

			Age								S	ex			
n (%)	A	LL	<65 Years 65		65–74	65–74 Years		≥75 Years		Male		Female (Premenopausal)		Female (Postmenopausal)	
	FIN (<i>n</i> =6510)	PBO (<i>n</i> =6489)	FIN (<i>n</i> =2953)	PBO (<i>n</i> =2926)	FIN (<i>n</i> =2631)	PBO (<i>n</i> =2578)	FIN (<i>n</i> =926)	РВО (<i>n</i> =985)	FIN (<i>n</i> =4476)	PBO (<i>n</i> =4595)	FIN (<i>n</i> =163)	РВО (<i>n</i> =160)	FIN (<i>n</i> =1871)	РВО (<i>n</i> =1734	
Any AE	5602 (86.1)	5607 (86.4)	2494 (84.5)	2523 (86.2)	2301 (87.5)	2225 (86.3)	807 (87.1)	859 (87.2)	3899 (87.1)	4011 (87.3)	137 (84.0)	138 (86.3)	1566 (83.7)	1458 (84.1)	
Related to study drug	1206 (18.5)	862 (13.3)	478 (16.2)	384 (13.1)	558 (21.2)	337 (13.1)	170 (18.4)	141 (14.3)	884 (19.7)	612 (13.3)	21 (12.9)	20 (12.5)	301 (16.1)	230 (13.3)	
Leading to discontinuation	414 (6.4)	351 (5.4)	128 (4.3)	124 (4.2)	212 (8.1)	153 (5.9)	74 (8.0)	74 (7.5)	313 (7.0)	249 (5.4)	9 (5.5)	7 (4.4)	92 (4.9)	95 (5.5)	
Any SAE	2060 (31.6)	2186 (33.7)	856 (29.0)	938 (32.1)	871 (33.1)	876 (34.0)	333 (36.0)	372 (37.8)	1487 (33.2)	1590 (34.6)	33 (20.2)	42 (26.3)	540 (28.9)	554 (31.9)	
Related to study drug	83 (1.3)	61 (0.9)	29 (1.0)	27 (0.9)	39 (1.5)	17 (0.7)	15 (1.6)	17 (1.7)	56 (1.3)	46 (1.0)	0	1 (0.6)	27 (1.4)	14 (0.8)	
Leading to discontinuation	145 (2.2)	154 (2.4)	41 (1.4)	48 (1.6)	75 (2.9)	71 (2.8)	29 (3.1)	35 (3.6)	115 (2.6)	112 (2.4)	1 (0.6)	2 (1.3)	29 (1.5)	40 (2.3)	
Any AE leading to death	110 (1.7)	151 (2.3)	43 (1.5)	55 (1.9)	42 (1.6)	62 (2.4)	25 (2.7)	34 (3.5)	73 (1.6)	115 (2.5)	0	3 (1.9)	37 (2.0)	33 (1.9)	
AEs of interest															
Hypotension	282(4.3)	177 (2.7)	101 (3.4)	70 (2.4)	127 (4.8)	76 (2.9)	54 (5.8)	31 (3.1)	216 (4.8)	131 (2.9)	3 (1.8)	0	63 (3.4)	46 (2.7)	
Orthostatic hypotension	46 (0.7)	39 (0.6)	18 (0.6)	15 (0.5)	23 (0.9)	15 (0.6)	5 (0.5)	9 (0.9)	34 (0.8)	30 (0.7)	0	2 (1.3)	12 (0.6)	7 (0.4)	
Hyperkalemia	912 (14.0)	448 (6.9)	360 (12.2)	238 (8.1)	420 (16.0)	158 (6.1)	132 (14.3)	52 (5.3)	647 (14.5)	304 (6.6)	14 (8.6)	16 (10.0)	251 (13.4)	128 (7.4)	
Leading to permanent discontinuation	110 (1.7)	38 (0.6)	31 (1.0)	13 (0.4)	54 (2.1)	19 (0.7)	25 (2.7)	6 (0.6)	83 (1.9)	28 (0.6)	4 (2.5)	1 (0.6)	23 (1.2)	9 (0.5)	
Classified as a serious AE	69 (1.1)	16 (0.2)	28 (0.9)	8 (0.3)	29 (1.1)	5 (0.2)	12 (1.3)	3 (0.3)	45 (1.0)	9 (0.2)	1 (0.6)	0	23 (1.2)	7 (0.4)	
Leading to hospitalization	61 (0.9)	10 (0.2)	26 (0.9)	6 (0.2)	25 (1.0)	2 (<0.1)	10 (1.1)	2 (0.2)	38 (0.8)	5 (0.1)	1 (0.6)	0	22 (1.2)	5 (0.3)	
Gynecomastia	8 (0.1)	11 (0.2)	2 (<0.1)	4 (0.1)	5 (0.2)	3 (0.1)	1 (0.1)	4 (0.4)	8 (0.2)	11 (0.2)	NA	NA	NA	NA	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Serum potassium >5.5 mmol/L	1075/ 6402 (16.8)	470/ 6370 (7.4)	444/2904 (15.3)	233/2871 (8.1)	460/2585 (17.8)	180/2529 (7.1)	171/913 (18.7)	57/970 (5.9)	720/4403 (16.4)	308/4523 (6.8)	16/159 (10.1)	8/154 (5.2)	339/1840 (18.4)	154/1693 (9.1)
Serum potassium >6.0 mmol/L	211/ 6439 (3.3)	80/ 6413 (1.2)	90/2926 (3.1)	44/2896 (1.5)	89/2598 (3.4)	31/2544 (1.2)	32/915 (3.5)	5/973 (0.5)	143/4428 (3.2)	48/4544 (1.1)	4/160 (2.5)	1/156 (0.6)	64/1851 (3.5)	31/1713 (1.8)

AE = adverse event; FIN = finerenone; NA = not applicable; PBO = placebo; SAE = serious adverse event.

^a The "*n*" numerator represents the number of patients at risk with ≥1 treatment-emergent laboratory assessment meeting the criterion. The "*N*" denominator

represents all patients at risk for a treatment-emergent laboratory abnormality. Patients had both a baseline and postbaseline treatment-emergent

value while the baseline value did not exceed the displayed threshold.

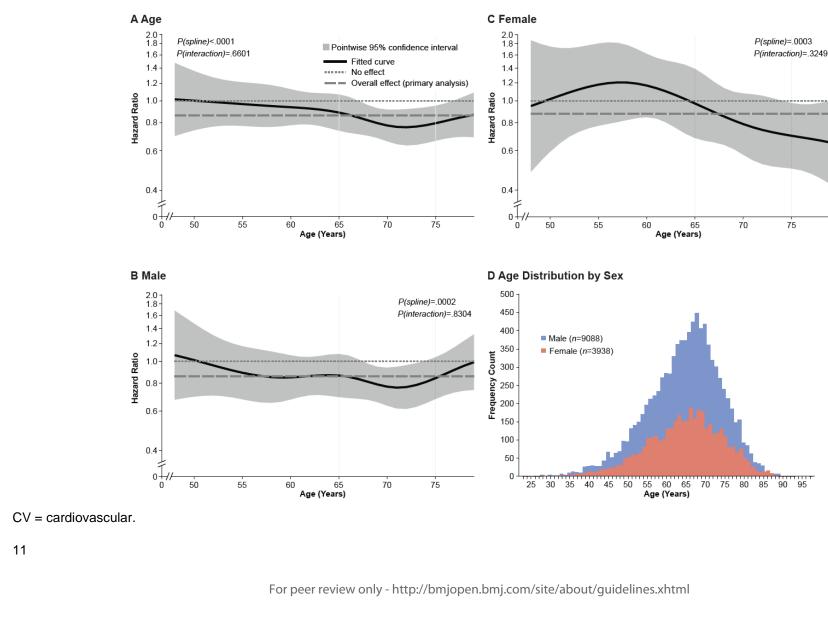
eFigure 1. Analysis of CV composite outcome and subcomponents according to (A) age and (B) sex.

Α.

Finerenone		Placebo			P-interaction	
n/N (%)	<i>n</i> /100 PY	n/N (%)	<i>n</i> /100 PY	(95% CI)		
825/6519 (12.7)	4.34	939/6507 (14.4)	5.01	0.86 (0.78–0.95)	
323/2958 (10.9)	3.74	337/2931 (11.5)	3.93	0.94 (0.81–1.10) 0.4198	
339/2635 (12.9)	4.36	396/2586 (15.3)	5.30	0.84 (0.73–0.98)	
163/926 (17.6)	6.25	206/990 (20.8)	7.61)	
322/6519 (4.9)	1.61	364/6507 (5.6)	1.84	0.88 (0.76–1.02)	
120/2958 (4.1)	1.33	122/2931 (4.2)	1.36	· ● 1 0.97 (0.75–1.25) 0.2064	
117/2635 (4.4)	1.43	157/2586 (6.1)	1.98	0.76 (0.60–0.97)	
85/926 (9.2)	3.08	85/990 (8.6)	2.91	1.05 (0.77–1.44)	
173/6519 (2.7)	0.88	189/6507 (2.9)	0.97	0.91 (0.74–1.12)	
67/2958 (2.3)	0.75	70/2931 (2.4)	0.79	·── ● ── 0.97 (0.69–1.36) 0.3250	
79/2635 (3.0)	0.98	76/2586 (2.9)	0.98	1.02 (0.74–1.40)	
27/926 (2.9)	1.00	43/990 (4.3)	1.52	0.64 (0.39–1.04)	
198/6519 (3.0)	1.01	198/6507 (3.0)	1.02	0.99 (0.82–1.21)	
84/2958 (2.8)	0.95	78/2931 (2.7)	0.89	⊨●1.07 (0.78–1.46) 0.8515	
82/2635 (3.1)	1.02	87/2586 (3.4)	1.12	0.90 (0.66–1.22)	
32/926 (3.5)	1.18	78/990 (7.9)	1.16	1.09 (0.66–1.80)	
256/6519 (3.9)	1.31	325/6507 (5.0)	1.68)	
94/2958 (3.2)	1.06	112/2931 (3.8)	1.27	0.83 (0.63–1.10	.0245	
111/2653 (4.2)	1.38	135/2586 (5.2)	1.75	0.83 (0.65–1.08)	
51/926 (5.5)	1.91	78/990 (7.9)	2.78	0.66 (0.46–0.95)	
				25 0.5 1 2		
	825/6519 (12.7) 323/2958 (10.9) 339/2635 (12.9) 163/926 (17.6) 322/6519 (4.9) 120/2958 (4.1) 117/2635 (4.4) 85/926 (9.2) 173/6519 (2.7) 67/2958 (2.3) 79/2635 (3.0) 27/926 (2.9) 198/6519 (3.0) 84/2958 (2.8) 82/2635 (3.1) 32/926 (3.5) 256/6519 (3.9) 94/2958 (3.2) 111/2653 (4.2)	825/6519 4.34 12.7) 3.74 $323/2958$ 3.74 (10.9) $3.9/2635$ (12.9) 4.36 $163/926$ 6.25 $120/2958$ 1.61 (4.9) 1.33 $117/2635$ 1.43 $85/926$ 3.08 (9.2) 0.88 $67/2958$ 0.75 $79/2635$ 0.98 (2.7) 0.88 $67/2958$ 0.75 $79/2635$ 0.98 (3.0) $27/926$ (2.9) 1.00 $84/2958$ 0.95 $82/2635$ 1.02 (3.1) 1.02 $32/926$ 1.18 $256/6519$ 1.31 $94/2958$ 1.06 (3.2) 1.06 $(111/2653)$ 1.38 (4.2) $51/926$ 1.91	825/6519 4.34 939/6507 (12.7) (14.4) 323/2958 3.74 337/2931 (10.9) (11.5) 339/2635 4.36 (15.3) 163/926 6.25 206/990 (17.6) 6.25 206/990 (17.6) 1.61 364/6507 (4.9) 1.33 122/2931 (4.1) 1.33 122/2931 (4.1) 1.43 157/2586 (4.4) 1.43 (6.1) 85/926 3.08 85/990 (9.2) (8.6) 70/2931 (2.3) 0.75 70/2931 (2.3) 0.75 70/2931 (2.3) 0.75 72/2931 (2.9) 78/2931 (2.9) 27/926 1.00 43/990 (2.9) 78/2931 (2.7) 82/2635 0.95 78/2931 (2.8) 0.95 78/2931 (2.8) 0.95 78/2931 <t< td=""><td>825/6519 4.34 939/6507 5.01 323/2958 3.74 337/2931 3.93 (10.9) (11.5) 3.93 (12.9) 4.36 36/2586 (12.9) 4.36 36/2586 (12.9) 1.61 364/6507 1.84 322/6519 1.61 364/6507 1.84 (4.9) 1.33 122/2931 1.36 117/2635 1.43 157/2586 1.98 (4.1) 1.43 157/2586 1.98 (4.4) 1.43 157/2586 0.97 (9.2) 3.08 85/990 2.91 (9.2) 0.88 189/6507 0.97 (67/2958 0.75 70/2931 0.79 (2.7) 0.88 76/2586 0.98 (3.0) 1.00 43/990 1.52 27/926 1.00 43/990 1.52 (2.9) 1.01 198/6507 0.89 82/2635 1.02 3/41</td><td>nN(%) n100 PY nN(%) n100 PY 825/6519 4.34 939/6507 5.01 0.86 (0.78-0.95 (12.7) (14.4) 3.93 0.94 (0.81-1.10 (10.9) (11.5) 3.93 0.94 (0.81-1.10 (12.9) (15.9) (15.9) 0.86 (0.78-0.95 (12.9) 1.61 364/6507 1.84 0.88 (0.76-1.92 (4.1) 1.33 122/2931 1.36 0.97 (0.75-1.25 (17.6) 6.25 206/990 2.91 0.97 (0.75-1.25 117/2585 1.43 157/2586 0.98 0.97 (0.75-1.25 117/2585 0.88 76/2595 0.97 0.91 (0.74-1.12 (2.7) 0.88 152/2586 0.98 0.97 (0.69-1.38 7/2635 0.98 76/2595 0.97 0.91 (0.74-1.12 (2.9) 1.00 43.990 1.52 0.64 (0.39-1.04 (2.9) 1.01 138/6507 1.02 0.99 (0.82-121 (3.0) 1.02 (3.4) 1.12</td></t<>	825/6519 4.34 939/6507 5.01 323/2958 3.74 337/2931 3.93 (10.9) (11.5) 3.93 (12.9) 4.36 36/2586 (12.9) 4.36 36/2586 (12.9) 1.61 364/6507 1.84 322/6519 1.61 364/6507 1.84 (4.9) 1.33 122/2931 1.36 117/2635 1.43 157/2586 1.98 (4.1) 1.43 157/2586 1.98 (4.4) 1.43 157/2586 0.97 (9.2) 3.08 85/990 2.91 (9.2) 0.88 189/6507 0.97 (67/2958 0.75 70/2931 0.79 (2.7) 0.88 76/2586 0.98 (3.0) 1.00 43/990 1.52 27/926 1.00 43/990 1.52 (2.9) 1.01 198/6507 0.89 82/2635 1.02 3/41	nN(%) n100 PY nN(%) n100 PY 825/6519 4.34 939/6507 5.01 0.86 (0.78-0.95 (12.7) (14.4) 3.93 0.94 (0.81-1.10 (10.9) (11.5) 3.93 0.94 (0.81-1.10 (12.9) (15.9) (15.9) 0.86 (0.78-0.95 (12.9) 1.61 364/6507 1.84 0.88 (0.76-1.92 (4.1) 1.33 122/2931 1.36 0.97 (0.75-1.25 (17.6) 6.25 206/990 2.91 0.97 (0.75-1.25 117/2585 1.43 157/2586 0.98 0.97 (0.75-1.25 117/2585 0.88 76/2595 0.97 0.91 (0.74-1.12 (2.7) 0.88 152/2586 0.98 0.97 (0.69-1.38 7/2635 0.98 76/2595 0.97 0.91 (0.74-1.12 (2.9) 1.00 43.990 1.52 0.64 (0.39-1.04 (2.9) 1.01 138/6507 1.02 0.99 (0.82-121 (3.0) 1.02 (3.4) 1.12	

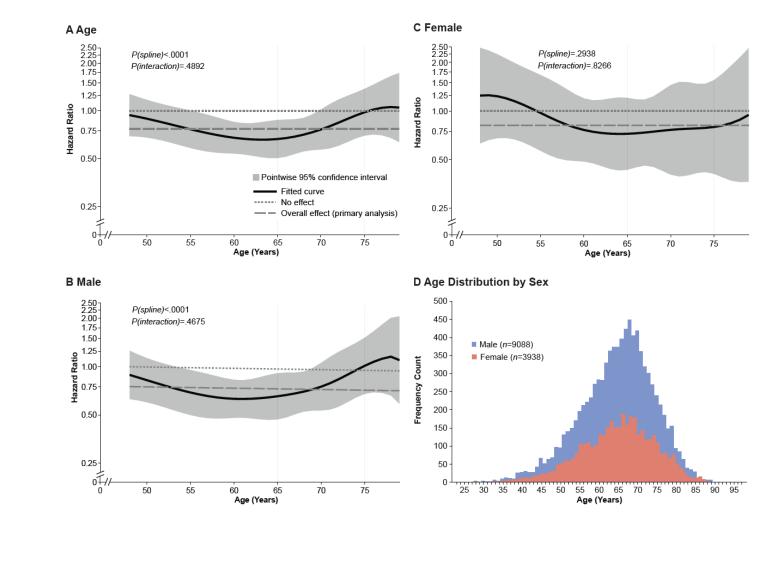
В.

	Finer	enone	Plac	ebo	Hazard ratio	P-interaction
	n/N (%)	<i>n</i> /100 PY	n/N (%)	<i>n</i> /100 PY	- (95% Cl)	
CV composite, sex						
Overall	825/6519 (12.7)	4.34	939/6507 (14.4)	5.01	• 0.86 (0.78–0.95)	-
Male	579/4481 (12.9)	4.39	675/4607 (14.7)	5.08	• 0.86 (0.77–0.96)	.9942
Premenopausal female	11/163 (6.7)	2.29	12/160 (7.5)	2.62	·── ◆ 0.89 (0.35–2.27)	
Postmenopausal female	235/1875 (12.5)	4.38	252/1740 (14.5)	5.03	↓ 0.87 (0.73–1.05)	
CV death						
Overall	322/6519 (4.9)	1.61	364/6507 (5.6)	1.84	0.88 (0.76–1.02)	
Male	207/4481 (4.6)	1.49	249/4607 (5.4)	1.77	0.85 (0.70–1.02)	.6925
Premenopausal female	4/163 (2.5)	0.80	3/160 (1.9)	0.63	h 1.13 (0.20–6.54)	
Postmenopausal female	111/1875 (5.9)	1.98	112/1740 (6.4)	2.12	0.93 (0.71–1.22)	
Nonfatal MI						
Overall	173/6519 (2.7)	0.88	189/6507 (2.9)	0.97	⊷→→ 0.91 (0.74–1.12)	
Male	138/4481 (3.1)	1.02	152/4607 (3.3)	1.10	0.91 (0.72–1.15)	.8211
Premenopausal female	2/163 (1.2)	0.40	1/160 (0.6)	0.21	1.63 (0.16–16.87) ^a	
Postmenopausal female	33/1875 (1.8)	0.60	36/1740 (2.1)	0.69	0.92 (0.56–1.49)	
Nonfatal stroke						
Overall	198/6519 (3.0)	1.01	198/6507 (3.0)	1.02	0.99 (0.82–1.21)	
Male	150/4481 (3.3)	1.11	135/4607 (2.9)	0.98	+ ↓ 1.14 (0.90–1.44)	.1103
Premenopausal female	3/163 (1.8)	0.61	4/160 (2.5)	0.86	• 0.65 (0.14–3.06)	
Postmenopausal female	45/1875 (2.4)	0.81	59/1740 (3.4)	1.14	0.73 (0.49–1.08)	
HHF						
Overall	256/6519 (3.9)	1.31	325/6507 (5.0)	1.68	•◆• 0.78 (0.66–0.92)	
Male	163/4481 (3.6)	1.20	244/4607 (5.3)	1.78	• ← 0.66 (0.54–0.81)	.0245
Premenopausal female	5/163 (3.1)	1.02	4/160 (2.5)	0.85	1.39 (0.33–5.93)	
Postmenopausal female	88/1875 (4.7)	1.61	77/1740 (4.4)	1.50	1.06 (0.78–1.44)	
					0.125 0.25 0.5 1 2 4 8	
				•	Favors finerenone Favors placebo	

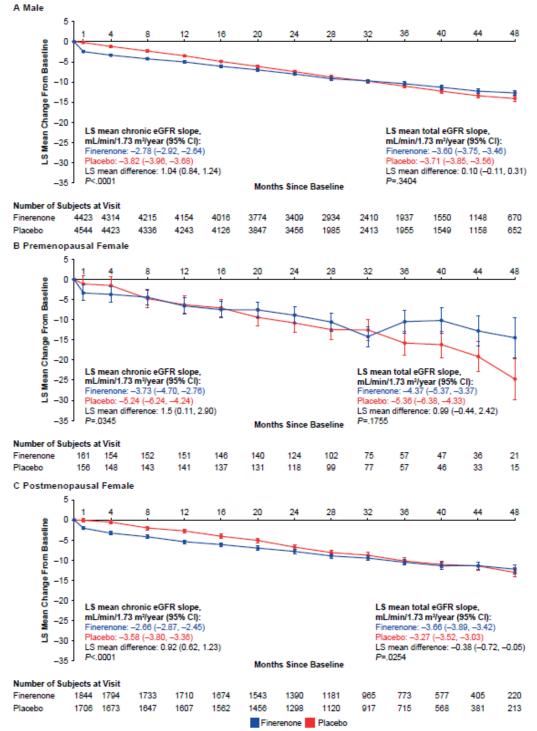

A stratified Cox proportional hazards model including treatment was calculated separately by subgroup category. The *P*_{interaction} is based on a stratified Cox proportional hazards model including treatment, subgroup, and treatment by subgroup interaction.

CV composite outcome includes CV death, nonfatal MI, nonfatal stroke, or HHF.

CI = confidence interval; CV = cardiovascular; HHF = hospitalization for heart failure; MI = myocardial infarction; PY = patient-years.

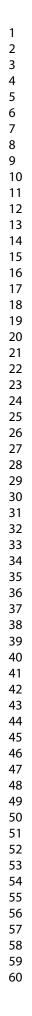

^a An unstratified model using Firth's penalized likelihood approach was applied due to zero cell counts and/or convergence issues.

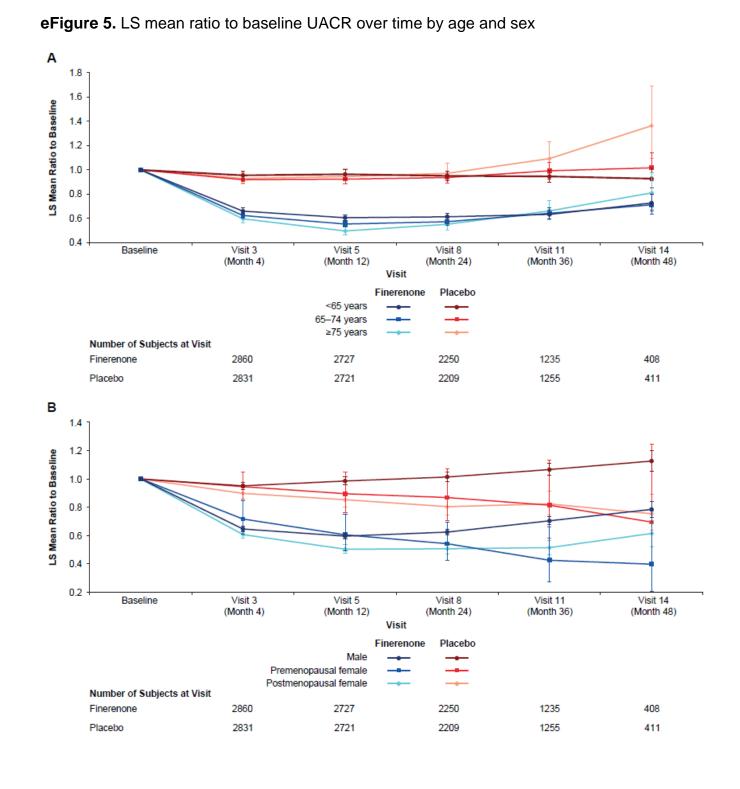
eFigure 2. Hazard ratio (finerenone vs placebo) as a function of age modeled with cubic splines for CV composite outcome by age (A), spline for hazard ratio of CV composite outcomes by sex (B, C), and age distribution by sex (D).


 BMJ Open

eFigure 3. Hazard ratio (finerenone vs placebo) as a function of age modeled with cubic splines for kidney composite outcome by age (A), spline for hazard ratio of kidney composite outcomes by sex (B, C), and age distribution by sex (D).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


eFigure 4. LS mean change in eGFR from baseline, chronic, and total slopes over time by sex.



Chronic eGFR slope from month 4 to end-of-study visit.

CI = confidence interval; eGFR = estimated glomerular filtration rate; LS = least-squares.

BMJ Open

LS = least-squares; UACR = urine albumin-to-creatinine ratio.

2.3 (1.2-4.5)

2.8 (1.7-4.7)

4.4 (1.8-10.8)

Finerenone Placebo **Relative risk** (95% CI) n/N (%) n/N (%) Sex Male 83/4476 (1.9) 28/4595 (0.6) 3.1 (2.0-4.7) Premenopausal female 4/163 (2.5) 1/160 (0.6) 3.0 (0.5-18.9) Postmenopausal female 9/1734 (0.5) 2.4 (1.1-5.1) 23/1871 (1.2) Age (years) Age <65

0.5

Favors placebo

eFigure 6. Relative risk of treatment-emergent hyperkalemia causing permanent discontinuation of study drug by age and sex

Relative risk values based on Mantel-Haenszel estimates (stratified by study). For the relative risk, a

Favors finerenone

treatment-arm-size zero cell correction with zero term = 0.5 was applied.

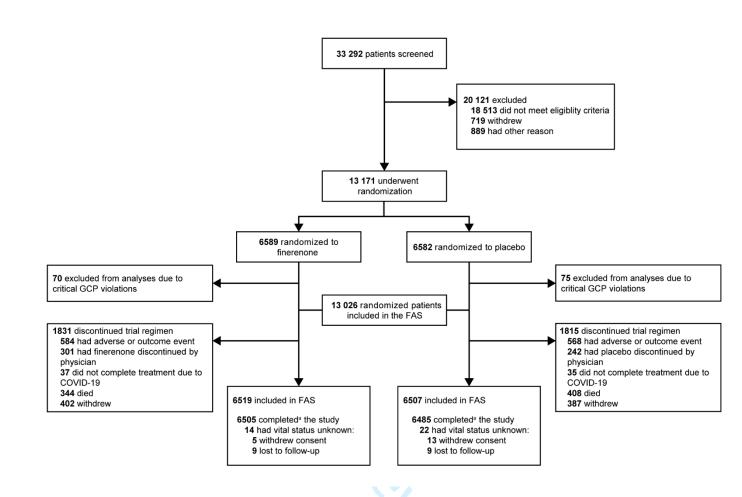
13/2926 (0.4)

19/2578 (0.7)

6/985 (0.6)

31/2953 (1.0)

54/2631 (2.1)


25/926 (2.7)

Age 65-74

Age ≥75

review only

eFigure 7. FIDELITY CONSORT diagram.

^a The patient was considered as having completed the study if there was a contact with the patient

after the end-of-study notification or if the patient died.

CONSORT = Consolidated Standards of Reporting Trials; COVID-19, coronavirus disease of 2019;

FAS, full analysis set; FIDELITY = The FInerenone in chronic kiDney diseasE and type 2 diabetes:

Combined FIDELIO-DKD and FIGARO-DKD Trial programme analysis; GCP, Good Clinical Practice.

BMJ Open

CONSORT 2010 checklist of information to include when reporting a randomised trial*

Section/Topic	ltem No	Checklist item	Reported on page No
Title and abstract			
	1a	Identification as a randomised trial in the title	1 – Post hoc
			analysis of a
			previously
			reported RCT
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts)	3-4
Introduction			
Background and	2a	Scientific background and explanation of rationale	5-6
objectives	2b	Specific objectives or hypotheses	6
Methods	_		
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	6-7
	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons	6
Participants	4a	Eligibility criteria for participants	6
	4b	Settings and locations where the data were collected	Reported
			previously
Interventions	5	The interventions for each group with sufficient details to allow replication, including how and when they were actually administered	6-7
Outcomes	6a	Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed	7
	6b	Any changes to trial outcomes after the trial commenced, with reasons	N/A
Sample size	7a	How sample size was determined	Reported
			previously
	7b	When applicable, explanation of any interim analyses and stopping guidelines	Reported
			previously
Randomisation:			
Sequence	8a	Method used to generate the random allocation sequence	Reported
generation			previously

	8b	Type of randomisation; details of any restriction (such as blocking and block size)	Reported previously
Allocation concealment mechanism	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	Reported previously
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions	Reported previously
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those assessing outcomes) and how	Reported previously
	11b	If relevant, description of the similarity of interventions	Reported previously
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	7-8
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses	7-8
Results			
Participant flow (a diagram is strongly	13a	For each group, the numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome	8-11; eTable 1
recommended)	13b	For each group, losses and exclusions after randomisation, together with reasons	eFigure 7
Recruitment	14a	Dates defining the periods of recruitment and follow-up	Reported previously
	14b	Why the trial ended or was stopped	Reported previously
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	Table 1; eTable 1
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups	8-11; eTable 1
Outcomes and estimation	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval)	12-13 Figures 1-2 eFigure 1
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended	N/A
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from exploratory	eFigures 2-5
Harms	19	All important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	14-15
CONSORT 2010 checklist		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Page 2

BMJ Open

Page 49 of 49

1	Discussion			
2	Limitations	20	Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses	17
3	Generalisability	21	Generalisability (external validity, applicability) of the trial findings	Reported
4				previously
5 6	Interpretation	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	15-18
7	Other information			
8 9	Registration	23	Registration number and name of trial registry	4
10	Protocol	24	Where the full trial protocol can be accessed, if available	Primary
11				publications
12				with full
13				protocols are
14 15				cited (6)
16	Funding	25	Sources of funding and other support (such as supply of drugs), role of funders	19-20
17				
18	*We strongly recommon	d roodin	a this statement in conjunction with the CONSORT 2010 Europeration and Eleboration for important elevifications on all the items. If rela	want wa alao
19 20	•••		g this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If rele	
20 21	-		extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal interventions, and	pragmatic trials.
22	Additional extensions are	e fortheo	oming: for those and for up to date references relevant to this checklist, see <u>www.consort-statement.org</u> .	
23				
24				
25				
26 27				
27 28				
29				
30				
31				
32				
33 34				
35				
36				
37				
38				
39 40				
40 41				
42				
43	CONSORT 2010 checklist		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Page 3
44				
45				

BMJ Open

BMJ Open

Finerenone Cardiovascular and Kidney Outcomes by Age and Sex: FIDELITY Post Hoc Analysis of Two Phase 3, Multicenter, Double-Blind Trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-076444.R2
Article Type:	Original research
Date Submitted by the Author:	16-Feb-2024
Complete List of Authors:	Bansal, Shweta ; The University of Texas Health Science Center at San Antonio, Department of Medicine Canziani, M. E. F.; Univ Fed Sao Paulo Birne, Rita; Centro Hospitalar Lisboa Ocidental, Department of Nephrology; University of Lisbon, Nova Medical School Anker, Stefan; Charité Universitätsmedizin, Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT) Bakris, George; University of Chicago, Hypertension Center Filippatos, Gerasimos; National and Kapodistrian University of Athens Rossing, Peter; Steno Diabetes Center AS; University of Copenhagen, Department of Clinical Medicine Ruilope, Luis M ; Institute of Research imas12, Cardiorenal Translational Laboratory and Hypertension Unit; Hospital Universitario 12 de Octubre, CIBER-CV Farjat, Alfredo; Bayer plc Kolkhof, Peter; Cardiovascular Precision Medicines Bayer AG Lage, Andrea; Bayer SA Brinker, Meike; Cardiology and Nephrology Clinical Development Pitt, B; University of Michigan
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Risk Factors, Diabetic nephropathy & vascular disease < DIABETES & ENDOCRINOLOGY, DIABETES & ENDOCRINOLOGY, Cardiovascular Disease

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

4 5 6	1	Finerenone Cardiovascular and Kidney Outcomes by Age
7 8 9	2	and Sex: FIDELITY Post Hoc Analysis of Two Phase 3,
10 11 12	3	Multicenter, Double-Blind Trials
13 14	4	Author(s)
15 16	5	Shweta Bansal, MD, ¹ Maria E.F. Canziani, MD, ² Rita Birne, MD, ^{3,4} Stefan D. Anker, MD,
17 18	6	PhD, ⁵ George L. Bakris, MD, ⁶ Gerasimos Filippatos, MD, ⁷ Peter Rossing, MD, DMSc, ^{8,9} Luis
19 20 21	7	M. Ruilope, MD, ^{10–12} Alfredo E. Farjat, PhD, ¹³ Peter Kolkhof, PhD, ¹⁴ Andrea Lage, MD, ¹⁵
21 22 23	8	Meike Brinker, MD, ¹⁶ Bertram Pitt, MD ¹⁷
24 25	9	
26 27	10	Institution(s)
28 29	11	¹ Division of Nephrology, Department of Medicine, University of Texas Health San Antonio,
30 31	12	San Antonio, Texas, USA
32 33	13	² Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
34 35	14	³ Department of Nephrology, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
36 37 38	15	⁴ Nova Medical School, University of Lisbon, Lisbon, Portugal
39 40	16	⁵ Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center
41 42	17	for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK)
43 44	18	partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
45 46	19	⁶ Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
47 48	20	⁷ National and Kapodistrian University of Athens, School of Medicine, Department of
49 50	21	Cardiology, Attikon University Hospital, Athens, Greece
51 52	22	⁸ Steno Diabetes Center Copenhagen, Gentofte, Denmark
53 54	23	⁹ Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
55 56	24	¹⁰ Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research imas12,
57 58 59	25	Madrid, Spain
60	26	¹¹ CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain 1

1 2		
2 3 4	27	¹² Faculty of Sport Sciences, European University of Madrid, Madrid, Spain
5 6	28	¹³ Research and Development, Clinical Data Sciences and Analytics, Bayer PLC, Reading,
7 8	29	UK
9 10	30	¹⁴ Research and Early Development, Cardiovascular Precision Medicines, Bayer AG,
11 12 13	31	Wuppertal, Germany
14	32	¹⁵ Cardiology and Nephrology Clinical Development, Bayer SA, São Paulo, Brazil
15 16	33	¹⁶ Cardiology and Nephrology Clinical Development, Bayer AG, Wuppertal, Germany
17 18 19	34	¹⁷ Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan,
20 21	35	USA
22 23	36	
24 25	37	Contact information for corresponding author:
26 27	38	Name: Shweta Bansal, MD, FASN
28 29	39	Address: Department of Medicine, Division of Nephrology, Joe R. & Teresa Lozano Long
30 31	40	School of Medicine, UT Health, San Antonio, TX, USA
32 33	41	7703 Floyd Curl Drive, MSC 7882
34 35	42	San Antonio, TX-78229, USA
36 37	43	Phone no: 210-422-0438
38 39 40	44	Fax no: 210-567-4712
41 42	45	Email: bansals3@uthscsa.edu
43 44	46	Email: bansals3@uthscsa.edu
45 46	47	Journal: BMJ Open
47 48	48	Running head: Finerenone: Cardiovascular and Kidney Outcomes by Age and Sex
49 50	49	Key words: chronic kidney disease, type 2 diabetes, cardiovascular, finerenone, risk factors
51 52	50	Word count: 3050 of 4000
53 54	51	No. of figures and tables: 4 of 5 tables/figures
55 56 57 58 59 60	52	No. of references: 45

ABSTRACT Objectives: To evaluate the efficacy and safety of finerenone, a selective, nonsteroidal mineralocorticoid receptor antagonist, on cardiovascular and kidney outcomes by age and/or sex. **Design:** FIDELITY post-hoc analysis; 3-year median follow-up. Setting: FIDELITY: a prespecified analysis of FIDELIO-DKD and FIGARO-DKD. Participants: Adults with type 2 diabetes and chronic kidney disease receiving optimized renin-angiotensin system inhibitors (N=13 026). Interventions: Randomized 1:1; finerenone or placebo. Primary and secondary outcome measures: Cardiovascular (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure [HHF]) and kidney (kidney failure, sustained ≥57% estimated glomerular filtration rate [eGFR] decline, or renal death) composite outcomes. **Results:** Mean age was 64.8 years; 45.2%, 40.1%, and 14.7% were aged <65, 65–74, and ≥75 years, respectively; 69.8% were male. Cardiovascular benefits of finerenone versus placebo were consistent across age (hazard ratio [95% confidence interval]: 0.94 [0.81–1.10] [<65 years], 0.84 [0.73–0.98] [65–74 years], 0.80 [0.65–0.99] [≥75 years]; P_{interaction}=.42) and sex (hazard ratio [95% confidence interval]: 0.86 [0.77-0.96] [male], 0.89 [0.35-2.27] [premenopausal female], 0.87 [0.73–1.05] [postmenopausal female]; P_{interaction}=.99). HHF risk reduction was not modified by age (*P*_{interaction}=.70) but appeared more pronounced in males ($P_{interaction}$ =.02). Kidney events were reduced with finerenone versus placebo in ages <65 and 65–74 but not ≥75; no heterogeneity in treatment effect was observed (P_{interaction}=.51). In sex subgroups, finerenone consistently reduced kidney events (P_{interaction}=.85). Finerenone reduced albuminuria and eGFR decline regardless of age and sex. Hyperkalemia increased with finerenone, but discontinuation rates were <3% across subgroups. Gynecomastia in males was uncommon across age subgroups and identical between treatment groups.

1 2			
2 3 4	80	Co	nclusions: Finerenone improved cardiovascular and kidney outcomes with no significant
5 6	81	het	erogeneity between age and sex subgroups; HHF risk reduction appeared more
7 8	82	pro	nounced in males. Finerenone demonstrated a similar safety profile across age and sex.
9 10	83	Re	gistration: FIDELIO-DKD (NCT02540993); FIGARO-DKD (NCT02545049)
11 12	84		
13 14 15	85	Ab	stract word count: 300 of 300
16 17 18	86	ST	RENGTHS AND LIMITATIONS OF THIS STUDY
19 20	87	•	An advantage of this study was the use of combined individual-level data from the
21 22	88		FIDELIO-DKD and FIGARO-DKD phase 3 clinical trials, resulting in a large number of
23 24	89		patients included in the full analysis set
25 26	90	•	This study did not use predefined age categories, as it was a post hoc analysis, which
27 28	91		may have resulted in some of the tests performed being underpowered
29 30	92	•	Limitations present in FIDELITY are present in this analysis, such as the small proportion
31 32	93		of Black patients and exclusion of patients with nonalbuminuric CKD
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 	94		

95 INTRODUCTION

In patients with diabetes, the risk of cardiovascular (CV) disease and chronic kidney disease
(CKD) increases with age.[1] Likewise, vascular complications are affected by sex and are
increased in females more than males in patients with diabetes.[2]

Among individuals aged 50-75 years without baseline diabetes, CKD, or CV disease, males have a steeper decline in glomerular filtration rate (GFR) than females.[3] However, reported effects of sex on risk of incidental and progressive CKD in patients with type 2 diabetes (T2D) have been inconsistent.[4-6] In trials including patients with CKD, female representation varies (25-40%),[7-11] whereas in real-world studies, females make up over half of patients.[12,13]

²⁶ ²⁷ 106

Overactivation of the mineralocorticoid receptor (MR) is associated with CV and kidney diseases.[14,15] In epithelial cells, the 11 β -hydroxysteroid dehydrogenase type 2 (11 β -HSD2) enzyme prevents inappropriate MR activation by cortisol.[16-18] The activity of 11β-HSD2 decreases with age, resulting in MR overactivation in the elderly despite low circulating aldosterone levels. [16-18] Sex also influences 11β-HSD2 activity, particularly in patients with hypertension, where 11β-HSD2 activity is reduced in males versus females.[16] The MR is also expressed in nonepithelial cells, including endothelial cells, vascular smooth muscle cells, adipocytes, and immune cells.[17] In many of these, the MR may be activated by cortisol because of a lack of protection by 11β-HSD2.[19,20]

Despite management with recommended treatments for CKD in T2D, 10–13% of patients experience CKD progression or kidney failure and are at high risk of CV events, including CV death within 2–3 years following treatment initiation.[10,21,22] Finerenone, a selective, nonsteroidal MR antagonist (MRA), reduced the risk of CKD progression and CV outcomes compared with placebo in patients with CKD and T2D in FIDELITY (The FInerenone in

chronic kiDney diseasE and type 2 diabetes: Combined FIDELIO-DKD and FIGARO-DKD Trial programme analysis), a prespecified pooled analysis of the FIDELIO-DKD (FInerenone in reducing kiDnEy faiLure and dlsease progression in Diabetic Kidney Disease; NCT02540993) and FIGARO-DKD (FInerenone in reducinG cArdiovascular moRtality and mOrbidity in Diabetic Kidney Disease; NCT02545049) phase 3 trials.[21] However, the influence of age and sex on outcomes with finerenone is unknown. This post hoc analysis evaluated whether the cardiovascular and kidney benefits and safety profile of finerenone observed in FIDELITY are consistent in patients with CKD and T2D across ages and in both sexes.

131 METHODS

132 Study design and patients

FIDELITY combined individual patient-level data from the FIDELIO-DKD and FIGARO-DKD phase 3 clinical trials. The study design, procedures, and outcomes for the trials have been previously published.[23-25] The FIDELIO-DKD and FIGARO-DKD trials were conducted in accordance with the principles of the Declaration of Helsinki. Protocol approvals were obtained from local regulatory authorities and ethics committees. Written informed consent was provided by all participants. These studies were reported following the Consolidated Standards of Reporting Trials (CONSORT) reporting guideline. Eligible patients were aged ≥18 years with CKD and T2D, receiving maximum tolerated renin-angiotensin system inhibitor, and with serum potassium levels <4.8 mmol/L at screening. Patients had either a urine albumin-to-creatinine ratio (UACR) \geq 30–<300 mg/g and an estimated GFR (eGFR) \geq 25– \leq 90 mL/min/1.73 m², or UACR \geq 300– \leq 5000 mg/g and eGFR \geq 25 mL/min/1.73 m². Patients with symptomatic heart failure (HF) with reduced ejection fraction were excluded because this implies an indication for a steroidal MRA.

BMJ Open

1 2		
2 3 4	148	Standard-of-care therapy with a renin–angiotensin system inhibitor was optimized during the
5 6	149	run-in period. Patients were randomly assigned (1:1) to receive finerenone at titrated doses
7 8 9	150	(10 or 20 mg) once-daily oral treatment or matching placebo.
9 10 11 12 13 14 15 16	151	Key outcomes
	152	Efficacy outcomes included a CV composite outcome of CV death, nonfatal myocardial
	153	infarction, nonfatal stroke, or hospitalization for HF (HHF), and a kidney composite outcome
17 18	154	of kidney failure, sustained ≥57% eGFR decline, or renal death. Additional outcomes
19 20	155	included HHF and change in UACR and eGFR over time.
21 22	156	
23 24	157	Safety outcomes included incidence of investigator-reported adverse events (AEs), including
25 26	158	those leading to treatment discontinuation, central laboratory assessment of serum
27 28	159	potassium levels >5.5 and >6.0 mmol/L, and other safety events of interest, such as
29 30	160	hypotension, hyperkalemia, and gynecomastia in males.
31 32 33	161	
33 34 35 36 37	162	Outcomes were analyzed according to patient age at baseline (<65, 65–75, ≥75 years) and
	163	sex. Females were categorized as either pre- or postmenopausal if they were aged <51.4 or
38 39	164	≥51.4 years at baseline, respectively (based on the median age of menopause onset from
40 41 42	165	the Massachusetts Women's Health Study).[26]
43 44 45	166	Statistical analysis
46 47	167	Statistical analyses were performed as described in FIDELITY.[23] The full analysis set
48 49	168	comprised all randomized patients (except those with critical Good Clinical Practice
50 51	169	violations, who were prospectively excluded). Safety analyses were performed in the safety
52 53	170	analysis set (randomized patients without critical Good Clinical Practice violations who took
54 55	171	>1 dose of study drug). The analyses were prespecified exploratory evaluations of outcomes
56 57	172	according to age and sex, with events reported from randomization up to the end-of-study
58 59 60	173	visit. Stratified Cox proportional hazards models, [27,28] including stratification factors:
		7

BMJ Open

1 2		
- 3 4	174	geographic region, eGFR and albuminuria category at screening, history of CV disease, and
5 6	175	study, were used for the analysis of time-to-event clinical outcomes. The <i>P</i> -values for
7 8	176	interaction between the treatment group (finerenone or placebo) and each baseline subgroup
9 10	177	(age or sex) were based on stratified Cox proportional hazards models, accounting for the
11 12	178	treatment effect, the subgroup effect, and their interaction.
13 14	179	
15 16 17 18 19	180	Changes in UACR and eGFR over time were assessed using a linear mixed-model analysis
	181	accounting for repeated measurements over time. The least-squares mean ratio and
19 20 21	182	absolute change from baseline were estimated from the models for changes in UACR and
21 22 23	183	eGFR, respectively. The 2-slope, linear spline, mixed-model, repeated measure method[29]
24 25	184	was used to estimate the rate of change in eGFR across time, specifically total (annualized
26 27	185	rate of change in eGFR from baseline to permanent discontinuation or end of study) and
28 29	186	chronic (from month 4 to permanent discontinuation or end of study) eGFR slopes. To
30 31	187	account for possible nonlinear effects of age on clinical outcomes, age was modeled with
32 33	188	cubic splines with 3 knots in Cox proportional hazards models, to produce plots of the hazard
34 35	189	ratios (HRs) and 95% confidence interval as functions of age and sex.
36 37	100	Definite and multiplication and
38 39	190	Patients and public involvement
40 41 42	191	No patient or public involvement in the current study.
42 43 44	192	No patient or public involvement in the current study. RESULTS
45 46		
47 48	193	Patients
49 50	194	FIDELITY included 13 026 patients.[23] Median follow-up was 3 years (interquartile range
51 52	195	2.3–3.8).[23] Mean age at baseline was 64.8 years (standard deviation 9.5), with 45.2%,
53 54	196	40.1%, and 14.7% of patients aged <65, 65–74, and ≥75 years at baseline, respectively.
55 56	197	Most patients (69.8%) were male; 2.5% were premenopausal females, and 27.8% were
57 58	198	postmenopausal females. Patients were distributed evenly between treatment arms within
59 60	199	age and sex subgroups (eTable 1). 8

2 3 4	
4 5 6 7	4
7 8	4
9 10	
11 12	
8 9 10 11 12 13 14 15 16 17 18 19	
15 16	4
17 18	4
19 20	
21 22 22	
25 24 25	
25 26 27	
27 28 29	
30 31	
32 33	
34 35	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

Baseline characteristics 200

201 Baseline characteristics were similar across age subgroups except for some key differences 202 (Table 1). The overall FIDELITY population was predominantly White (68.1%), the proportion 203 of which increased with age. Mean eGFR was 64, 54, and 48 mL/min/1.73 m² in patients 204 aged <65, 65–75, and ≥75 years, respectively. Median UACR was 650, 439, and 332 mg/g in 205 patients aged <65, 65–75, and ≥75 years, respectively. History of CV disease was more

.ρ; this ex subgroup. 206 common in the ≥75 years group; this trend was also observed for atrial fibrillation/atrial flutter.

207 Baseline characteristics in sex subgroups are shown in Table 1.

5

6 7

8

9

10

11

12

13 14

15

16 17

18

19 20

21

22 23

24

25

26 27

28

29

30

31 32

33

34

35

36

41 42 43

44 45 46 BMJ Open

Postmenopausal

Female

(*n*=3615)

 66.3 ± 8.0

0 (0.0)

3615 (100)

671 (18.6)

201 (5.6)

2471 (68.4)

272 (7.5)

 136.9 ± 14.3

75.6 ± 9.5

 16.0 ± 9.1

7.9 ± 1.4

 4.4 ± 0.4

55.6 ± 21.3

Table 1. Patient Baseline Characteristics According to Age and Sex 208 Sex Age All Characteristic <65 Years 65–74 Years ≥75 Years Male Premenopausal (N=13 026) (*n*=5889) (*n*=5221) (*n*=1916) (*n*=9088) Female (*n*=323) Age, y, mean ± SD 64.8 ± 9.5 56.4 ± 6.6 69.2 ± 2.8 78.4 ± 3.1 64.8 ± 9.5 45.1 ± 4.9 Sex, *n* (%) 1839 (31.2) 1501 (28.7) 598 (31.2) 9088 (100) 0 (0.0) 3938 (30.2) Female 4050 (68.8) 3720 (71.3) 0 (0.0) Male 9088 (69.8) 1318 (68.8) 323 (100) Race, *n* (%) 1591 (27.0) 997 (19.1) 306 (16.0) 2136 (23.5) Asian 2894 (22.2) 87 (26.9) Black/African American 522 (4.0) 309 (5.2) 160 (3.1) 53 (2.8) 284 (3.1) 37 (11.5) White 8869 (68.1) 3592 (61.0) 3817 (73.1) 1460 (76.2) 6231 (68.6) 167 (51.7) Othera 741 (5.7) 397 (6.7) 247 (4.7) 97 (5.1) 437 (4.8) 32 (9.9) Systolic blood pressure, mm 136.7 ± 14.2 135.6 ± 14.0 137.4 ± 14.2 138.4 ± 14.6 136.8 ± 14.2 133.0 ± 14.0 Hg, mean (SD) Diastolic blood pressure, mm 76.4 ± 9.6 78.8 ± 9.1 74.9 ± 9.4 72.8 ± 9.8 76.5 ± 9.7 80.1 ± 8.4 Hg, mean (SD) Duration of diabetes, years, 15.4 ± 8.7 13.5 ± 7.6 16.4 ± 8.6 18.6 ± 10.4 15.3 ± 8.5 10.6 ± 7.0

 7.9 ± 1.5

 4.4 ± 0.5

 64.3 ± 24.0

 7.7 ± 1.4

 4.4 ± 0.4

57.6 ± 21.7

10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

7.6 ± 1.3

 4.4 ± 0.4

53.5 ± 18.5

 7.4 ± 1.2

 4.4 ± 0.4

48.1 ± 15.1

7.6 ± 1.3

 4.3 ± 0.4

57.7 ± 21.2

8.2 ± 1.7

 4.3 ± 0.4

77.0 ± 28.9

mean (SD)

mean (SD)

(SD)

HbA1c, %, mean (SD)

Serum potassium, mmol/L,

eGFR, mL/min/1.73 m², mean

UACR, mg/g, median (Q1–Q3)	514.68 (197.8–1147.1)	650.48 (315.2– 1363.5)	438.63 (154.1– 1030.7)	332.29 (107.8– 830.5)	511.53 (200.9– 1130.1)	793.52 (376.6–1547.3)	501.47 (173.6–1149.1)	
BMI, kg/m ² , mean (SD)	31.3 ± 6.0	32.0 ± 6.4	31.1 ± 5.7	29.6 ± 5.0	31.0 ± 5.6	34.1 ± 7.9	32.0 ± 6.6	
Current smoker, n (%)	2093 (16.1)	1283 (21.8)	686 (13.1)	124 (6.5)	1730 (19.0)	35 (10.8)	328 (9.1)	
History of CV disease, present, <i>n</i> (%)	5935 (45.6)	2188 (37.2)	2667 (51.1)	1080 (56.4)	4374 (48.1)	56 (17.3)	1505 (41.6)	
History of heart failure	1007 (7.7)	413 (7.0)	432 (8.3)	162 (8.5)	630 (6.9)	22 (6.8)	355 (9.8)	
History of atrial fibrillation/atrial flutter	1106 (8.5)	266 (4.5)	547 (10.5)	293 (15.3)	867 (9.5)	0	239 (6.6)	
Baseline medications, n (%) ^b		$\mathcal{O}_{\mathcal{O}}$						
RAS inhibitors (ACEis/ARBs)	13003 (99.8)	5876 (99.8)	5213 (99.8)	1914 (99.9)	9069 (99.8)	323 (100.0)	3611 (99.9)	
Beta-blockers	6504 (49.9)	2619 (44.5)	2849 (54.6)	1036 (54.1)	4545 (50.0)	111 (34.4)	1848 (51.1)	
Diuretics	6710 (51.5)	2790 (47.4)	2813 (53.9)	1107 (57.8)	4706 (51.8)	137 (42.4)	1867 (51.6)	
Statins	9399 (72.2)	4033 (68.5)	3920 (75.1)	1446 (75.5)	6696 (73.7)	203 (62.8)	2500 (69.2)	
Calcium channel blockers	7358 (56.5)	3127 (53.1)	3052 (58.5)	1179 (61.5)	5208 (57.3)	149 (46.1)	2001 (55.4)	
Insulin	7630 (58.6)	3637 (61.8)	3020 (57.8)	973 (50.8)	5203 (57.3)	193 (59.8)	2234 (61.8)	
GLP-1RA	944 (7.2)	492 (8.4)	378 (7.2)	74 (3.9)	676 (7.4)	30 (9.3)	238 (6.6)	
SGLT-2i	877 (6.7)	517 (8.8)	289 (5.5)	71 (3.7)	671 (7.4)	36 (11.1)	170 (4.7)	
ACEi = angiotensin-converting en	zyme inhibitor; ARE	3 = angiotensin r	eceptor blocker	BMI = body ma	ss index; CV = c	ardiovascular; eGFF	R = estimated	
glomerular filtration rate; GLP-1RA	A = glucagon-like p	eptide-1 recepto	r agonist; HbA1	c = glycated her	noglobin; Q = qua	artile; RAS = renin–a	ngiotensin syster	
SD = standard deviation; SGLT-2i	= sodium-glucose	co-transporter-2	inhibitor; UACF	R = urine albumir	-to-creatinine rat	io.		
^a Other: included American Indian/Alaska Native, Native Hawaiian/other Pacific Islander, not reported, multiple.								
^b Analysis allowed multiple drug g	roups for the same	drug.						
11								
11								

1 2							
3 4 5	214	Efficacy					
6 7 8 9 10	215	CV composite outcome by age					
10	216	CV composite event rates, including the components of the composite outcome, increased					
11 12 13 14 15 16 17 18 19 20 21	217	with patient age in both treatment arms (Figure 1A and eFigure 1A). Treatment with					
	218	finerenone resulted in a numerical reduction in CV composite event rates versus placebo in					
	219	all age groups (Figure 1A); however, no significant heterogeneity was observed for the effect					
	220	of finerenone across categorical age subgroups ($P_{interaction}$ =.42). There was also no evidence					
	221	of treatment effect modification when age was modeled as a continuous variable					
22 23	222	(<i>P</i> _{interaction} =.10). The trend of HR as a function of age was modeled with cubic splines					
23 24 25 26 27 28 29 30 31 32 33 34	223	(eFigure 2A).					
	224						
	225	HHF event rates were numerically lower with finerenone than placebo in all age subgroups					
	226	(Figure 1A). The effect of finerenone on HHF risk reduction was consistent across age					
	227	subgroups, with no significant heterogeneity observed (<i>P</i> _{interaction} =.70).					
35 36 37	228	CV composite outcome by sex					
37 38 39 40 41	229	CV composite event rates were numerically lower with finerenone than placebo for males,					
	230	premenopausal females, and postmenopausal females (Figure 1B and eFigure 1B). There					
42 43	231	was no significant heterogeneity in the effect of finerenone on reducing the risk of the CV					
44 45 46	232	composite outcome across sex subgroups (<i>P</i> _{interaction} =.99). When age was modeled with cubic					
40 47 48	233	splines by sex, the effect of finerenone was consistent with advancing age in males;					
49 50	234	however, a trend toward a stronger effect in older versus younger females was noted					
51 52	235	(eFigure 2B, eFigure 2C). Age distribution by sex is demonstrated in eFigure 2D.					
53 54	236						
55 56	237	No heterogeneity was observed in the effect of finerenone on reducing the risk of the CV					
57 58	238	death, nonfatal myocardial infarction, and nonfatal stroke components of the CV composite					
59 60	239	outcome (eFigure 1B). However, statistical heterogeneity was observed in the reduction of 12					

BMJ Open

> HHF with finerenone versus placebo ($P_{interaction}$ =.02), and the effect appeared to be more pronounced in males than premenopausal/postmenopausal females (**Figure 1B**). These results persisted after adjustment for differences in baseline age, body mass index, systolic blood pressure, hemoglobin, eGFR, UACR, smoking history, and history of atrial fibrillation between sex subgroups ($P_{interaction}$ =.02).

245 Kidney composite outcome by age

Kidney composite event rates were lower with finerenone than placebo in the <65 years and the 65–74 years groups but were similar in the ≥75 years group (**Figure 2A**). The effect of finerenone on reducing the risk of the kidney composite outcome was consistent across age subgroups, with no significant heterogeneity detected ($P_{interaction}$ =.51) and no evidence of treatment effect modification when age was modeled as a continuous variable ($P_{interaction}$ =.77). The trend of HR as function of age was modeled with cubic splines (**eFigure 3A**).

1 252 Kidney composite outcome by sex

Kidney composite event rates were lower with finerenone than placebo in males but were
 similar in premenopausal and postmenopausal females (Figure 2B). There was no
 significant heterogeneity in the effect of finerenone on reducing the risk of the kidney
 composite outcome across sex subgroups (*P*_{interaction}=.85). When age was modeled with cubic
 splines by sex subgroups, the effect of finerenone suggests trends similar to overall results in
 males and females across all age groups (eFigure 3B, eFigure 3C). Age distribution by sex
 is demonstrated in eFigure 3D.

Effect of finerenone on markers of kidney function and damage by age and sex Finerenone significantly attenuated the least-squares mean change in eGFR from month 4 to end of treatment (chronic eGFR slope) compared with placebo across all age (*P*<.0001 for all 3 subgroups) (**Figure 3**) and sex subgroups (**eFigure 4**). Finerenone reduced UACR over time compared with placebo regardless of age and sex (**eFigure 5**).

BMJ Open

2		
3 4	265	Safety
5 6	266	The incidence of any AE was similar between treatment groups irrespective of age or sex
7 8	267	(eTable 2). There were more drug-related AEs with finerenone than placebo in age and sex
9 10	268	subgroups except premenopausal females, where the incidence was similar. AEs leading to
11 12 13	269	drug discontinuation were more frequent in patients given finerenone than placebo (6.4%
14 15	270	and 5.4%, respectively), with higher incidences in the 65–74 and ≥75 years groups than the
16 17	271	<65 years group; there were more AEs leading to drug discontinuation with finerenone than
18 19	272	placebo in males and premenopausal females but not in postmenopausal females.
20 21	273	
22 23	274	Although the incidences of any serious AEs (SAEs), study drug-related SAEs, or SAEs
24 25	275	leading to drug discontinuation were similar between treatment arms across all age and sex
26 27	276	subgroups, the overall incidences of SAEs increased with age and was highest in males,
28 29 30	277	followed by postmenopausal females, then premenopausal females.
30 31 32	278	
33 34	279	In all age and sex subgroups, the incidences of treatment-emergent hypotension AEs were
35 36	280	higher with finerenone than placebo but did not have a substantial impact on related clinical
37 38	281	outcomes, including falls, dizziness, and fatigue. A trend of increased incidence of
39 40	282	hypotension with increasing age was observed in patients treated with finerenone; however,
41 42	283	the incidence of hypotension was generally low across all age subgroups (<6%; eTable 2).
43 44	284	
45 46 47	285	In FIDELITY, finerenone increased the risk of any hyperkalemia event versus placebo;
47 48 49	286	similar findings were observed in all age and sex subgroups, except premenopausal females
50 51	287	(e Table 2). The incidences of any hyperkalemia AEs leading to discontinuation of study drug
52 53	288	and any serious hyperkalemia AEs leading to hospitalization were low across all age and sex
54 55	289	subgroups (<3% and <2%, respectively). However, the relative risk of treatment
56 57	290	discontinuation because of hyperkalemia with finerenone versus placebo increased with
58 59	291	advancing age (relative risk [95% confidence interval] for ages 45–64, 65–74, and ≥75 years:
60		14

2.2 [1.2–4.3], 2.8 [1.7–4.7], and 4.4 [1.8–10.8], respectively; eFigure 6). Treatment-emergent
serum potassium levels >5.5 mmol/L and >6.0 mmol/L were more frequent with finerenone
than placebo, being consistent across all age and sex subgroups. The incidence of
gynecomastia in males was the same with finerenone (0.2%) and placebo (0.2%) across all
ages.

DISCUSSION

The findings of this post hoc analysis suggest that finerenone reduced the risk of CV and
kidney composite outcomes versus placebo across all age and sex subcategories. In
FIDELITY, HHF was the main driver of CV benefit with finerenone[23]; lower incidences of
HHF with finerenone versus placebo were observed in this analysis across all age
subgroups, with some differences noted between sex subgroups. Moreover, the incidences
of any AEs or SAEs were similar between the treatment groups regardless of age and sex.

The current results are supported by findings from a pharmacokinetics (PK) analysis based on FIDELIO-DKD and FIGARO-DKD data, in which both age and sex were tested as covariates for a population PK model, and their effect on finerenone exposure was not significant, suggesting a lack of influence of these factors on the PK of the drug.[30] Additionally, the results for the CV outcome in this analysis are similar to findings from other studies of MRAs in HF. In TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist), age did not affect the efficacy of spironolactone in patients with HF with reduced ejection fraction (primary composite outcome: CV death, aborted cardiac arrest and HHF; secondary outcomes included CV death, all-cause death and HHF).[31] Moreover, in analyses of HF studies (RALES [Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure], EMPHASIS-HF [Eplerenone in Patients with Systolic Heart Failure and Mild Symptoms], and TOPCAT), MRAs reduced morbidity and mortality in elderly patients, [32] demonstrating a consistent benefit regardless of sex.[33] In contrast to our results, female sex was associated with poorer kidney outcomes

BMJ Open

3 4	319	versus male sex in patients receiving a steroidal MRA for bilateral primary aldosteronism.[34]
5 6	320	The MR can be activated by different drivers in different diseases; MR activation in diabetes
7 8	321	is driven by additional factors other than high aldosterone in comparison with primary
9 10	322	aldosteronism, which may account for differences in outcomes observed across different
11 12 13	323	indications.[35]
14	324	
13	325	In this study, the elderly population had higher risk of certain AEs including hypotension, AEs
	326	leading to discontinuation, and death. Hypotension occurred more frequently in the
	327	finerenone group but did not seem to substantially affect related clinical outcomes.
	328	Hyperkalemia was more prevalent with finerenone but was generally similar across age and
	329	sex. In a FIDELIO-DKD subanalysis, younger age and female sex were independent risk
	330	factors for hyperkalemia (>6.0 mmol/L).[36] Similar findings for age were observed in
	331	TOPCAT post hoc data for patients with HF.[31] Steroidal MRAs have been associated with
	332	gynecomastia in males,[37,38] which was not observed in this study, most likely because
	333	finerenone has no detectable affinity for androgen receptors.[38]
	334	
	335	Preclinical data suggest that different molecular mechanisms drive endothelial dysfunction in
	336	male and female mice[39,40] and that increased age and male sex are associated with MR
	337	overactivation, which is linked to vascular stiffness and endothelial dysfunction.[41,42] In
43 44	338	human aortic smooth muscle cells, MR expression increased with age, leading to epigenetic
45 46	339	changes associated with increased vascular stiffness. These effects were reversed with MR
47 48	340	inhibition.[43] In vitro, MR expression in the whole aortae and early passage aortic vascular
49 50	341	smooth muscle cells was increased in aged (30 months) versus adult (8 months) rat
51 52	342	cells.[41] In a preclinical mouse model, aortic stiffness occurred earlier in male than female
53 54 55	343	mice and correlated with the timing of increased aortic MR expression; vascular stiffness was
55 56 57	344	prevented in smooth muscle cell MR-deficient mice.[42] These data suggest that elderly
57 58 59	345	males may derive the greatest benefit from finerenone; indeed, in this analysis, finerenone-
60	346	treated males had lower risk of the CV composite outcome and HHF versus placebo across 16

BMJ Open

age groups, including >75 years. Moreover, statistical heterogeneity was observed for HHF by sex, persisting after adjustment for differences in baseline characteristics, which might suggest a more pronounced effect of finerenone on HHF reduction in the male subgroup compared with the 2 female subgroups. However, because of the small sample size of the sex subgroups (especially that of the premenopausal female subgroup), definitive conclusions cannot be reached based on this finding. In this study, markers of kidney damage (eGFR decline and UACR) were reduced with finerenone in age subgroups; however, no benefit on kidney outcomes was observed in the >75 years age group. The small sample size of this subgroup precluded definitive conclusions, which may be accounted for by the slowing rate of CKD progression with advancing age.[44,45] Limitations include the study being a post hoc analysis and the chosen age categories not being predefined. In addition, patients may have initiated other treatments during the study. Sample size and number of events for females, particularly premenopausal females, were small. Therefore, there is uncertainty around the estimates and the analysis was underpowered to draw meaningful conclusions in this subgroup. Results for premenopausal females versus postmenopausal females/males should be interpreted with caution because age may partly account for differences observed; the average age of premenopausal females was ~45 years old compared with postmenopausal females (~66 years old) and males (~65 years old) (Table 1). As such, these groups had different baseline characteristics. Higher baseline mean eGFR and median UACR, and lower history of CV comorbidities and hypotension were observed in premenopausal females versus males and postmenopausal females. Additionally, the study design and tests performed may have been underpowered to address the research questions. Furthermore, FIDELITY limitations, mainly the small proportion of Black patients and exclusion of patients with nonalbuminuric CKD, were present in this analysis.

 375 376 In conclusion, this post hoc FIDELITY analysis suggests that finerenone effectively lowers 377 the risk of clinically important cardiovascular and kidney outcomes in patients with CKD and 	1 2		
 In conclusion, this post hoc FIDELITY analysis suggests that finerenone effectively lowers the risk of clinically important cardiovascular and kidney outcomes in patients with CKD and T2D across ages and sexes, with a potentially more pronounced effect on HHF in males that in females. No new safety concerns were identified in those aged >65 years or by sex. 	3	375	
 377 the risk of clinically important cardiovascular and kidney outcomes in patients with CKD and 378 T2D across ages and sexes, with a potentially more pronounced effect on HHF in males that 379 in females. No new safety concerns were identified in those aged >65 years or by sex. 	5	376	In conclusion, this post hoc FIDELITY analysis suggests that finerenone effectively lowers
 T2D across ages and sexes, with a potentially more pronounced effect on HHF in males that in females. No new safety concerns were identified in those aged >65 years or by sex. 	7	377	the risk of clinically important cardiovascular and kidney outcomes in patients with CKD and
3/9 in ternales. No new safety concerns were identified in those aged >65 years of by sex. 380 380 380 380 380 380 380 380 380 380		378	T2D across ages and sexes, with a potentially more pronounced effect on HHF in males than
14 380 15	12	379	in females. No new safety concerns were identified in those aged >65 years or by sex.
59	4 5 6 7 8 9 10 1 1 2 3 14 15 16 7 18 9 20 1 2 2 3 2 4 5 2 6 7 8 9 10 1 1 2 3 14 15 16 7 18 9 20 1 2 2 3 2 4 5 2 7 2 8 9 3 3 3 3 3 3 3 3 4 4 1 4 2 4 3 4 4 5 6 7 8 9 5 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		

381 ACKNOWLEDGMENTS 382 Medical writing assistance was provided by Fay Nikolopoulou, MSc and Ines Neves, MSc of 383 Chameleon Communications International, and was funded by Bayer AG.

385 FUNDING

This work was supported by Bayer AG, who funded the FIDELIO-DKD and FIGARO-DKDstudies and combined analysis. Grant/ award number: Not applicable

389 CONTRIBUTORS

SB prepared the initial analysis; SB, MEFC, RB, SDA, GLB, GF, PR, LMR, AEF, PK, AL, MB, and BP had access to and participated in the interpretation of the data. SB developed the initial manuscript draft, which was then reviewed and edited by MEFC, RB, SDA, GLB, GF, PR, LMR, AEF, PK, AL, MB, and BP. SB, MEFC, RB, SDA, GLB, GF, PR, LMR, AEF, PK, AL, MB, and BP vouch for the completeness and accuracy of the data and agreed to submit the manuscript for publication. The Executive Committee (including SDA, GLB, GF, PR, LMR and BP) in collaboration with the funder (including AEF, PK, AL, and MB) designed the trials and protocols and supervised trial conduct. The funder also had a role in the management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

49 400 **DISCLOSURES**

401 SB reports research support from 3ive, Bayer, Boehringer Ingelheim, Novartis, and Novo
 402 Nordisk; honorarium from UpToDate; consultancy fees from Baxter; and speaker bureau fees
 403 from Home Dialysis University and PD Excellence Academy.

58 404 **MEFC** reports consultancy fees from AstraZeneca, Bayer, Boehringer Ingelheim, and

60 405 Fresenius Medical Care, and research support from Baxter and Fresenius.

BMJ Open

1 2		
2 3 4	406	RB reports consultancy fees from AstraZeneca, Bayer, Boehringer Ingelheim, Gilead, MSD,
5 6	407	Mundipharma, Sanofi, and Servier.
7 8	408	SDA reports grants from Abbott Vascular and Vifor International; and personal fees
9 10	409	from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, BioVentrix, Brahms, Cardiac
11 12	410	Dimensions, Cardior, Cordio, CVRx, Edwards, Impulse Dynamics, Janssen, Novartis,
13 14	411	Occlutech, Respicardia, Servier, Vectorious, and V-Wave.
15 16	412	GLB reports consultancy fees from Alnylam, Ionis, and Merck.
17 18	413	GF is a trial committee member for Amgen, Bayer (no fees received), Boehringer Ingelheim,
19 20 21	414	Medtronic, Novartis, Servier, and Vifor.
21 22 23	415	PR reports personal fees from Bayer during the conduct of the study; he has received
24 25	416	research support and personal fees from AstraZeneca and Novo Nordisk, and personal fees
26 27	417	from Astellas, Boehringer Ingelheim, Eli Lilly, Gilead, Mundipharma, Sanofi, and Vifor; all
28 29	418	fees are given to Steno Diabetes Center Copenhagen.
30 31	419	LMR reports consultancy fees from Bayer.
32 33	420	AEF, PK, AL, and MA are all full-time employees of Bayer.
34 35	421	BP reports consultant fees for AstraZeneca, Bayer, Boehringer Ingelheim, Brainstorm
36 37	422	Medical, Cereno Scientific, G3 Pharmaceuticals, KBP Biosciences, PhaseBio, Proton Intel,
38 39 40	423	Sanofi/Lexicon, Sarfez, scPharmaceuticals, SQ Innovation, Tricida, and Vifor/Relypsa; he
40 41 42	424	has stock options for Brainstorm Medical, Cereno Scientific, G3 Pharmaceuticals, KBP
43 44	425	Biosciences, Proton Intel, Sarfez, scPharmaceuticals, SQ Innovation, Tricida, and
45 46	426	Vifor/Relypsa; he also holds a patent for site-specific delivery of eplerenone to the
47 48	427	myocardium (US patent #9931412) and a provisional patent for histone-acetylation-
49 50	428	modulating agents for the treatment and prevention of organ injury (provisional patent US
51 52 53 54 55	429	63/045,784).

430 DATA SHARING STATEMENT

431 Availability of the data underlying this publication will be determined according to Bayer's
432 commitment to the EFPIA/PhRMA "Principles for responsible clinical trial data sharing". This

433 pertains to scope, timepoint, and process of data access.

434 As such, Bayer commits to sharing upon request from qualified scientific and medical
435 researchers, patient-level clinical trial data, study-level clinical trial data, and protocols from
436 clinical trials in patients for medicines and indications approved in the United States (US) and
437 European Union (EU) as necessary for conducting legitimate research. This applies to data
438 on new medicines and indications that have been approved by the EU and US regulatory
439 agencies on or after January 01, 2014.

Interested researchers can use www.vivli.org to request access to anonymized patient-level data and supporting documents from clinical studies to conduct further research that can help advance medical science or improve patient care. Information on the Bayer criteria for listing studies and other relevant information is provided in the member section of the portal. Data access will be granted to anonymized patient-level data, protocols, and clinical study reports after approval by an independent scientific review panel. Bayer is not involved in the decisions made by the independent review panel. Bayer will take all necessary measures to ensure that patient privacy is safeguarded.

1 2 3 4	448	REF	ERENCES
5 6 7	449	1.	Halter JB, Musi N, McFarland Horne F, et al. Diabetes and cardiovascular disease in
8 9	450		older adults: Current status and future directions. <i>Diabetes</i> 2014;63:2578–89.
10 11	451	2.	Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of
12 13	452		diabetes mellitus. Clinical science (London, England : 1979) 2017;131:833-46.
14 15	453	3.	Melsom T, Norvik JV, Enoksen IT, et al. Sex differences in age-related loss of kidney
16 17	454		function. J Am Soc Nephrol 2022;33:1891–902.
18 19	455	4.	Bairey Merz CN, Dember LM, Ingelfinger JR, et al. Sex and the kidneys: Current
20 21	456		understanding and research opportunities. Nat Rev Nephrol 2019;15:776–83.
22 23 24	457	5.	Maric-Bilkan C. Sex differences in diabetic kidney disease. Mayo Clin Proc
24 25 26	458		2020;95:587–99.
20 27 28	459	6.	Yu MK, Lyles CR, Bent-Shaw LA, et al. Risk factor, age and sex differences in
29 30	460		chronic kidney disease prevalence in a diabetic cohort: The Pathways Study. Am J
31 32	461		Nephrol 2012;36:245–51.
33 34	462	7.	Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in
35 36	463		type 2 diabetes. <i>N Engl J Med</i> 2019;380:347–57.
37 38	464	8.	Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with
39 40	465		chronic kidney disease. <i>N Engl J Med</i> 2020;383:1436–46.
41 42	466	9.	Zannad F, Ferreira JP, Pocock SJ, et al. Cardiac and kidney benefits of empagliflozin
43 44 45	467		in heart failure across the spectrum of kidney function: Insights from EMPEROR-
45 46 47	468		Reduced. Circulation 2021;143:310–21.
48 49	469	10.	Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2
50 51	470		diabetes and nephropathy. N Engl J Med 2019;380:2295–306.
52 53	471	11.	Chertow GM, Block GA, Correa-Rotter R, et al. Effect of cinacalcet on cardiovascular
54 55 56 57 58 59	472		disease in patients undergoing dialysis. <i>N Engl J Med</i> 2012;367:2482–94.
60			

Page 24 of 46

BMJ Open

Tuttle KR, Alicic RZ, Duru OK, et al. Clinical characteristics of and risk factors for 12. chronic kidney disease among adults and children: An analysis of the CURE-CKD registry. JAMA Netw Open 2019;2:e1918169. 13. Gasparini A, Evans M, Coresh J, et al. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol Dial Transplant 2016;31:2086–94. 14. Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid receptor and cardiovascular disease. American journal of hypertension 2018;31:1165–74. 15. Luther JM, Fogo AB. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis. Kidney Int Suppl 2022;12:63-8. 16. Henschkowski J, Stuck AE, Frey BM, et al. Age-dependent decrease in 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) activity in hypertensive patients. Am J Hypertens 2008;21:644-9. 17. Kolkhof P, Jaisser F, Kim SY, et al. Steroidal and novel non-steroidal mineralocorticoid receptor antagonists in heart failure and cardiorenal diseases: comparison at bench and bedside. Handb Exp Pharmacol 2017;243:271–305. 18. Pitt B. The role of mineralocorticoid receptor antagonists (MRAs) in very old patients with heart failure. Heart Fail Rev 2012;17:573-9. 19. Cole TJ, Young MJ. 30 years of the mineralocorticoid receptor: Mineralocorticoid receptor null mice: Informing cell-type-specific roles. J Endocrinol 2017;234:T83–T92. 20. Nakamura T, Girerd S, Jaisser F, et al. Nonepithelial mineralocorticoid receptor activation as a determinant of kidney disease. Kidney Int Suppl 2022;12:12-8. 21. Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: A prespecified analysis from the DAPA-CKD trial. The lancet Diabetes & endocrinology 2021;9:22–31. Mann JFE, Fonseca V, Mosenzon O, et al. Effects of liraglutide versus placebo on 22. cardiovascular events in patients with type 2 diabetes mellitus and chronic kidney disease. Circulation 2018;138:2908-18.

Page 25 of 46

1

2			
3 4 5 6 7 8	501	23.	Agarwal R, Filippatos G, Pitt B, et al. Cardiovascular and kidney outcomes with
	502		finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY
	503		pooled analysis. European heart journal 2022;43:474–84.
9 10	504	24.	Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease
11 12	505		outcomes in type 2 diabetes. N Engl J Med 2020;383:2219–29.
13 14	506	25.	Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular events with finerenone in kidney
15 16	507		disease and type 2 diabetes. N Engl J Med 2021;385:2252–63.
17 18 19 20 21 22	508	26.	McKinlay SM, Brambilla DJ, Posner JG. The normal menopause transition. Maturitas
	509		1992;14:103–15.
22	510	27.	Kleinbaum DG, Klein M. The stratified Cox procedure. In: Kleinbaum DG, Klein M
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	511		eds. Survival analysis: A self-learning text. New York, NY: Springer New York
	512		2012:201–40.
	513	28.	Therneau TM, Grambsch PM. The Cox model. In: Therneau TM, Grambsch PM eds.
	514		Modeling survival data: Extending the Cox model. New York, NY: Springer New York
	515		2000:39–77.
	516	29.	Vonesh E, Tighiouart H, Ying J, et al. Mixed-effects models for slope-based endpoints
	517		in clinical trials of chronic kidney disease. Stat Med 2019;38:4218–39.
	518	30.	Eissing T, Goulooze SC, van den Berg P, et al. Pharmacokinetics and
41	519		pharmacodynamics of finerenone in patients with chronic kidney disease and type 2
	520		diabetes: Insights based on FIGARO-DKD and FIDELIO-DKD. Diabetes, obesity &
45 46	521		metabolism 2023: doi:10.1111/dom.15387.
47 48	522	31.	Vardeny O, Claggett B, Vaduganathan M, et al. Influence of age on efficacy and
49 50	523		safety of spironolactone in heart failure. JACC Heart failure 2019;7:1022–8.
51 52	524	32.	Ferreira JP, Rossello X, Eschalier R, et al. MRAs in elderly HF patients: Individual
53 54	525		patient-data meta-analysis of RALES, EMPHASIS-HF, and TOPCAT. JACC Heart
55 56	526		failure 2019;7:1012–21.
57 58 59			
59 60			

Page 26 of 46

BMJ Open

,			
2 3 4	527	33.	Rossello X, Ferreira JP, Pocock SJ, et al. Sex differences in mineralocorticoid
5 6	528		receptor antagonist trials: A pooled analysis of three large clinical trials. European
7 8	529		journal of heart failure 2020;22:834–44.
9 10	530	34.	Nakamaru R, Yamamoto K, Akasaka H, et al. Sex differences in renal outcomes after
11 12	531		medical treatment for bilateral primary aldosteronism. Hypertension 2021;77:537–45.
13 14	532	35.	Kawanami D, Takashi Y, Muta Y, et al. Mineralocorticoid receptor antagonists in
15 16	533		diabetic kidney disease. Front Pharmacol 2021;12:754239.
17 18	534	36.	Agarwal R, Joseph A, Anker SD, et al. Hyperkalemia risk with finerenone: results
19 20 21	535		from the FIDELIO-DKD trial. J Am Soc Nephrol 2022;33:225–37.
21 22 23	536	37.	Hasegawa T, Nishiwaki H, Ota E, et al. Aldosterone antagonists for people with
24 25	537		chronic kidney disease requiring dialysis. Cochrane Database of Systematic Reviews
26 27	538		2021;2:Cd013109.
28 29	539	38.	Kolkhof P, Joseph A, Kintscher U. Nonsteroidal mineralocorticoid receptor
30 31	540		antagonism for cardiovascular and renal disorders – new perspectives for
32 33	541		combination therapy. Pharmacol Res 2021;172:105859.
34 35	542	39.	Davel AP, Jaffe IZ, Tostes RC, et al. New roles of aldosterone and mineralocorticoid
36 37	543		receptors in cardiovascular disease: Translational and sex-specific effects. Am J
38 39 40	544		Physiol Heart Circ Physiol 2018;315:H989–H99.
40 41 42	545	40.	Faulkner JL, Kennard S, Huby AC, et al. Progesterone predisposes females to
43 44	546		obesity-associated leptin-mediated endothelial dysfunction via upregulating
45 46	547		endothelial MR (mineralocorticoid receptor) expression. Hypertension 2019;74:678-
47 48	548		86.
49 50	549	41.	Krug AW, Allenhofer L, Monticone R, et al. Elevated mineralocorticoid receptor
51 52	550		activity in aged rat vascular smooth muscle cells promotes a proinflammatory
53 54	551		phenotype via extracellular signal-regulated kinase 1/2 mitogen-activated protein
55 56	552		kinase and epidermal growth factor receptor-dependent pathways. Hypertension
57 58 59	553		2010;55:1476–83.
60			
		~ -	

25

1			
2 3 4	554	42.	DuPont JJ, Kim SK, Kenney RM, et al. Sex differences in the time course and
5 6	555		mechanisms of vascular and cardiac aging in mice: Role of the smooth muscle cell
7 8	556		mineralocorticoid receptor. Am J Physiol Heart Circ Physiol 2021;320:H169–H80.
9 10	557	43.	Ibarrola J, Kim SK, Lu Q, et al. Smooth muscle mineralocorticoid receptor as an
11 12	558		epigenetic regulator of vascular aging. Cardiovascular research 2023;118:3386–400.
13 14	559	44.	Mathur R, Dreyer G, Yaqoob MM, et al. Ethnic differences in the progression of
15 16	560		chronic kidney disease and risk of death in a UK diabetic population: An
17 18	561		observational cohort study. BMJ Open 2018;8:e020145.
19 20	562	45.	Go AS, Yang J, Tan TC, et al. Contemporary rates and predictors of fast progression
21 22 23	563		of chronic kidney disease in adults with and without diabetes mellitus. BMC Nephrol
23 24 25	564		2018;19:146.
26 27	565		
28 29			
30 31			
32 33			
34 35			
36 37			
38 39			
40 41			
42 43			
44 45			
46 47			
48 49			
50 51			
52 53			
54 55			
56 57			
58 59 60			

FIGURE LEGENDS

Figure 1. Analysis of CV composite outcome and HHF according to (A) age and (B) sex.

CV composite outcome includes CV death, nonfatal myocardial infarction, nonfatal stroke, or

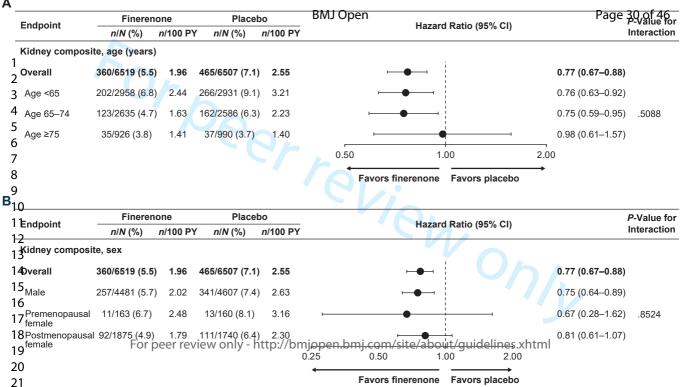
HHF.

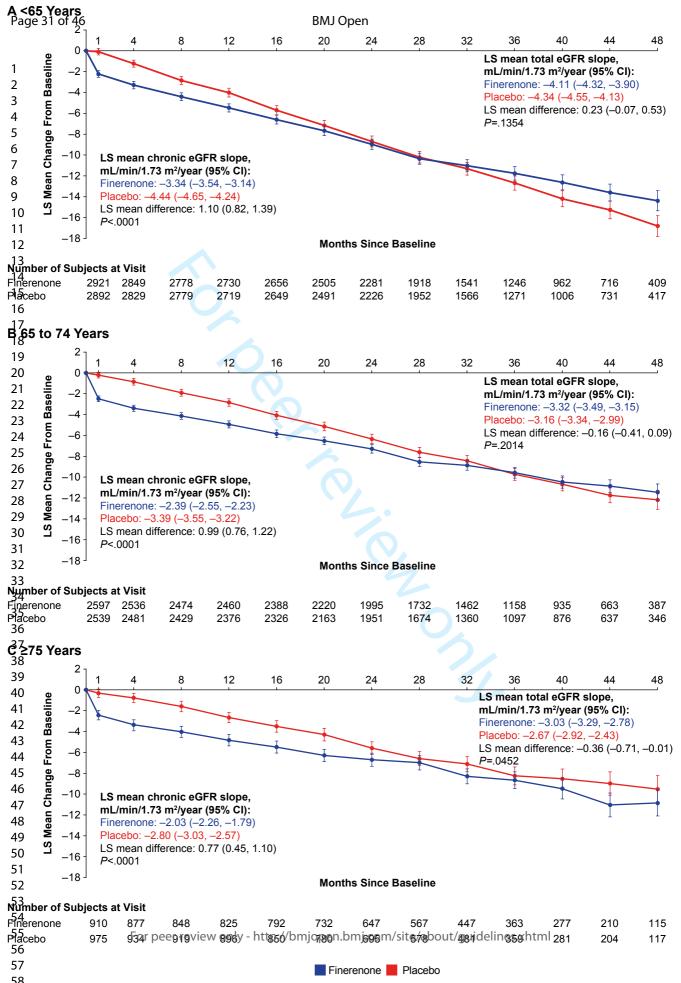
CI = confidence interval; CV = cardiovascular; HHF = hospitalization for heart failure; PY = patient-years.

Figure 2. Analysis of kidney composite outcome according to (A) age and (B) sex.

Kidney composite outcome includes kidney failure, sustained ≥57% eGFR decline, or renal death.

CI = confidence interval; eGFR = estimated glomerular filtration rate; PY = patient-years.


Figure 3. LS mean change in eGFR from baseline, chronic, and total slopes over time by age.


Chronic eGFR slope from month 4 to end-of-study visit.

CI = confidence interval; eGFR = estimated glomerular filtration rate; LS = least-squares.

Α								
Pa	age 29 of 46 Endpoint	Finerend			_{bo} BMJ Ope	N Hazard Ratio (95% CI)		P-Value for
-		n/N (%)	<i>n</i> /100 PY	n/N (%)	<i>n</i> /100 PY			Interaction
1	CV composite, ag	le (years)				:		
2	Overall	825/6519 (12.7)	4.34	939/6507 (14.4)	5.01		0.86 (0.78–0.95)	
3	Age <65	323/2958 (10.9)	3.74	337/2931 (11.5)	3.93	⊢ _	0.94 (0.81–1.10)	
4	Age 65–74	339/2635 (12.9)	4.36	396/2586 (15.3)	5.3	⊢ ●	0.84 (0.73–0.98)	.4198
5	Age ≥75	163/926 (17.6)	6.25	206/990 (20.8)	7.61	⊢	0.80 (0.65–0.99)	
	HHF, age (years)							
7 8	Overall	256/6519 (3.9)	1.31	325/6507 (5.0)	1.68	⊢ ●−1	0.78 (0.66–0.92)	
9	Age <65	94/2958 (3.2)	1.06	112/2931 (3.8)	1.27		0.83 (0.63–1.10)	
10) Age 65–74	111/2653 (4.2)	1.38	135/2586 (5.2)	1.75		0.83 (0.65–1.08)	.6977
11	Age ≥75	51/926 (5.5)	1.91	78/990 (7.9)	2.78	⊢−−−−	0.66 (0.46–0.95)	
12					0.25	1.00 2.00		
13						Favors finerenone Favors placebo		
B ⁴								
15	o Endpoint	Finerend		Place		Hazard Ratio (95% CI)		P-Value for
		()	<i>n</i> /100 PY	<i>n</i> /N (%)	<i>n</i> /100 PY			Interaction
15	7 CV composite, se	x						
19	Overall	825/6519 (12.7)	4.34	939/6507 (14.4)	5.01	I	0.86 (0.78–0.95)	
20) Male	579/4481 (12.9)	4.39	675/4607 (14.7)	5.08	H H H	0.86 (0.77–0.96)	
21 22	remenopuusui	11/163 (6.7)	2.29	12/160 (7.5)	2.62	•	0.89 (0.35–2.27)	.9942
23	Postmenopausal female	235/1875 (12.5)	4.38	252/1740 (14.5)	5.03		0.87 (0.73–1.05)	
	1HHF, sex							
25 26	- Overall	256/6519 (3.9)	1.31	325/6507 (5.0)	1.68	⊢● -1	0.78 (0.66–0.92)	
27		163/4481 (3.6)	1.20	244/4607 (5.3)	1.78	⊢ ●-1	0.66 (0.54–0.81)	
28	3 Premenopausal female	5/163 (3.1)	1.02	4/160 (2.5)	0.85	•	+ 1.39 (0.33–5.93)	.0245
29 30	Postmenopausal	88/ 1875 pieze)r	renkiatwo)nly;7/hn/atqp(:///do)n	njo p.so .bm	j.com/site/aboutoguidelines.xhtr	n 1.06 (0.78–1.44)	
31	-					0.20 1.00 5.00)	
32						Favors finerenone Favors placebo		

Α

Finerenone Cardiovascular and Kidney Outcomes by Age and Sex: FIDELITY Post Hoc Analysis of Two Phase 3, Multicenter, Double-Blind Trials

Contents

Finerenone Cardiovascular and Kidney Outcomes by Age and Sex: FIDELITY Post Hoc
Analysis of Two Phase 3, Multicenter, Double-Blind Trials 1
Supplementary Tables and Figures
eTable 1. Patient Baseline Characteristics According to Age and Sex Stratified by
Treatment Group
eTable 2. Treatment-Emergent AEs According to Age and Sex
eFigure 1. Analysis of CV composite outcome and subcomponents according to (A) age and (B) sex
eFigure 2. Hazard ratio (finerenone vs placebo) as a function of age modeled with cubic splines for CV composite outcome by age (A), spline for hazard ratio of CV composite outcomes by sex (B, C), and age distribution by sex (D)
eFigure 3. Hazard ratio (finerenone vs placebo) as a function of age modeled with cubic splines for kidney composite outcome by age (A), spline for hazard ratio of kidney
composite outcomes by sex (B, C), and age distribution by sex (D)
eFigure 4. LS mean change in eGFR from baseline, chronic, and total slopes over time
by sex13
eFigure 5. LS mean ratio to baseline UACR over time by age and sex14
eFigure 6. Relative risk of treatment-emergent hyperkalemia causing permanent
discontinuation of study drug by age and sex15
eFigure 7. FIDELITY CONSORT diagram16

Page 33 of 46

Supplementary Tables and Figures

eTable 1. Patient Baseline Characteristics According to Age and Sex Stratified by Treatment Group

n (%)	A	.11			A	ge			Sex					
			<65 Years		65–74	Years	≥75 \	/ears	Ma	ale		nale opausal)	Fen (Postmer	nale 1opausal)
	FIN	PBO	FIN	PBO	FIN	PBO	FIN	PBO	FIN	PBO	FIN	PBO	FIN	PBO
	(<i>n</i> =6519)	(<i>n</i> =6507)	(<i>n</i> =2958)	(<i>n</i> =2931)	(<i>n</i> =2635)	(<i>n</i> =2586)	(<i>n</i> =926)	(<i>n</i> =990)	(<i>n</i> =4481)	(<i>n</i> =4607)	(<i>n</i> =163)	(<i>n</i> =160)	(<i>n</i> =1875)	(<i>n</i> =1740)
Age, y, mean ±	64.7	64.8	56.5	56.3	69.1	69.2	78.4	78.4	64.8	64.9	45.3	44.9	66.2	66.4
SD	± 9.4	± 9.7	± 6.4	± 6.7	± 2.7	± 2.8	± 3.0	± 3.1	± 9.3	± 9.6	± 4.4	± 5.4	± 8.0	± 8.0
Sex, <i>n</i> (%)			I	I				I		I	I	I		I
Female	2038	1900	959	880	772	729	307	291	0	0	163	160	1875	1740
	(31.3)	(29.2)	(32.4)	(30.0)	(29.3)	(28.2)	(33.2)	(29.4)	(0.0)	(0.0)	(100)	(100)	(100)	(100)
Male	4481	4607	1999	2051	1863	1857	619	699	4481	4607	0	0	0	0
	(68.7)	(70.8)	(67.6)	(70.0)	(70.7)	(71.8)	(66.8)	(70.6)	(100)	(100)	(0.0)	(0.0)	(0.0)	(0.0)
Race, <i>n</i> (%)														
Asian	1432	1462	772	819	518	479	142	164	1032	1104	45	42	355	316
	(22.0)	(22.5)	(26.1)	(27.9)	(19.7)	(18.5)	(15.3)	(16.6)	(23.0)	(24.0)	(27.6)	(26.3)	(18.9)	(18.2)
Black/African	253	269	158	151	75	85	20	33	137	147	17	20	99	102
American	(3.9)	(4.1)	(5.3)	(5.2)	(2.8)	(3.3)	(2.2)	(3.3)	(3.1)	(3.2)	(10.4)	(12.5)	(5.3)	(5.9)
White	4449	4420	1827	1765	1908	1909	714	746	3099	3132	84	83	1266	1205
	(68.2)	(67.9)	(61.8)	(60.2)	(72.4)	(73.8)	(77.1)	(75.4)	(69.2)	(68.0)	(51.5)	(51.9)	(67.5)	(69.3)
Other ^a	385	356	201	196	134	113	50	47	213	224	17	15	155	117
	(5.9)	(5.5)	(6.8)	(6.7)	(5.1)	(4.4)	(5.4)	(4.7)	(4.8)	(4.9)	(10.4)	(9.4)	(8.3)	(6.7)
Systolic blood pressure, mm Hg, mean (SD)	136.8 ± 14.2	136.7 ± 14.3	135.7 ± 13.9	135.5 ± 14.1	137.4 ± 14.2	137.5 ± 14.2	138.4 ± 14.6	138.5 ± 14.6	136.9 ± 14.1	136.7 ± 14.3	131.6 ± 13.1	134.4 ± 14.7	136.8 ± 14.4	136.9 ± 14.0
Diastolic blood pressure, 2	76.3 ± 9.6	76.4 ± 9.6	78.7 ± 9.2	79.0 ± 8.9	74.8 ± 9.4	74.9 ± 9.4	73.2 ± 9.8	72.4 ± 9.8	76.6 ± 9.7	76.5 ± 9.7	78.7 ± 8.2	81.6 ± 8.4	75.6 ± 9.6	75.6 ± 9.4

L

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

n (%)	A	11			A	ge			Sex						
			<65 ነ	/ears	65–74	Years	≥75 \	/ears	Ма	ale		nale opausal)	Fen (Postmer	nale nopausal	
	FIN (<i>n</i> =6519)	PBO (<i>n</i> =6507)	FIN (<i>n</i> =2958)	PBO (<i>n</i> =2931)	FIN (<i>n</i> =2635)	PBO (<i>n</i> =2586)	FIN (<i>n</i> =926)	PBO (<i>n</i> =990)	FIN (<i>n</i> =4481)	PBO (<i>n</i> =4607)	FIN (<i>n</i> =163)	PBO (<i>n</i> =160)	FIN (<i>n</i> =1875)	PBO (<i>n</i> =1740)	
mm Hg, mean (SD)															
Duration of diabetes, y, mean (SD)	15.4 ± 8.7	15.4 ± 8.7	13.6 ± 7.6	13.3 ± 7.7	16.4 ± 8.7	16.5 ± 8.5	18.7 ± 10.7	18.5 ±10.2	15.4 ± 8.6	15.3 ± 8.4	11.0 ± 7.4	10.1 ± 6.5	15.9 ± 9.0	16.0 ± 9.2	
HbA1c, %, mean (SD)	7.7 ± 1.4	7.7 ± 1.4	7.9 ± 1.5	7.9 ± 1.5	7.6 ± 1.3	7.6 ± 1.3	7.5 ± 1.2	7.4 ± 1.2	7.6 ± 1.3	7.6 ± 1.3	8.1 ± 1.7	8.3 ± 1.6	7.9 ± 1.4	7.9 ± 1.5	
Serum potassium, mmol/L, mean (SD)	4.4 ± 0.4	4.4 ± 0.4	4.3 ± 0.4	4.4 ± 0.5	4.4 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	4.3 ± 0.4	4.3 ± 0.5	4.3 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	4.4 ± 0.4	
eGFR, mL/min/1.73 m², mean (SD)	57.5 ± 21.6	57.7 ± 21.8	63.9 ± 23.9	64.6 ± 24.0	53.7 ± 18.4	53.3 ± 18.6	48.0 ± 15.5	48.3 ± 14.8	57.8 ± 21.0	57.7 ± 21.4	76.3 ± 28.7	77.5 ± 29.1	55.3 ± 21.5	55.8 ± 21.1	
eGFR, mL/min/1	.73 m², <i>n</i> ((%) ^b						\mathbf{N}							
<25	81 (1.2)	81 (1.2)	24 (0.8)	29 (1.0)	35 (1.3)	37 (1.4)	22 (2.4)	15 (1.5)	44 (1.0)	54 (1.2)	0	2 (1.3)	37 (2.0)	25 (1.4)	
25–<45	2117 (32.5)	2115 (32.5)	744 (25.2)	704 (24.0)	937 (35.6)	961 (37.2)	436 (47.1)	450 (45.5)	1392 (31.1)	1479 (32.1)	31 (19.0)	26 (16.3)	694 (37.0)	610 (35.1)	
45-<60	1717 (26.3)	1717 (26.4)	666 (22.5)	649 (22.1)	775 (29.4)	739 (28.6)	276 (29.8)	329 (33.2)	1240 (27.7)	1228 (26.7)	26 (16.0)	24 (15.0)	451 (24.1)	465 (26.7)	
≥60	2603 (39.9)	2592 (39.8)	1523 (51.5)	1548 (52.8)	888 (33.7)	848 (32.8)	192 (20.7)	196 (19.8)	1805 (40.3)	1846 (40.1)	106 (65.0)	108 (67.5)	692 (36.9)	638 (36.7)	
UACR, mg/g, median (Q1– Q3)	514.2 (197.5– 1129.4)	514.9 (198.2– 1163.4)	649.2 (308.0- 1331.8)	651.4 (322.5- 1382.2)	433.8 (150.7- 1025.7)	441.3 (157.8- 1032.8)	325.6 (107.00- 802.7)	340.5 (109.8- 871.7)	514.5 (205.3- 1116.5)	509.2 (195.4- 1143.0)	733.0 (336.3- 1522.7)	868.4 (398.5- 1604.2)	496.4 (169.9- 1124.4)	509.1 (185.0- 1174.5)	
UACR, mg/g, <i>n</i> (%) ^c														
<30	120 (1.8)	110 (1.7)	39 (1.3)	40 (1.4)	53 (2.0)	50 (1.9)	28 (3.0)	20 (2.0)	69 (1.5)	68 (1.5)	2 (1.2)	1 (0.6)	49 (2.6)	41 (2.4)	
30-<300	2076 (31.8)	2023 (31.1)	686 (23.2)	645 (22.0)	971 (36.9)	936 (36.2)	419 (45.2)	442 (44.6)	1422 (31.7)	1459 (31.7)	34 (20.9)	20 (12.5)	620 (33.1)	544 (31.3)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3	
4 5 6	
7 8 9	
10 11 12	
11 12 13 14 15 16 17	
16 17 18	
18 19 20 21	
22 23 24	
25 26 27	
28 29 30	
31 32 33	
32 33 34 35 36 37	
37 38 39 40	
40 41 42 43	
43 44 45 46	
- 10	

n (%)	A	.11			A	ge			Sex					
			<65 `	Years	65–74	Years	≥75 ∖	′ ears	Ма	ale	Fen	nale	Fen	nale
											(Premen	opausal)	(Postmer	nopausa
	FIN (<i>n</i> =6519)	РВО (<i>n</i> =6507)	FIN (<i>n</i> =2958)	PBO (<i>n</i> =2931)	FIN (<i>n</i> =2635)	PBO (<i>n</i> =2586)	FIN (<i>n</i> =926)	РВО (<i>n</i> =990)	FIN (<i>n</i> =4481)	РВО (<i>n</i> =4607)	FIN (<i>n</i> =163)	РВО (<i>n</i> =160)	FIN (<i>n</i> =1875)	PBO (<i>n</i> =1740
≥300	4321 (66.3)	4371 (67.2)	2231 (75.4)	2244 (76.6)	1611 (61.1)	1599 (61.8)	479 (51.7)	528 (53.3)	2989 (66.7)	3079 (66.8)	127 (77.9)	139 (86.9)	1205 (64.3)	1153 (66.3)
BMI, kg/m², mean (SD)	31.3 ± 6.0	31.3 ± 6.0	32.1 ± 6.5	32.0 ± 6.3	31.1 ± 5.7	31.1 ± 5.7	29.5 ± 4.8	29.6 ± 5.1	30.9 ± 5.6	30.9 ± 5.6	34.0 ± 7.9	34.3 ± 7.9	32.0 ± 6.7	32.1 ± 6.5
Current smoker, n (%)	1065 (16.3)	1028 (15.8)	657 (22.2)	626 (21.4)	351 (13.3)	335 (13.0)	57 (6.2)	67 (6.8)	874 (19.5)	856 (18.6)	17 (10.4)	18 (11.3)	174 (9.3)	154 (8.9)
History of CV disease, present, <i>n</i> (%)	2979 (45.7)	2956 (45.4)	1127 (38.1)	1061 (36.2)	1330 (50.5)	1337 (51.7)	522 (56.4)	558 (56.4)	2152 (48.0)	2222 (48.2)	36 (22.1)	20 (12.5)	791 (42.2)	714 (41.0)
History of heart failure	485 (7.4)	522 (8.0)	211 (7.1)	202 (6.9)	192 (7.3)	240 (9.3)	82 (8.9)	80 (8.1)	302 (6.7)	328 (7.1)	11 (6.7)	11 (6.9)	172 (9.2)	183 (10.5)
History of atrial fibrillation/atrial flutter	568 (8.7)	538 (8.3)	144 (4.9)	122 (4.2)	280 (10.6)	267 (10.3)	144 (15.6)	149 (15.1)	439 (9.8)	428 (9.3)	0	0	129 (6.9)	110 (6.3)
Baseline medica	tions, <i>n</i> (%	b)d						RI.						
RAS inhibitors (ACEis/ARBs)	6508 (99.8)	6495 (99.8)	2951 (99.8)	2925 (99.8)	2631 (99.8)	2582 (99.8)	926 (100.0)	988 (99.8)	4473 (99.8)	4596 (99.8)	163 (100.0)	160 (100.0)	1872 (99.8)	1739 (>99.9)
Beta-blockers	3236 (49.6)	3268 (50.2)	1311 (44.3)	1308 (44.6)	1419 (53.9)	1430 (55.3)	506 (54.6)	530 (53.5)	2237 (49.9)	2308 (50.1)	57 (35.0)	54 (33.8)	942 (50.2)	906 (52.1)
Diuretics	3325 (51.0)	3385 (52.0)	1378 (46.6)	1412 (48.2)	1412 (53.6)	1401 (54.2)	535 (57.8)	572 (57.8)	2320 (51.8)	2386 (51.8)	67 (41.1)	70 (43.8)	938 (50.0)	929 (53.4)
Statins	4657 (71.4)	4742 (72.9)	1993 (67.4)	2040 (69.6)	1975 (75.0)	1945 (75.2)	689 (74.4)	757 (76.5)	3291 (73.4)	3405 (73.9)	93 (57.1)	110 (68.8)	1273 (67.9)	1227 (70.5)
Calcium channel blockers	3664 (56.2)	3694 (56.8)	1564 (52.9)	1563 (53.3)	1544 (58.6)	1508 (58.3)	556 (60.0)	623 (62.9)	2554 (57.0)	2654 (57.6)	74 (45.4%)	75 (46.9)	1036 (55.3)	965 (55.5)
≥1 glucose- lowering medication	6354 (97.5)	6366 (97.8)	2898 (98.0)	2881 (98.3)	2574 (97.7)	2537 (98.1)	882 (95.2)	948 (95.8)	4361 (97.3)	4499 (97.7)	161 (98.8)	156 (97.5)	1832 (97.7)	1711 (98.3)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

י ר
2
3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
2/
24
25
26
27
28
29
30
31
37
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 7 8 9 30 12 33 4 5 6 7 8 9 10 11 23 24 25 26 27 28 9 30 31 23 34 32 34 33 34 35 34 35 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37
22
34
34 35 36 37
36
37
37 38
39
40
40
42
43
44
45

5

1

n (%)	A	11			A	ge		Sex						
			<65 Years		65–74 Years		≥75 Years		Male		Female (Premenopausal)		Female (Postmenopausal	
	FIN	PBO	FIN	PBO	FIN	PBO	FIN	РВО	FIN	PBO	FIN	PBO	FIN	PBO
	(<i>n</i> =6519)	(<i>n</i> =6507)	(<i>n</i> =2958)	(<i>n</i> =2931)	(<i>n</i> =2635)	(<i>n</i> =2586)	(<i>n</i> =926)	(<i>n</i> =990)	(<i>n</i> =4481)	(<i>n</i> =4607)	(<i>n</i> =163)	(<i>n</i> =160)	(<i>n</i> =1875)	(<i>n</i> =1740)
<i>n</i> (%) ^d														
Insulin	3866	3764	1848	1789	1539	1481	479	494	2598	2605	94	99	1174	1060
	(59.3)	(57.8)	(62.5)	(61.0)	(58.4)	(57.3)	(51.7)	(49.9)	(58.0)	(56.5)	(57.7)	(61.9)	(62.6)	(60.9)
GLP-1RA	497	447	273	219	190	188	34	40	359	317	12	18	126	112
	(7.6)	(6.9)	(9.2)	(7.5)	(7.2)	(7.3)	(3.7)	(4.0)	(8.0)	(6.9)	(7.4)	(11.3)	(6.7)	(6.4)
SGLT-2i	438	439	251	266	149	140	38	33	331	340	19	17	88	82
	(6.7)	(6.7)	(8.5)	(9.1)	(5.7)	(5.4)	(4.1)	(3.3)	(7.4)	(7.4)	(11.7)	(10.6)	(4.7)	(4.7)

ACEi = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; BMI = body mass index; CV = cardiovascular; eGFR = estimated

glomerular filtration rate; FIN = finerenone; GLP-1RA = glucagon-like peptide-1 receptor agonist; HbA1c = glycated hemoglobin; PBO = placebo; Q = quartile;

RAS = renin–angiotensin system; SD = standard deviation; SGLT-2i = sodium-glucose co-transporter-2 inhibitor; UACR = urine albumin-to-creatinine ratio.

Values are based on available data.

^a Other: included American Indian/Alaska Native, Native Hawaiian/other Pacific, not reported, multiple.

^b Missing (eGFR): <65 years, *n*=2; 65 to 74 years, *n*=1; postmenopausal female, *n*=3.

^c Missing (UACR): <65 years, *n*=4; 65 to 74 years, *n*=1; male, *n*=2; postmenopausal female, *n*=3.

^d Analysis allowed multiple drug groups for the same drug.

 BMJ Open

					A	ge			Sex						
n (%)	AI	LL	<65 Years		65–74	65–74 Years		/ears	Ма	ale	Fen (Premen	nale opausal)	Fen (Postmer	nale 1opausal)	
	FIN (<i>n</i> =6510)	PBO (<i>n</i> =6489)	FIN (<i>n</i> =2953)	PBO (<i>n</i> =2926)	FIN (<i>n</i> =2631)	PBO (<i>n</i> =2578)	FIN (<i>n</i> =926)	РВО (<i>n</i> =985)	FIN (<i>n</i> =4476)	PBO (<i>n</i> =4595)	FIN (<i>n</i> =163)	РВО (<i>n</i> =160)	FIN (<i>n</i> =1871)	РВО (<i>n</i> =1734	
Any AE	5602 (86.1)	5607 (86.4)	2494 (84.5)	2523 (86.2)	2301 (87.5)	2225 (86.3)	807 (87.1)	859 (87.2)	3899 (87.1)	4011 (87.3)	137 (84.0)	138 (86.3)	1566 (83.7)	1458 (84.1)	
Related to study drug	1206 (18.5)	862 (13.3)	478 (16.2)	384 (13.1)	558 (21.2)	337 (13.1)	170 (18.4)	141 (14.3)	884 (19.7)	612 (13.3)	21 (12.9)	20 (12.5)	301 (16.1)	230 (13.3)	
Leading to discontinuation	414 (6.4)	351 (5.4)	128 (4.3)	124 (4.2)	212 (8.1)	153 (5.9)	74 (8.0)	74 (7.5)	313 (7.0)	249 (5.4)	9 (5.5)	7 (4.4)	92 (4.9)	95 (5.5)	
Any SAE	2060 (31.6)	2186 (33.7)	856 (29.0)	938 (32.1)	871 (33.1)	876 (34.0)	333 (36.0)	372 (37.8)	1487 (33.2)	1590 (34.6)	33 (20.2)	42 (26.3)	540 (28.9)	554 (31.9)	
Related to study drug	83 (1.3)	61 (0.9)	29 (1.0)	27 (0.9)	39 (1.5)	17 (0.7)	15 (1.6)	17 (1.7)	56 (1.3)	46 (1.0)	0	1 (0.6)	27 (1.4)	14 (0.8)	
Leading to discontinuation	145 (2.2)	154 (2.4)	41 (1.4)	48 (1.6)	75 (2.9)	71 (2.8)	29 (3.1)	35 (3.6)	115 (2.6)	112 (2.4)	1 (0.6)	2 (1.3)	29 (1.5)	40 (2.3	
Any AE leading to death	110 (1.7)	151 (2.3)	43 (1.5)	55 (1.9)	42 (1.6)	62 (2.4)	25 (2.7)	34 (3.5)	73 (1.6)	115 (2.5)	0	3 (1.9)	37 (2.0)	33 (1.9)	
AEs of interest															
Hypotension	282(4.3)	177 (2.7)	101 (3.4)	70 (2.4)	127 (4.8)	76 (2.9)	54 (5.8)	31 (3.1)	216 (4.8)	131 (2.9)	3 (1.8)	0	63 (3.4)	46 (2.7)	
Orthostatic hypotension	46 (0.7)	39 (0.6)	18 (0.6)	15 (0.5)	23 (0.9)	15 (0.6)	5 (0.5)	9 (0.9)	34 (0.8)	30 (0.7)	0	2 (1.3)	12 (0.6)	7 (0.4)	
Hyperkalemia	912 (14.0)	448 (6.9)	360 (12.2)	238 (8.1)	420 (16.0)	158 (6.1)	132 (14.3)	52 (5.3)	647 (14.5)	304 (6.6)	14 (8.6)	16 (10.0)	251 (13.4)	128 (7.4)	
Leading to permanent discontinuation	110 (1.7)	38 (0.6)	31 (1.0)	13 (0.4)	54 (2.1)	19 (0.7)	25 (2.7)	6 (0.6)	83 (1.9)	28 (0.6)	4 (2.5)	1 (0.6)	23 (1.2)	9 (0.5)	
Classified as a serious AE	69 (1.1)	16 (0.2)	28 (0.9)	8 (0.3)	29 (1.1)	5 (0.2)	12 (1.3)	3 (0.3)	45 (1.0)	9 (0.2)	1 (0.6)	0	23 (1.2)	7 (0.4)	
Leading to hospitalization	61 (0.9)	10 (0.2)	26 (0.9)	6 (0.2)	25 (1.0)	2 (<0.1)	10 (1.1)	2 (0.2)	38 (0.8)	5 (0.1)	1 (0.6)	0	22 (1.2)	5 (0.3)	
Gynecomastia	8 (0.1)	11 (0.2)	2 (<0.1)	4 (0.1)	5 (0.2)	3 (0.1)	1 (0.1)	4 (0.4)	8 (0.2)	11 (0.2)	NA	NA	NA	NA	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Serum potassium >5.5 mmol/L	1075/ 6402 (16.8)	470/ 6370 (7.4)	444/2904 (15.3)	233/2871 (8.1)	460/2585 (17.8)	180/2529 (7.1)	171/913 (18.7)	57/970 (5.9)	720/4403 (16.4)	308/4523 (6.8)	16/159 (10.1)	8/154 (5.2)	339/1840 (18.4)	154/1693 (9.1)
Serum potassium >6.0 mmol/L	211/ 6439 (3.3)	80/ 6413 (1.2)	90/2926 (3.1)	44/2896 (1.5)	89/2598 (3.4)	31/2544 (1.2)	32/915 (3.5)	5/973 (0.5)	143/4428 (3.2)	48/4544 (1.1)	4/160 (2.5)	1/156 (0.6)	64/1851 (3.5)	31/1713 (1.8)

AE = adverse event; FIN = finerenone; NA = not applicable; PBO = placebo; SAE = serious adverse event.

a The "n" numerator represents the number of patients at risk with ≥1 treatment-emergent laboratory assessment meeting the criterion. The "N" denominator

represents all patients at risk for a treatment-emergent laboratory abnormality. Patients had both a baseline and postbaseline treatment-emergent

value while the baseline value did not exceed the displayed threshold.

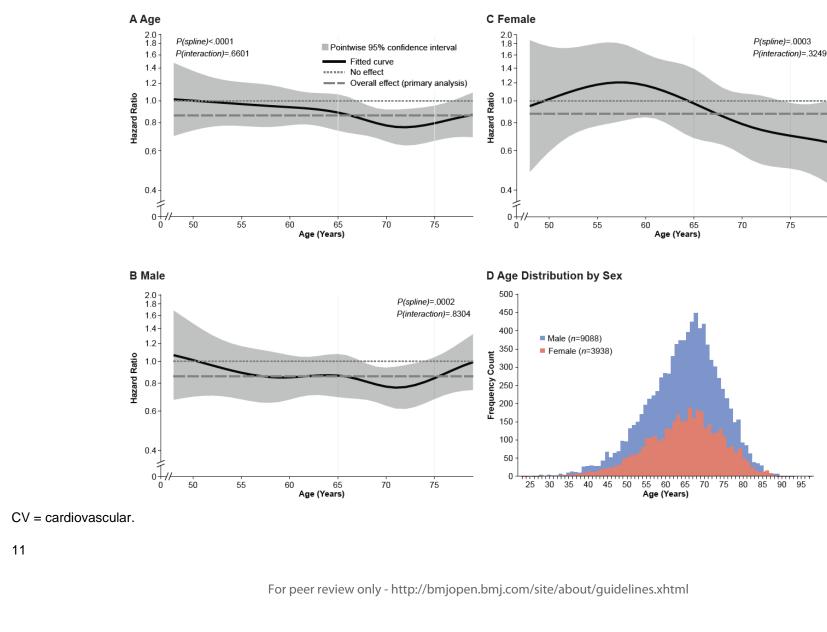
eFigure 1. Analysis of CV composite outcome and subcomponents according to (A) age and (B) sex.

Α.

n/N (%)	<i>n</i> /100 PY	n/N (%)	<i>n</i> /100 PY	(95% CI)	
825/6519 (12.7)	4.34	939/6507 (14.4)	5.01	0.86 (0.78–0.95)
323/2958 (10.9)	3.74	337/2931 (11.5)	3.93	0.94 (0.81–1.10) 0.4198
339/2635 (12.9)	4.36	396/2586 (15.3)	5.30	0.84 (0.73–0.98)
163/926 (17.6)	6.25	206/990 (20.8)	7.61	⊢)
322/6519 (4.9)	1.61	364/6507 (5.6)	1.84	0.88 (0.76–1.02)
120/2958 (4.1)	1.33	122/2931 (4.2)	1.36	·● 0.97 (0.75–1.25) 0.2064
117/2635 (4.4)	1.43	157/2586 (6.1)	1.98	0.76 (0.60–0.97)
85/926 (9.2)	3.08	85/990 (8.6)	2.91	1.05 (0.77–1.44)
173/6519 (2.7)	0.88	189/6507 (2.9)	0.97	0.91 (0.74–1.12)
67/2958 (2.3)	0.75	70/2931 (2.4)	0.79	0.97 (0.69–1.36) 0.3250
79/2635 (3.0)	0.98	76/2586 (2.9)	0.98	1.02 (0.74–1.40)
27/926 (2.9)	1.00	43/990 (4.3)	1.52	0.64 (0.39–1.04)
198/6519 (3.0)	1.01	198/6507 (3.0)	1.02	0.99 (0.82–1.21)
84/2958 (2.8)	0.95	78/2931 (2.7)	0.89	·● 1.07 (0.78–1.46) 0.8515
82/2635 (3.1)	1.02	87/2586 (3.4)	1.12	0.90 (0.66–1.22)
32/926 (3.5)	1.18	78/990 (7.9)	1.16	1.09 (0.66–1.80)
256/6519 (3.9)	1.31	325/6507 (5.0)	1.68	0.78 (0.66–0.92)
94/2958 (3.2)	1.06	112/2931 (3.8)	1.27	0.83 (0.63–1.10	.0245
111/2653 (4.2)	1.38	135/2586 (5.2)	1.75	0.83 (0.65–1.08)
51/926 (5.5)	1.91	78/990 (7.9)	2.78	0.66 (0.46–0.95)
				25 0.5 1 2	
	825/6519 (12.7) 323/2958 (10.9) 339/2635 (12.9) 163/926 (17.6) 322/6519 (4.9) 120/2958 (4.1) 117/2635 (4.4) 85/926 (9.2) 173/6519 (2.7) 67/2958 (2.3) 79/2635 (3.0) 27/926 (2.9) 198/6519 (3.0) 84/2958 (2.8) 82/2635 (3.1) 32/926 (3.5) 256/6519 (3.9) 94/2958 (3.2) 111/2653 (4.2)	825/6519 4.34 12.7) 3.74 $323/2958$ 3.74 (10.9) $3.9/2635$ (12.9) 4.36 $163/926$ 6.25 $322/6519$ 1.61 (4.9) 1.33 $117/2635$ 1.43 (4.1) 1.43 $85/926$ 3.08 (9.2) 0.88 $67/2958$ 0.75 $79/2635$ 0.98 (2.3) 0.75 $79/2635$ 0.98 (3.0) $27/926$ (2.9) 1.00 $27/926$ 0.95 (2.8) 0.95 $82/2635$ 0.95 $82/2635$ 1.18 $256/6519$ 1.31 $94/2958$ 0.95 (3.2) 1.06 $(111/2653)$ 1.38 (4.2) $51/926$ 1.91	825/6519 (12.7) 4.34 939/6507 (14.4) $323/2958$ 3.74 $337/2931$ (11.5) $339/2635$ 4.36 (15.3) $163/926$ 6.25 206/990 (17.6) $120/2958$ 1.61 $364/6507$ (20.8) $120/2958$ 1.33 $122/2931$ (4.1) $177/2635$ 1.43 $157/2586$ (4.4) (4.1) 1.43 $157/2586$ (4.4) (4.1) 1.43 $157/2586$ (6.1) (2.7) 0.88 $85/990$ (8.6) $173/6519$ 0.88 $189/6507$ (2.9) $67/2958$ 0.75 $70/2931$ (2.4) $79/2635$ 0.98 $76/2586$ (3.0) (2.9) 1.00 $43/990$ (2.9) $27/926$ 1.00 $43/990$ (2.9) $27/926$ 1.02 $87/2586$ (3.1) (3.1) 1.22 3.4 $32/926$ 1.18 $78/990$ (3.5) 1.18 $78/990$ (3.5) 1.31 $325/6507$ $($	825/6519 4.34 939/6507 5.01 323/2958 3.74 337/2931 3.93 (10.9) (11.5) 3.93 (12.9) 4.36 396/2586 (12.9) 4.36 (15.3) 163/926 6.25 206/990 7.61 322/6519 1.61 364/6507 1.84 (4.9) (5.6) 1.33 122/2931 (4.1) 1.43 157/2586 1.98 (4.4) 1.43 157/2586 1.98 (4.4) 1.43 157/2586 0.97 (9.2) 3.08 85/990 2.91 (9.2) 0.88 189/6507 0.97 (7.7) 0.88 189/6507 0.97 (9.2) 3.08 76/2586 0.98 (3.0) (2.9) 0.75 1.02 (3.0) (2.9) 1.52 1.52 198/6519 1.01 198/6507 1.02 (3.0) (2.9) 1.52	nN(%) n/100 PY n/100 PY n/100 PY 825/6519 4.34 939/6507 5.01 0.86 (0.78-0.35 (12.7) (14.4) 332/258 3.74 337/2391 3.93 (12.9) (11.5) 336/2586 5.30 0.84 (0.73-0.98 (12.9) 1.61 364/6507 1.84 0.88 (0.76-1.02 (4.9) 1.33 122/2931 1.36 0.97 (0.75-1.25 (17.6) 6.25 206/930 7.61 0.88 (0.76-1.02 (4.4) 1.43 157/2586 0.98 0.97 (0.75-1.25 117/2635 0.88 15990 0.97 0.97 (0.75-1.25 (2.7) 0.88 152 0.97 (0.66-1.38 (2.7) 0.88 76/2586 0.98 (2.3) 0.75 70/2331 0.79 (2.9) 1.00 43.990 1.52 (3.0) 1.02 0.39 (0.82-1.21 (3.0) 1.02 0.39 (0.86-1.38 (2.9) 1.01 138/6507 1.02

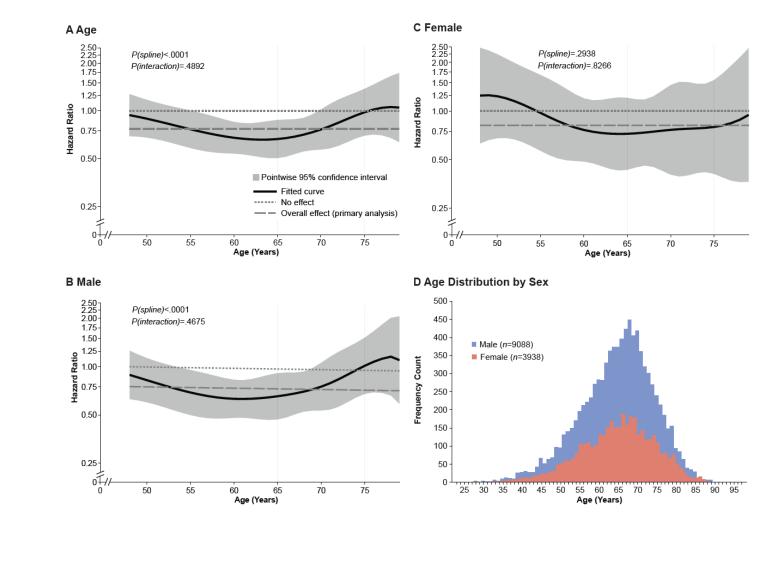
В.

	Finerenone		Placebo		Hazard ratio	P-interaction
	n/N (%)	<i>n</i> /100 PY	n/N (%)	<i>n</i> /100 PY	- (95% Cl)	
CV composite, sex						
Overall	825/6519 (12.7)	4.34	939/6507 (14.4)	5.01	• 0.86 (0.78–0.95)	-
Male	579/4481 (12.9)	4.39	675/4607 (14.7)	5.08	• 0.86 (0.77–0.96)	.9942
Premenopausal female	11/163 (6.7)	2.29	12/160 (7.5)	2.62	0.89 (0.35–2.27)	
Postmenopausal female	235/1875 (12.5)	4.38	252/1740 (14.5)	5.03	·◆· 0.87 (0.73–1.05)	
CV death						
Overall	322/6519 (4.9)	1.61	364/6507 (5.6)	1.84	0.88 (0.76–1.02)	
Male	207/4481 (4.6)	1.49	249/4607 (5.4)	1.77	0.85 (0.70–1.02)	.6925
Premenopausal female	4/163 (2.5)	0.80	3/160 (1.9)	0.63	h 1.13 (0.20–6.54)	
Postmenopausal female	111/1875 (5.9)	1.98	112/1740 (6.4)	2.12	0.93 (0.71–1.22)	
Nonfatal MI						
Overall	173/6519 (2.7)	0.88	189/6507 (2.9)	0.97	⊷→ 0.91 (0.74–1.12)	
Male	138/4481 (3.1)	1.02	152/4607 (3.3)	1.10	0.91 (0.72–1.15)	.8211
Premenopausal female	2/163 (1.2)	0.40	1/160 (0.6)	0.21	, 1.63 (0.16–16.87) ^a	
Postmenopausal female	33/1875 (1.8)	0.60	36/1740 (2.1)	0.69	0.92 (0.56–1.49)	
Nonfatal stroke						
Overall	198/6519 (3.0)	1.01	198/6507 (3.0)	1.02	0.99 (0.82–1.21)	
Male	150/4481 (3.3)	1.11	135/4607 (2.9)	0.98	▶ ▲ 1.14 (0.90–1.44)	.1103
Premenopausal female	3/163 (1.8)	0.61	4/160 (2.5)	0.86	► 0.65 (0.14–3.06)	
Postmenopausal female	45/1875 (2.4)	0.81	59/1740 (3.4)	1.14	0.73 (0.49–1.08)	
HHF						
Overall	256/6519 (3.9)	1.31	325/6507 (5.0)	1.68	•◆• 0.78 (0.66–0.92)	
Male	163/4481 (3.6)	1.20	244/4607 (5.3)	1.78	• ← 0.66 (0.54–0.81)	.0245
Premenopausal female	5/163 (3.1)	1.02	4/160 (2.5)	0.85	1.39 (0.33–5.93)	
Postmenopausal female	88/1875 (4.7)	1.61	77/1740 (4.4)	1.50	1.06 (0.78–1.44)	
					0.125 0.25 0.5 1 2 4 8	
				•	Favors finerenone Favors placebo	

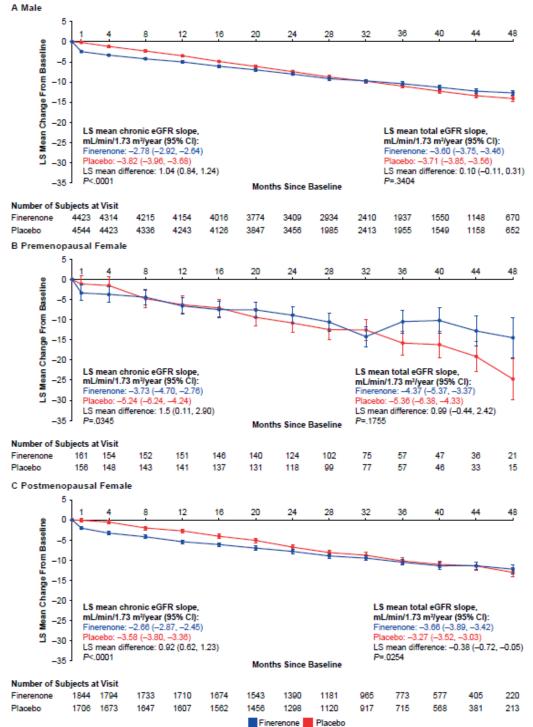

A stratified Cox proportional hazards model including treatment was calculated separately by subgroup category. The *P*_{interaction} is based on a stratified Cox proportional hazards model including treatment, subgroup, and treatment by subgroup interaction.

CV composite outcome includes CV death, nonfatal MI, nonfatal stroke, or HHF.

CI = confidence interval; CV = cardiovascular; HHF = hospitalization for heart failure; MI = myocardial infarction; PY = patient-years.

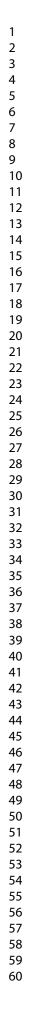

^a An unstratified model using Firth's penalized likelihood approach was applied due to zero cell counts and/or convergence issues.

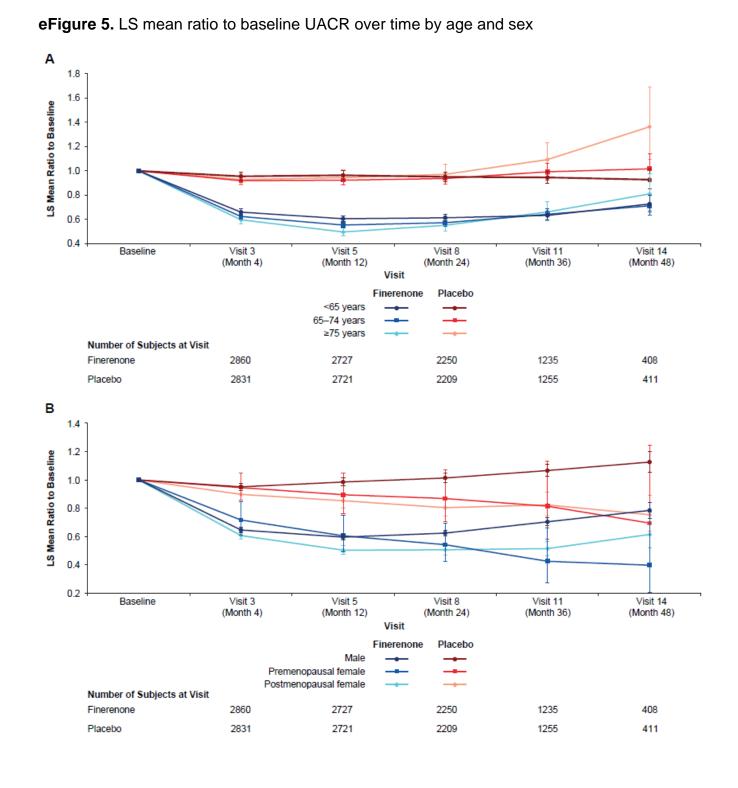
eFigure 2. Hazard ratio (finerenone vs placebo) as a function of age modeled with cubic splines for CV composite outcome by age (A), spline for hazard ratio of CV composite outcomes by sex (B, C), and age distribution by sex (D).


 BMJ Open

eFigure 3. Hazard ratio (finerenone vs placebo) as a function of age modeled with cubic splines for kidney composite outcome by age (A), spline for hazard ratio of kidney composite outcomes by sex (B, C), and age distribution by sex (D).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


eFigure 4. LS mean change in eGFR from baseline, chronic, and total slopes over time by sex.



Chronic eGFR slope from month 4 to end-of-study visit.

CI = confidence interval; eGFR = estimated glomerular filtration rate; LS = least-squares.

BMJ Open

LS = least-squares; UACR = urine albumin-to-creatinine ratio.

2.3 (1.2-4.5)

2.8 (1.7-4.7)

4.4 (1.8-10.8)

Finerenone Placebo **Relative risk** (95% CI) n/N (%) n/N (%) Sex Male 83/4476 (1.9) 28/4595 (0.6) 3.1 (2.0-4.7) Premenopausal female 4/163 (2.5) 1/160 (0.6) 3.0 (0.5-18.9) Postmenopausal female 9/1734 (0.5) 2.4 (1.1-5.1) 23/1871 (1.2) Age (years)

0.5

2

review only

4

Favors placebo

8

16 24

eFigure 6. Relative risk of treatment-emergent hyperkalemia causing permanent discontinuation of study drug by age and sex

Relative risk values based on Mantel-Haenszel estimates (stratified by study). For the relative risk, a

Favors finerenone

treatment-arm-size zero cell correction with zero term = 0.5 was applied.

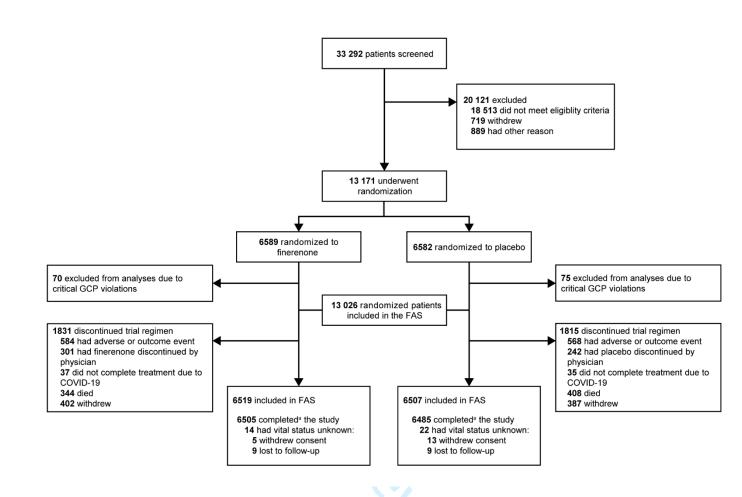
13/2926 (0.4)

19/2578 (0.7)

6/985 (0.6)

31/2953 (1.0)

54/2631 (2.1)


25/926 (2.7)

Age <65

Age ≥75

Age 65-74

eFigure 7. FIDELITY CONSORT diagram.

^a The patient was considered as having completed the study if there was a contact with the patient

after the end-of-study notification or if the patient died.

CONSORT = Consolidated Standards of Reporting Trials; COVID-19, coronavirus disease of 2019;

FAS, full analysis set; FIDELITY = The FInerenone in chronic kiDney diseasE and type 2 diabetes:

Combined FIDELIO-DKD and FIGARO-DKD Trial programme analysis; GCP, Good Clinical Practice.