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1. General experimental procedures for chemical synthesis

Commercially available compounds were used without further purification. All air and moisture
sensitive reactions were carried out in flame-dried glassware under an N, atmosphere using standard
Schlenk syringe-septa techniques. Anhydrous solvents: dichloromethane, diethyl ether,
tetrahydrofuran, and toluene were obtained by passing through a modified Grubbs system of alumina
columns, manufactured by Anhydrous Engineering. Anhydrous DMF and acetone were obtained from
commercial suppliers and used without further drying. DIPA and NEt; were distilled over CaH; prior
to use. Petroleum ether is of the 40-60 °C boiling point range. DIPA Analytical thin layer
chromatography (TLC) was performed on Merck, aluminium backed 60 F254 silica plates. TLC
plates were visualised by UV fluorescence (UV254 lamp) or basic KMnO; solution. Flash column
chromatography was performed with silica gel (technical grade 40-63, Sigma Aldrich) and eluting
with the stated solvent system.

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum One Fourier Transform Infrared
Spectrometer (FT-IR). Optical rotations were recorded on a Bellingham and Stanley ADP220
polarimeter with [a] values are quoted as in units 10" deg cm? g''. Small molecule high resolution
mass spectrometry (HRMS) was performed on a Bruker microTOF spectrometer using electrospray
ionisation (ESI). 'H and *C NMR spectra were recorded using Jeol ECZ 400, Jeol ECS 400, Bruker
Nano 400 and Bruker Avance III HD 500 Cryo spectrometers at ambient temperature. Chemical shifts
(8) are quoted in parts per million (ppm) and coupling constants (J) are in Hertz (Hz) rounded to 0.5
Hz intervals. Residual solvent peaks were used as the internal reference for proton and carbon
chemical shifts. Two-dimensional NMR techniques (HSQC, COSY, HMBC) were used routinely for
structural assignment.

LC-MS data were obtained on a Waters LCMS system comprising Waters 2767 autosampler, Waters
515 HPLC pump, Waters 2998 Diode Array detector, Waters 2424 ELS detector and Waters Quatro
Micro mass spectrometer. HPLC grade H,O and MeCN were added with 0.05% formic acid as
solvent system. Analytical LC-MS data were obtained using a Phenomenex Kinetex column (Cis, 250
X 4.60 mm, 5 pM) at a flow rate of 1 ml/min, with a gradient of 5-95% MeCN in 20 mins. Preparative
HPLC purification were carried out using a Phenomenex Kinetex column (Cis, 250 x 21.20 mm, 5
puM) at a flow rate of 16 mL/min. HRESIMS data were obtained on a Bruker Daltonic micrOTOF II
instrument. NMR data on isolated compounds from fermentation experiments were collected on
Bruker 500 MHz spectrometer equipped with a Smm *C optimised cryogenic probe, a Varian DDR
600 MHz spectrometer equipped with a 6.5 mm triple resonance cryogenic probe or Bruker
AVANCE" 700 MHz spectrometer equipped with a 1.7 mm triple resonance micro-cryocoil probe.

2. Fermentation procedure for the AmupA strain of Pseudomonas fluorescens NCIMB 10586

The AmupA-pJH2 mutant strain was incubated on LB agar plates (1% Bacto tryptone, 0.5% yeast
extract, 0.5% sodium chloride, 2% agar) containing tetracycline (30 pg/ml) and incubated at 30 °C for
2 days. The seed medium was prepared in 100 ml of LB media (1% Bacto tryptone, 0.5% yeast
extract, 0.5% sodium chloride, 1% glucose) in a 500 ml flask. The seed medium containing 30 pg/ml
tetracycline was inoculated with a single colony from a freshly incubated LB agar plate and incubated
at 200 rpm, 25 °C for 20 h.

Fermentation was inoculated with 1% seed culture in modified LB medium (1% Bacto tryptone, 0.5%
yeast extract, 0.5%, sodium chloride) supplemented with 4% w/v glucose (24 x 500 ml baffled flasks).
The culture was incubated at 200 rpm at 22 °C for 50 h, then centrifuged at 8000 rpm for 15 mins.



The supernatant was extracted with EtOAc three times and the combined extracts were evaporated in
vacuo to give a crude extract, which was resuspended in MeOH for LC-MS analysis or further
purification. After initial purification via preparative LC-MS, samples were further purified by prep-
TLC in CHCI3, MeOH, H,O (80/18/2).

3. Characterisation of Mupirocin A1 and Mupirocin AS

A 4.4 L scale fermentation of AmupA P. fluorescens NCIMB 10586 was carried out as per general
procedure before the crude extract was subjected to LCMS analysis. The isolated extract was
subjected to further purification to yield Mupirocin A1 (, 2.04 mgL™") and Mupirocin A5, 0.22 mgL™).

Mupirocin Al

4 2
o “‘\WOWOH
1 10

3 J, OH {5 O o}
16

I
N N
Iy LTI

~
3
[2)

11 9

OH
A1

8 (500 MHz, CD;0OD) 5.73 (1H, s, 2-H), 5.41-5.39 (2H, m, 11-H and 10-H), 4.30 (1H, tt, J 8.0, 6.5,
5-H), 4.08 (2H, t, J 6.5, 7'-H), 3.59 (1H, m, 13-H), 2.68 (1H, m, 6-HH), 2.65 (1H, m, 8-H), 2.60 (1H,
m, 6-HH), 2.35 (1H, m, 9-HH), 2.30 (2H, m, 4- H,), 2.25 (2H, t, J 7.5, 2"~ Hy), 2.19 (3H, d, J 1.5, 15-
Ha), 2.12 (1H, m, 12-H), 2.09 (1H, m, 9-HH), 1.66 2H, m, 6'-H), 1.62 (2H, m, 3'-H,), 1.40 (2H, m,
5'-H,), 1.39 (2H, m, 4'-H,), 1.08 (3H, J 7.0, 14-H;), 1.05 (3H, d, J 7.0, 16-Hs), 0.97 (3H, d, J 7.0, 17-
Hs). 8¢ (126 MHz, CD;0D) 214.7 (C-7), 179.0 (C-1"), 168.0 (C-1), 157.9 (C-3), 135.9 (C-11), 128.6
(C-10), 118.8 (C-2), 71.9 (C-13), 66.5 (C-5), 64.7 (C-7"), 49.3 (C-6), 49.3 (C-4), 47.7 (C-8), 45.1 (C-
12), 36.8 (C-9), 36.0 (C-2"), 29.9 (C-4"), 29.6 (C-6'), 26.7 (C-5'), 26.4 (C-3'), 20.1 (C-14), 19.0 (C-15),
16.4 (C-17), 15.8 (C-16). HRMS calc. for [C2sH4O7+Na]" 463.2672, found 463.2622.

Mupirocin A5

8 (500 MHz, CDsOD) 5.72 (1H, s, 2-H), 5.56 (1H, m, 10-H), 5.48 (1H, m, 11-H), 4.08 (2H, t, J 6.5,
9'-H,), 3.94 (1H, s, 5-H), 3.74 (1H, t, J 3.5, 7-H)), 3.62 (1H, m, 13-H), 3.52 (1H, d, J 11.0, 16-HH),
3.41 (1H, d, J 11.0, 16-HH), 2.36 (2H, m, 9-H,), 2.35 (1H, m, 4-HH), 2.26 (1H, m, 4-HH), 2.23 (2H,
t,J7.5,2"- Hy), 2.17 (4H, m, 12-H, 15-H3), 1.69 (2H, m, 6-H,), 1.64 (2H, m, 3'-Hy), 1.64 (2H, m, &'
H)), 1.35 2H, m, 4'-H,), 1.34 (2H, m, 5'-H,), 1.29 (2H, m, 6'-Ha), 1.12 3H, d, J 6.5, 14-Hs), 1.01
(3H, d, J 7.0, 17-Hs). 8¢ (126 MHz, CD;0D) 179.8 (C-1), 168.3 (C-1), 158.1 (C-3), 137.3 (C-11),
126.1 (C10), 118.5 (C-2), 72.1 (C-13), 71.2 (C-8), 71.0 (C-5), 70.4 (C-7), 70.0 (C-16), 64.9 (C-9"),
47.2 (C-4), 45.5 (C-12), 39.8 (C-9), 37.0 (C-6), 36.6 (C-2'), 30.5 (C-6"), 30.4 (C-5"), 30.3 (C-4"), 29.8



(C-8), 27.1 (C-7)), 267 (C-3'), 20.2 (C-14), 19.1 (C-15), 16.5 (C-17). HRMS calc. for
[C24H4s05+Na]™ 507.2934, found 507.2920.

4. Characterisation of Mupirocin A2 and Mupirocin A4

A 4.4 L scale fermentation was performed as previously described, before the crude extract was
subject to LC-MS analysis. The isolated extract was subjected to further purification to yield
Mupirocin A2 (0.13 mgL™) in a mixture with Mupirocin A4 (0.13 mg/ml).
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8 (500 MHz, CD;OD) 5.74 (1H, s, 2-H), 5.45 — 5.34 (2H, m, 11-H and 10-H)), 4.29 (1H, d, J 7.5, 5-
H), 4.09 (2H, t, J 6.0, 5'-H), 3.61 (1H, m, 3-H), 2.68 (1H, dd, J 17.0, 8.0, 6-HH), 2.65 (1H, m, 8-H),
2.58 (1H, dd, J 17.0, 5.0, 6-HH), 2.35 (1H, m, 9-HH), 2.30 (2H, m, 4H,), 2.25 (2H, m, 2-H), 2.19
(3H, s, 15-H), 2.09 (1H, m, 9-HH), 1.67 (4H, m, 3"-H, 4-H), 1.08 (3H, d, J 6.5, 14-Hs), 1.05 (3H, d, J
7.0, 16-Hs), 0.97 (3H, d, J 7.0, 17-Hs).

Mupirocin A4

8 (500 MHz, CD;0D) 6.21 (1H, d, J 1.5, 4-H), 6.05 (1H, q, J 1.5, 2-H), 5.42 (2H, m, 11-H and 10-
H), 3.75 (6-HD, very weak), 3.60 (1H, dd, J 6.5, 5.0, 13-H), 2.78 (1H, p, J 7.0, 8-H), 2.38 (1H, dt, J
13.5, 6.5, 9-HH), 2.19 (3H, s, 15-H), 2.15 (1H, m, 9-HH), 2.13 (1H, ddd, J 13.0, 9.5, 6.5, 12-H), 1.12
(3H, d, J 1.0, 16-H3), 1.08 (3H, dd, J 6.5, 1.5, 14-H3), 0.98 (3H, d, J 7.0, 17-H3). 8¢ (126 MHz,
CD;0D) 211.1 (C-7), 165.7 (C-1), 160.7 (C-3), 159.0 (C-5), 136.5 (C-11), 128.3 (C-10), 111.8 (C-2),
110.4 (C-4), 72.0 (C-13), 47.6 (C-8), 46.5 (C-6), 45.3 (C-12), 36.9 (C-9), 21.4 (C-15), 20.3 (C-14),
16.6 (C-17), 16.0 (C-16). HRMS calc. For [C17H2404+Na]" 315.1572, found 315.1577.

5. Characterisation of Mupirocin A3

A 4.4 L scale fermentation was performed as previously described, before the crude extract was
subject to LC-MS analysis. The isolated extract was subjected to further purification to yield
Mupirocin A3 (0.15 mgL™) as a mixture of two isomers of A and B (3:2).

Mupirocin A3 (A)
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81 (500 MHz, CD;0D) 5.74 (1H, s, 2-H), 5.42-5.39 (2H, m, 11-H and 10-H), 4.29 (1H, m, 5-H), 3.58
(1H, m, 13-H), 2.67 (1H, m, 6-HH), 2.62 (1H, dd, J 4.5, 2.0, 6-HH), 2.57 (1H, m, 8-H), 2.35 (1H, m,
9-HH), 2.26 (2H, m, 4H,), 2.22 (1H, m, 9-HH), 2.12 3H, d, J 1.5, 15-H3), 2.12 (1H, m, 12-H), 1.20
(3H, d, J 7.0, 16-Hs), 1.05 3H, d, J 6.5, 14-Hs), 0.93 (3H, d, J 7.0, 17-Hs). 3¢ (126 MHz, CD;0OD)
215.3 (C-7), 169.1 (C-1), 153.9 (C-3), 136.2 (C-11), 128.7 (C-10), 105.6 (C-2), 72.1 (C-13), 66.7 (C-
5), 49.6 (C-6), 49.4 (C-4), 45.2 (C-12), 39.7 (C-8), 38.9 (C-9), 20.0 (C-14), 18.9 (C-15), 18.3 (C-16),
16.3 (C-17).

Mupirocin A3 (B)

8 (500 MHz, CD;0D) 5.74 (1H, s, 2-H), 5.42-5.39 (2H, m, 11-H and 10-H), 4.29 (1H, m, 5-H), 3.58
(1H, m, 13-H), 2.66 (1H, dd, J 7.5, 5.5, 8-H), 2.34 (1H, m, 9-HH), 2.26 (2H, m, 4H,), 2.12 GH, d, J
1.5, 15-H3), 2.12 (1H, m, 12-H), 2.08 (1H, m, 9-AH), 1.08 3H, d, J 6.5, 14-Hs), 1.05 (3H, d, J 6.5,
16-Hs), 0.97 (3H, d, J 7.0, 17-Hs). 8¢ (126 MHz, CD;0D) 215.3 (C-7), 169.1 (C-1), 153.9 (C-3),
136.0 (C-11), 128.8 (C-10), 105.8 (C-2), 72.1 (C-13), 66.7 (C-5), 49.6 (C-6), 49.4 (C-4), 48.0 (C-8),
45.3 (C-12), 37.0 (C-9), 20.3 (C-14), 18.9 (C-15), 16.6 (C-17), 15.9 (C-16).

6. Characterisation of Mupirocin A6

A 4.4 L scale fermentation was performed as previously described, before the crude extract was
subject to LC-MS analysis. The isolated extract was subjected to further purification to yield
Mupirocin A6 (0.57 mgL™).

Mupirocin A6

81 (500 MHz, CDsOD) 5.73 (1H, s, 2-H), 5.41 (2H, m, 11-H and 10-H), 4.07 (2H, t, J 6.5 Hz, 7'-H>),
4.02 (1H, m, 5-H), 3.62 (1H, m, 7-H), 3.61 (1h, m, 13-H), 2.38 (1H, m, 4-HH), 2.23 (1H, m, 4-HH),
2.19 (3H, d, J 1.5, 3H, 15-Hs), 2.17 (1H, m, 9-HH), 2.15 (4H, m, 2'-H,, 12-H), 1.89 (1H, m, 9-HH),
1.65 (2H, m, 6'-Hy), 1.62 (1H, m, 6-HH), 1.60 (2H, m, 3'-Hy), 1.59 (1H, m, 8-H), 1.54 (1H, m, 6-HH),



1.39 (2H, m, 5'-Hy), 1.33 (2H, m, 4'-Hy), 1.09 (3H, d, J 7.0, 14-Hs), 0.99 (3H, d, J 7.0, 17-Hs), 0.89
(3H, d, J 7.0, 16-H3). 8¢ (126 MHz, CD;0D) 182.8 (C-1), 168.2 (C-1), 158.4 (C-3), 134.8 (C-11),
130.2 (C-10), 118.5 (C-2), 74.8 (C-7), 72.1 (C-13), 69.8 (C-5), 64.9 (C-7"), 49.6 (C-4), 45.3 (C-12),
40.7 (C-6), 40.5 (C8), 39.2 (C-2"), 36.5 (C-9), 30.4 (C4"), 29.8 (C-6'), 27.6 (C-3'), 26.9 (C-5), 20.2
(C-14), 19.2 (C-15), 16.6 (C-17), 15.4 (C-16). HRMS calc. For [CosHs2O-+Na]™ 465.2828, found
465.2817.

7. Characterisation of Mupirocin A7

A 4.4 L scale fermentation was performed as previously described, before the crude extract was
subject to LC-MS analysis. The isolated extract was subjected to further purification to yield
Mupirocin A7 (0.38 mgL™).

Mupirocin A7

8 (500 MHz, CDsOD) 5.75 (1H, s, 2-H), 4.10 (1H, m, 10-H), 4.07 (2H, t, J 6.5, 7'-Ha), 4.02 (1H, m,
5-H), 4.00 (1H, m, 13-H), 3.65 (2H, dd, J 7.0, 3.0, 11-H), 3.58 (1H, m, 7-H), 2.40 (1H, m, 4-HH),
2.34 (1H, dt, J 13.0, 7.5, 9-HH), 2.27 (1H, dd, J 14.0, 8.5, 4-HH), 2.19 (3H, d, J 1.5, 15-Hs), 2.15 (2H,
ddd, J 10.0, 6.5, 4.5, 2'-H), 2.01 (1H, m, 9-HH), 1.90 (1H, m, 8-H), 1.75 (1H, ddd, J 14.0, 5.0, 3.0, 6-
HH), 1.60 (1H, m, 6-HH), 1.58 (1H, m, 12-H), 1.64 (2H, m, 6'-H,), 1.61 (2H, m, 5'-H,), 1.38 (2H, m,
3'Hy), 1.29 (2H, m, 4'Hy), 1.12 3H, d, J 6.5, 14-Hs), 1.05 3H, d, J 6.5, 16-Hs), 0.84 (3H, d, J 7.0, 17-
Hs). 8¢ (126 MHz, CD;OD) 182.3 (C-1'), 167.8 (C-1), 158.0 (C-3), 118.2 (C-2), 84.8 (C-7), 80.5 (C-
10), 75.9 (C11), 69.6 (C-13), 68.8 (C-5), 64.6 (C-7'), 49.3 (C-4), 43.7 (C-12), 42.4 (C-6), 41.6 (C-8),
38.9 (C-2"), 35.0 (C-9), 30.4 (C-4"), 29.6 (C-6"), 27.6 (C-5'), 26.7 (C-3"), 18.8 (C-15), 18.8 (C14), 10.9
(C-17). HRMS calec. For [CasHa O7+Na]” 481.2777, found 481.2788.



8. Synthesis of 7-keto pantetheine (9) and 7-hydroxyl pantetheine substrates (12)

Scheme S2. General synthetic scheme of 7-keto pantetheine (9) and 7-hydroxyl pantetheine (12) substrates.
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Methyl (28,35)-3-hydroxy-2-methylbutanoate S2

OMe LDA, Mel 3 _A_1_OMe
THF
OH O OH O

S1 S2

N

DIPA (3.77 ml, 26.7 mmol) was dissolved in anhydrous THF (20 mL) and the solution cooled to —78
°C. n-BuLi (16.7 mL, 26.7 mmol, 1.61 M in hexane) was added dropwise and the reaction mixture
stirred at —78 °C for 1 h. A solution of ester S1 (1.40 mL, 12.8 mmol) in anhydrous THF (10 mL) was
then added dropwise at —78 °C before the cooling bath was removed and the reaction mixture was
stirred at room temperature for 20 mins. The reaction mixture and was then re-cooled to —78 °C. Mel
(0.96 mL, 15.4 mmol) was added dropwise and the reaction mixture was allowed to warm to 0 °C and
stirred for 3 h. The reaction was quenched by the addition of HCI (6 M, 10 mL) and the aqueous layer
was extracted with Et;O (3 x 30 mL). The combined organic extracts were dried over MgSQs, filtered
and concentrated in vacuo. The crude residue was purified by column chromatography (5% EtOAc in
petroleum ether) to give ester S2 as a colourless oil (1.20 g, 82%). éu (400 MHz, CDCl3) 3.87 (1H, p, J
7.0, 3-H), 3.69 (3H, s, OCH3), 2.44 (1H, p, J 7.0, 2-H), 1.20 (3H, d, J 7.0, 4-H3), 1.15 (3H, d, J 7.0, 2-
CH3). 8¢ (101 MHz, CDCls) 176.3 (C-1), 63.4 (C-3), 51.7 (OCHz3), 46.9 (C-2), 20.7 (2-CH3), 14.0 (C-4).

Data in accordance with the literature [/,

Methyl (25,35)-3-(tert-butyldimethylsilyloxy)-2-methylbutanoate S3

TBSCI
_ imidazole
H DMAP H
Y\[rOMe 3 ; 1_OMe
CH2C|2
OH O TBSO O
S2 S3

Alcohol S2 (600 mg, 4.54 mmol), imidazole (463 mg, 6.91 mmol) and DMAP (55 mg, 0.45 mmol) were
dissolved in CH>Cl, (15 mL). TBSCI (1.23 g, 8.17 mmol) was added and the reaction stirred for 16 h.
The reaction was quenched with H,O (ca. 10 mL) and the aqueous layer extracted with CH,Cl, (3 x 15
mL). The combined organic extracts were dried over MgSQs, filtered and concentrated in vacuo. The
crude residue was purified by column chromatography (2% EtOAc in petroleum ether) to give ester S3
as a colourless oil (1.08 g, 96%). [a]3* +35.4 (¢ 1.3, CHCL), [a]3* +42.0 (c 1.25, CHCls) . &y (400
MHz, CDCl;) 3.98 (1H, dq, J 7.0, 6.0, 3-H), 3.63 (3H, s, OMe), 2.47 (1H, pent, J 7.0, 2-H), 1.10 (3H, d,
J 6.0, 4-H3), 1.06 (3H, d, J 7.0, 2-CH3), 0.89 (9H, s, C(CHs)3), 0.03 (3H, s, Si(CH3).), 0.00 (3H, s,
Si(CHs)z). dc (101 MHz, CDCl3) 175.7 (C-1), 70.2 (C-3), 51.4 (OCH3), 48.1 (C-2), 25.7 (SiC(CH3)3),



20.6 (C-4), 17.9 (SiC(CHa)s), 12.7 (2-CHs), -4.3 (Si(CHs)2), -5.1 (Si(CHs),). Data in accordance with

the literature B,

(2R,35)-3-(tert-Butyldimethylsilyloxy)-2-methylbutan-1-ol S4

3
OMe  pDiBALH 2 OH
TBSO O CH,ClI, OTBS
S3 sS4

Ester S3 (500 mg, 2.15 mmol) was dissolved in CH,Cl, (6 mL) and the solution cooled to —78 °C.
DIBAL-H (1 M in hexane, 4.52 mL, 4.52 mmol) was added dropwise and the reaction mixture was
allowed to warm to room temperature and stirred for 2 h. Sat. aq. potassium sodium tartrate (10 mL)
was added and the reaction mixture was stirred vigorously overnight. The layers were separated and the
aqueous layer was extracted with CH>Cl, (3 x 10 mL). The combined organic extracts were dried over
MgSOy, filtered, and concentrated in vacuo to give S4 (447 mg, 95%) as a colourless oil. [a]3*=+12.0
(c 1.0, CHCly), [a]3* = +23.0 (c 1.0, CHCl5) . 81 (400 MHz, CDCl5) 3.72 (1H, m, 1-HH), 3.66 (1H, m,
3-H), 2.73 (1H, m, 1-HH), 1.52 (1H, m, OH), 1.12 (3H, d, J 7.0, 4-H3), 0.87 (3H, d, J 7.0, 2-CHj3), 0.80
(9H, s, SiC(CHs)s), 0.00 (3H, s, SiCH3), 0.00 (3H, s, SiCH3). 6¢ (101 MHz, CDCl;) 74.1 (C-3), 65.9 (C-
1), 41.7 (C-2), 25.8 (SiC(CHa3)3), 22.2 (C-4), 17.9 (SiC(CH3)3), 14.7 (2-CHs), —4.2 (Si(CHs)), —5.0
(Si(CHs),). Data in accordance with the literature ©°/.

(25,35)-3-(tert-Butyldimethylsilyloxy)-2-methylbutanal S5

OH DMP, NaHCO3 A /O
2

OTBS CHyCl, OTBS1
S4 S5

Alcohol S4 was dissolved in CH,Cl, (32 mL) and the solution cooled to 0 °C. NaHCOs (2.03 g, 24.2
mmol) and DMP (4.79 g, 11.28 mmol) were added and the reaction mixture was allowed to warm to
room temperature and stirred for 2 h. The reaction was quenched by the addition of 10 % aqg. Na>S,03
(30 mL) and sat. ag. NaHCO3 (30 mL). The aqueous layer was extracted with CH>Cl, (3 x 15 mL) and
the combined organic extracts were dried over Na,SOs, filtered, and concentrated in vacuo. The crude
residue was purified by column chromatography (0 — 15% Et,O in pentane) to give S5 (1.37 g, 78%) as
a colourless oil. [a]3* = +43.0 (c 1.0, CHCL), [a]3* = +47.0 (c 1.0, CHCls) . 8y (400 MHz, CDCls)
9.69 (1H, d, J 2.5, 1-H), 3.96 (1H, m, 3-H), 2.30 (1H, app. pd, J 6.0, 2.5, 2-H), 1.15 (3H, d, J 6.0, 4-H3),
1.00 (3H, d, J 6.0, 2-CH3), 0.80 (9H, s, SiC(CHs)3), 0.00 (3H, s, SiCH3), —0.01 (3H, s, SiCH3). 8¢ (101
MHz, CDCL) 205.2 (C-1), 69.9 (C-3), 53.7 (C-2), 25.7 (SiC(CH3)3), 21.8 (C-4), 18.0 (SiC(CHs)3), 10.6
(2-CH3), —4.2 (SiCH3), —5.0 (SiCH3). Data in accordance with the literature ),
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(3R,45)-4-(tert-Butyldimethylsilyloxy)-3-methylpent-1-ene 1

.0 NaHMDS, CH3PPh3Br A

OTBS Et,0 oTBS’
S5 1

CH;PPhsBr (1.16 g, 3.25 mmol) was suspended anhydrous Et;O (10 mL) and the suspension cooled to
—78 °C. NaHMDS (1 M in Et,0, 3.33 ml, 3.33 mmol) was added and the reaction mixture was stirred
for 1 h at =78 °C. Aldehyde S5 (600 mg, 2.78 mmol) was added dropwise and the reaction mixture
was allowed to warm to room temperature and stirred for 16 h. The reaction was quenched by the
addition of sat. ag. NH4Cl (10 mL) and the aqueous layer was extracted with Et;O (3 x 10 mL). The
combined organic extracts were dried over MgSQ,, filtered, and concentrated in vacuo. The crude
residue was purified by column chromatography (1% EtOAc in petroleum ether) to give 1 as a
colourless oil (446 mg, 64%). [a]33¢ = +7.5 (c 2.0, CHCL3), [a]3® = +8.2 (c 2.3, CHCL)!®. &4 (400
MHz, CDCls) 5.75 (1H, ddd, J 17.0, 10.5, 7.5, 2-H), 4.96 (1H, m, 1-HH), 4.92 (1H, m, 1-HH), 3.67
(1H, qd, J 6.0, 4.5, 4-H), 2.13 (1H, m, 3-H), 1.01 (3H, d, J 6.5, 5-H3), 0.95 (3H, d, J 6.5, 3-CH3), 0.85
(9H, s, SiC(CH3)3), 0.00 (3H, s, SiCH3), 0.00 (3H, s, SiCH3). 8¢ (101 MHz, CDCls) 141.2 (C-2), 114.2
(C-1), 71.7 (C-4), 45.4 (C-3), 25.9 (SiC(CHs)3), 20.6 (C-5), 18.1 (SiC(CHz3)3), 15.5 (3-CHs), —4.3
(SiCH3), —4.8 (SiCH3). Data in accordance with the literature ¢,

N-Acetylthiazolidine-2-thione 5

SH o =
A acetyl chloride )L le\
NS 76N P
/ NEt;, CH,Cl, 4 5
1 5

4,5-dihydrothiazole-2-thiol 11 (2.00 g, 16.8 mmol) was dissolved in CH>Cl, (27 mL) and the solution
cooled to 0 °C. Acetyl chloride (1.19 mL, 16.8 mmol) and Et;N (2.34 mL, 16.8 mmol) were added
and the reaction mixture was then allowed to warm to room temperature and stirred for 3 h. The
reaction was quenched with sat. aq. NH4Cl (27 mL). The layers were separated and the aqueous layer
was extracted with CH>Cl, (3 x 15 mL). The combined organic extracts were dried over Na>SOs,
filtered and concentrated in vacuo. The crude residue was purified by column chromatography (0 —
30% EtOAc in petroleum ether) to give 5 (2.70 g, quant.) as a bright yellow oil. i (500 MHz, CDCl3)
4.56 (2H,t,J 7.5, 4-H»), 3.28 (2H, t, J 7.5, 5-H»), 2.76 (1H, s, 7-Hs). 6c (126 MHz, CDCl3) 202.1 (C-
2), 171.5 (C-6), 55.7 (C-4), 28.3 (C-5), 27.1 (C-7). Data in accordance with the literature !,

(7-"*C)-N-Acetylthiazolidine-2-thione 5
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s S
)\ 13CH4COOH, DIC
N“ s

7
\ /'  DbwmaAP, CH,C, 4 5
1

T

+/6 N 2°S

(7-13C)5

4,5-dihydrothiazole-2-thiol 11 (1.50 g, 12.60 mmol), DMAP (0.257 g, 2.10 mmol) and DIC (2.44 mL,
15.75 mmol) were dissolved in CH>Cl, (90 mL). (2-"*C)acetic acid (0.60 mL, 10.50 mmol) was added
and the reaction mixture was stirred at room temperature for 18 h. The volatiles were removed in
vacuo and the crude residue was purified by column chromatography (20 % EtOAc in petroleum
ether) to give (7-"°C)5 (1.64 g, 97%) as a bright yellow oil. 5x (500 MHz, CDCl;): 4.58 (2H, t, J 7.5,
4-H,), 3.29 (2H, t, J 7.5, 5-H»),2.78 (3H, d, J 131.0, 7-H3). dc (126 MHz, CDCL): 202.1 (C-2), 171.6
(d, J 52.5, C-6), 55.7 (C-4), 28.3 (C-5), 27.1 (C-7 (enhanced)).
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(R)-4-Benzyl-3-(pent-4'-enoyl)oxazolidin-2-one S8

0
1. HOJW 9] Q 3 .
M Et;N, PivCl O)‘\NWS

) sz @
2 2. n-BuLi, THF 5 'I 6
S7 S8

4-Pentenoic acid (1.00 mL, 10.2 mmol) was dissolved in anhydrous THF (5 mL) and the solution cooled
to =78 °C. Triethylamine (1.81 mL, 13.2 mmol) was added and then pivaloyl chloride (1.25 mL, 10.2
mmol) was added dropwise. The reaction mixture was stirred at —78 °C for 30 mins, then warmed to
room temperature for 2 h before being re-cooled to —78 °C. In a separate flask, Evans’ auxiliary S7
(1.64 g, 10.2 mmol) was dissolved in anhydrous THF (10 mL) and the solution cooled to —78 °C. n-
BuLi (1.6 M in hexanes, 6.45 mL, 10.2 mmol) was added slowly to the solution of S7 at and the
mixture was then allowed to warm to room temperature and stirred for 30 mins. The anion was slowly
transferred to the mixed anhydride solution at —78 °C and the reaction mixture was then allowed to
warm to room temperature and stirred for 16 h. The reaction was quenched by the addition of sat. aq.
NaHCOs (20 mL) and the layers were separated. The aqueous layer was extracted with EtOAc (3 x 20
mL) and the combined organic extracts dried over MgSQOs, filtered and concentrated in vacuo. The
crude residue was purified by column chromatography (10-20% EtOAc in petroleum ether) to give S8
as a colourless oil (2.10 g, 81%). 6u (400 MHz, CDCl3) 7.25 (3H, m, Ar-H), 7.15 (2H, m, Ar-H), 5.81
(1H, m, 4'-H), 5.00 (2H, m, 5’-H), 4.62 (1H, m, 5-HH), 4.12 (1H, m, 5-HH), 4.05 (1H, m, 4-H), 3.25
(1H, dd, J 13.0, 3.0, 3’-HH), 2.97 (2H, m, 6-H»), 2.71 (1H, m, 3’-HH), 2.40 (2H, m, 2'-H,). d¢ (101
MHz, CDCl;) 172.5 (C-2), 153.4 (C-1"), 136.7 (C-4"),135.2 (Ar-C), 129.4 (2 x Ar-C), 129.0 (2 x Ar-C),
127.3 (Ar-C), 115.7 (C-5), 66.2 (C-5), 55.2 (C-4), 38.1 (C-3"), 37.9 (C-6), 28.2 (C-2'). Data in

accordance with the literature ©*.
(R)-4-Benzyl-3-((R)-2’-methylpent-4'-enoyl)oxazolidin-2-one 2

O o O

o) .
O)\\NJ\/\/ 1. NaHMDS, THF O)\\N%J\z"/g}\%
- s &

.,
,
“”

; 2. Mel 5 ”'FG

S8 2

Alkene S8 (0.20 g, 1.18 mmol) was dissolved in anhydrous THF (4 mL) and cooled to —78 °C.

NaHMDS (1 M in hexanes, 1.77 mL, 1.77 mmol) was added dropwise and the reaction mixture was
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stirred for 1 h at =78 °C. Mel (0.21 mL, 4.72 mmol) was then added dropwise at —78 °C. After
stirring for a further 1 h at =78 °C, the reaction was quenched by the addition of sat. aq. NH4Cl (10
mL). The aqueous layer was extracted with EtOAc (3 x 15 mL) and the combined organic extracts
were dried over MgSQs, filtered and concentrated in vacuo. The crude residue was purified by column
chromatography (20% EtOAc in petroleum ether) to give 2 as a colourless oil (0.23 g, 88%). [a]3* —
2.0 (¢ 1.0, CHCI;). 61 (400 MHz, CDCl3) 7.22 (3H, m, Ar-H), 7.11 (2H, m, Ar-H), 5.66 (1H, m, 4'-H),
4.93 (2H, m, 5'-H,), 4.53 (1H, m, 5-HH), 4.08 (1H, m, 5-HH), 4.06 (1H, m, 4-H), 3.71 (1H, m, 2’-H),
3.15(1H, dd, J 13.0, 3.0, 3"-HH), 2.66 (1H, m, 3'-HH), 2.37 (1H, m, 6-HH), 2.08 (1H, m, 6-HH), 1.13
(3H, d, J 7.0, 2'-CHs). &c (101 MHz, CDCL) 176.6 (C-2), 153.1 (C-1") 135.7 (C-4'), 135.4 (Ar-C),
129.6 (2 x Ar-C), 129.1 (2 x Ar-C), 127.5 (Ar-C) 117.2 (C-5"), 66.2 (C-4), 55.5 (C-5), 38.1 (C-2),
37.7 (C-3"), 37.6 (C-6), 17.2 (2'-CH3). Data in accordance with the literature *! (No optical rotation

recorded in literature).

(R)-4-Benzyl-3-((2R,6R,7S,E)-7"-((tert-butyldimethylsilyl)oxy)-2’,6'-dimethyloct-4'-

enoyl)oxazolidin-2-one 3

0

0 .
O)\\NJJ\‘/\% \‘/\/ G-l (10 mol%)
, ¥

dichloroethane

N

N T

P

Alkene 2 (0.823 g, 3.01 mmol) and alkene 1 (1.77 g, 8.27 mmol) were dissolved DCE (7 mL) and a
solution of Grubbs-II (0.251 g, 0.295 mmol) in DCE (15 mL) was added. The reaction was stirred at
reflux for 16 h. The reaction mixture was cooled to room temperature and concentrated in vacuo. The
crude residue was purified by column chromatography (0-5% EtOAc in petroleum ether) to give 3
(1.00 g, 74%) as a colourless oil. 6u (500 MHz, CDCls): 7.35 — 7.32 (2H, m, Ar-H), 7.29 — 7.24 (1H,
m, Ar-H), 7.21 (2H, d, J 7.5, Ar-H), 5.50 — 5.43 (1H, dd, J 15.5, 7.5, 5'-H), 5.43 — 5.31 (1H, m, 4'-H),
4.70 — 4.62 (1H, m, 4-H), 4.19 (2H, d, J 5.0, 5-H»), 3.80 (1H, m, 2’-H), 3.74 — 3.64 (1H, m, 7'-H),
3.29 (1H, dd, J 13.5, 3.5, 6-HH), 2.80 (1H, dd, J 13.5, 9.5, 6-HH), 2.42 (1H, m, 3’-HH), 2.23 — 2.07
(2H, m, 3'-HH and 6'-H ), 1.24 (3H, d, J 7.0, 2’-CH3), 1.04 (3H, d, J 6.0, 8'-H3), 0.96 (1H, d, J 7.0, 6'-
CH3), 0.90 (9H, s, SiC(CHs)s3), 0.05 (6H, s, SiCH3). d¢ (126 MHz, CDCl3): 176.8 (C-1"), 153.2 (C-2),
135.7 (C-5"), 135.5 (Ar-C), 129.6 (2 x Ar-C), 129.06 1 (2 x Ar-C), 127.5 (Ar-C), 126.7 (C-4'), 71.9
(C-7"), 66.1 (C-5), 55.5 (C-4), 44.3 (C-6"), 38.0 (C-6), 37.96 (C-2'), 36.85 (C-3'), 26.0 (SiC(CHs)3),
20.7 (C-8'), 18.2 (SiC(CH3)), 16.9 (2'-CH3), 16.2 (6'-CH3), —4.2 (SiCH3), —4.7 (SiCH3). HRMS calc.
for [CasHaNO4Si+Na]* 482.2697, found 482.2694. vmax (neat)/ecm™ 2957, 2927, 2855, 1779 , 1698,
1455, 1381, 1249.
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(2R,6R,7S,E)-7-((tert-Butyldimethylsilyl)oxy)-2,6-dimethyloct-4-en-1-ol S9

OYO LiBH, . HOS

O N P
- Et,0,EtOH Z “n
SN OTBS
OTBS

3 s9

Oxazolidinone 3 (0.80 g, 1.74 mmol) was dissolved in Et;O (10 mL) and the solution was cooled to 0
°C. EtOH (0.7 mL, 12.0 mmol) was added, followed by the dropwise addition of LiBH4 (1.60 mL, 3.20
mmol, 2.0 M in THF). The reaction mixture was stirred at 0 °C for 1 h, then at room temperature for 0.5
h. The reaction was quenched by the addition of aq. NaOH (4 mL, 1 M). The layers were separated, and
the aqueous layer was extracted with Et;O (3 X 5 mL). The combined organic extracts were dried over
Na,SOs, filtered and concentrated in vacuo. The crude residue was purified by column chromatography
(40% EtOAc in petroleum ether) to give S9 (0.446 g, 89%) as a colourless oil. [a]3°= +80.0 (¢ 1.0,
CHCI3). 81 (400 MHz, CDCl3) 5.36 (2H, m, 4-H and 5-H), 3.65 (1H, m, 7-H), 3.47 (1H, m, 1-HH), 3.42
(1H, m, 1-HH), 2.08 (1H, m, 6-H), 2.04 (1H, m, 3-HH), 1.89 (1H, m, 3-HH), 1.66 (1H, m, 2-H), 1.00
(3H, d, J 6.5, 8-H3), 0.93 (3H, d, J 6.5, 6-H3), 0.88 (3H, d, J 6.5, 2-CH3), 0.85 (9H, s, SiC(CHs)3), 0.03
(3H, s, SiCH3), 0.03 (3H, s, SiCH3). dc (101MHz, CDCl3) 134.6 (C-5), 128.2 (C-4), 72.1 (C-7), 68.2 (C-
1), 44.4 (C-6), 36.8 (C-3), 36.1 (C-2), 26.1 (SiC(CHz3)3), 26.0 (SiC(CHz3)s), 20.8 (C-8), 16.5 (2-CHs),
16.2 (6-CH3), —4.2 (SiCH3), —4.7 (SiCH3). HRMS calc. for [Ci¢H340,Si+Na]"™ 309.2220, found
309.2221. Viax (neat)/cm™ 3339, 2957, 2928, 2857, 1462, 1374, 1252.

(2R,6R,7S,E)-7-((tert-Butyldimethylsilyl)oxy)-2,6-dimethyloct-4-enal 4

HO (0] H
H DMP, NaHCO, T 4
Ny DCM i
OTBS OoTBS
S9 4

Alcohol S9 (140 mg, 0.52 mmol) was dissolved in CH,Cl, (15 mL), NaHCO; was added and the
reaction mixture cooled to 0 °C. A solution of DMP (0.3 M in CH,Cl,, 1.8 mL, 0.68 mmol) was added
dropwise and the reaction mixture was stirred at room temperature for 1.5 h. The reaction was quenched
by addition of sat. aq. Na,S,03 (10 mL), the layers were separated, and the aqueous layer was extracted
with CH>Cl, (3 x 10 mL). The combined organic extracts were dried over MgSOQ,, filtered and
concentrated in vacuo. The crude residue was purified by column chromatography (5% EtOAc in
petroleum ether) to give aldehyde 4 as a colourless oil (125 mg, 89%). [a]3°= +120 (c 1.0, CHCls). &
(400 MHz, CDCls3) 9.65 (1H, d, J 1.5, 1-H), 5.46 (1H, ddt, J 15.5, 8.0, 1.0, 4-H), 5.33 (1H, m, 5-H),
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3.67 (1H, qd, J 6.0, 4.0, 7-H), 2.40 (2H, m, 2-H and 34H), 1.95 (2H, m, 6-H, 3H4H), 1.09 3H, d, J 7.0,
2-CHs), 1.02 3H, d, J 7.0, 8-Hs), 0.95 (3H, d, J 7.0, 6-Hs), 0.88 (9H, s, C(CHs)s), 0.03 (3H, s, SiCHs),
0.03 (3H, s, SiCHs). 8¢ (101 MHz, CDCls) 205.0 (C-1), 135.7 (C-4), 126.0 (C-5), 71.8 (C-7), 46.3 (C-2),
44.3 (C-6), 33.9 (C-3), 25.9 (SiC(CHs)s), 20.8 (C-8), 18.1 (SiC(CHs)s), 16.2 (6-CHs), 13.1 (2-CHs), 4.3
(SiCH3), —4.8 (SiCH;). HRMS calc. for [C1¢H3,0,Si+Na]" 307.2064, found 307.2065. Vi (neat)/cm’™
2957, 2928, 2956, 1727, 1461, 1374, 1252.

(4R,8R,9S,E)-9-((tert-Butyldimethylsilyl)oxy)-3-hydroxy-4,8-dimethyl-1-(2-thioxothiazolidin-3-
yl)dec-6-en-1-one 6

CH,Cl,

z TiCly, (-)-sparteine
/U\N/ILS + Y\/\jq,',
/

N-acetylthiazolidine-2-thione 5 (0.221 g, 1.37 mmol) was dissolved in CH>Cl, (3 mL) and the solution
cooled to 0 °C. A solution of TiCly (1 M in CH»Cl, 2.74 mL, 2.74 mmol) was added and a colour
change from yellow to bright orange was observed. The reaction mixture was stirred for 10 mins and
then cooled to —40 °C. (-)-Sparteine (0.315 mL, 0.457 mmol) was added and a colour change from
orange to dark purple was observed. The reaction mixture was stirred at —40 °C for 1 h and then
cooled to —78 °C. Aldehyde 4 (0.130 g, 0.457 mmol) in CH>CL, (2 mL) was then added and the
reaction mixture was stirred at —78 °C a further 1 h. The reaction was quenched by dropwise addition
of sat. aq. NH4Cl (8 mL), the layers were separated, and the aqueous layer was extracted with CH>Cl,
(3 x 10 mL). The combined organic extracts were dried over Na,SOs, filtered and concentrated in
vacuo. The crude residue was purified by column chromatography (10 — 50% Et,O in pentane) to give
6 (0.147 g, 72%) as a colourless oil. 6x (400 MHz, CDCl3): 5.52 — 5.30 (2H, m, 6-H and 7-H), 4.66 —
4.53 (2H, m, 4'-H»), 4.07 (1H, ddd, J 9.5, 4.5, 3.0, 3-H), 3.97 (1Huis, ddd, J 10.0, 6.0, 2.0, 3-H), 3.68
(1H, qd, J 6.0, 4.0, 9-H), 3.56 — 3.37 (1H, m, 2-HH), 3.35 — 3.25 (2H, m, 5'-H»), 2.59 — 2.40 (1H, br s,
OH), 2.33 — 2.17 (1H, m, 5-HH), 2.16 — 2.07 (1H, m, 8-H), 2.00 — 1.81 (1H, m, 2-HH), 1.76 — 1.52
(1H, m, 4-H), 1.03 (3H, d, J 6.0, 10-H3), 0.96 (3H, d, J 7.0, 8-CH3), 0.95 (3H, d, J 6.5, 84ias-CH3 ), 0.94
(3H, d, J 7.0, 4-CH3), 0.91 (3H, d, J 7.0, 44i.s-CH3 ), 0.88 (9H, s, C(CHz)3), 0.88 (9H, s, diasC(CHs)3),
0.03 (6H, s, SiCH3). dc (126 MHz, CDCls): 202.0 (C-2"), 202.0 (C-2"), 174.8 (C-1), 174.7 (C-14ias),
134.8 (C-7), 134.8 (C-T4ias), 128.2 (C-6), 128.1 (C-64ias), 72.1 (C-9), 71.8 (C-3), 70.9 (C-34ias), 55.9 (C-
4"), 44.4 (C-8), 44.4 (C-8dias), 43.6 (C-2), 42.8 (C-24ias), 38.7(C-4), 38.6 (C-4dias), 36.6 (C-5), 36.0 (C-
Sdias), 28.5 (C-5"), 26.0 (SiC(CH3)3), 20.7 (C-10), 18.3 (SiC(CHz3)3), 16.2 (8-CH3), 16.1 (8-CHsdgias),
14.4 (4-CH3), —4.2 (SiCH3), —4.7 (SiCH3). HRMS calc. for [C21H39NO3S,Si+Na]™ 438.2033, found
468.2042. Vinax (neat)/cm™ 3472, 2957, 2928, 1693, 1462, 1369, 1280.
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(R)-6-(2,2,9,9-Tetramethyl-1,3-dioxane-3-carboxamido)propionic acid S22

., OH OH !
- 5 7
ca?t O‘n/\/N __PTSA .| Hou NEAZ 1
acetone \n/\e/ 3
(0] O ) le}
S21 S22

Anhydrous acetone (50 mL) was stirred with 4 A molecular sieves for 20 mins before calcium D-
pantothenate S21 (1.0 g, 2.09 mmol) and PTSA (0.96 g, 5.56 mmol) were added. The resulting
suspension was stirred at room temperature for 16 h and then filtered through a pad of celite which
was washed with acetone (30 mL). The solvent was removed in vacuo to give a white residue which
was dissolved in EtOAc (20 mL) and washed with brine (20 mL). The organic extract was dried over
MgSOs, filtered and concentrated in vacuo. The crude residue was triturated with hexanes (ca. 5 mL)
to give S22 as a white solid (444 mg, 82%). [@]3°= +62.0 (c 1.0, CHCl), [a]%°= +62.0 (¢ 1.0, CHCL;).
d1 (400 MHz, CDCls) 7.01 (1H, m, NH), 4.10 (1H, s, 3-H), 3.70 (1H, d, J 12.0, 1-HH), 3.58 (1H, m, 6-
HH), 3.49 (1H, m, 6-HH), 3.30 (1H, d, J 12.0, 1-HH), 2.69 (2H, t, J 6.0, 7-H,), 1.46 (3H, s, 9-CH3),
1.43 (3H, s, 9-CHs), 1.04 (3H, s, 2-CHs), 0.98 (3H, s, 2-CHs). &c (101 MHz, CDCl3) 176.5 (C-8),
170.3 (C-4), 99.2 (C-9), 77.1 (C-3), 71.5 (C-1), 34.2 (C-6), 33.9 (C-7), 33.0 (C-2), 29.5 (9-CH3), 22.1
(2-CH3), 18.9 (2-CHj3), 18.8 (9-CHs). Data in accordance with the literature.!

Pantetheine 1,3-dimethyl ketal 7

><O cysteamine HCI ><o
HO H CcDI Mgz
) g THF 10
0] 0]
S2

2

uQ
nQ
N

T
m?
Z
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(@) EN
w )
N

Acid S22 (410 mg, 1.58 mmol) was dissolved in anhydrous THF (8 mL), CDI (374 mg, 2.30 mmol)
was added and the reaction mixture was stirred at room temperature for 30 mins. Cysteamine HCl
(262 mg, 3.40 mmol) was then added and the reaction mixture stirred for 16 h. The reaction was
quenched by addition of sat. ag. NH4CIl (10 mL) and extracted with CH>Cl, (3 x 10 mL). The
combined organic extracts were washed with brine (20 mL), dried over MgSO, , filtered and
concentrated in vacuo. The crude residue was purified by column chromatography (EtOAc) to give 7
as a white solid (377 mg, 75%). m.p 99-101 °C. [a]3°= +33.4 (c 1.0, MeOH), [a]3°= + 48.0 (¢ 1.0,
CHCIs) "%, 8y (400 MHz, CDCl;) 6.90 (1H, br s, NH), 6.21 (1H, br s, NH), 4.08 (1H, s, 3-H), 3.70
(1H, d, J 12.0, 1-HH), 3.57 (2H, m, 6-H»), 3.47 (2H, m, 10-H>), 3.27 (1H, d, J 12.0, 1-HH), 2.66 (2H,
q,J 7.0, 11-Hy), 2.47 (2H, t, J 6.0, 7-H,), 1.46 (3H, s, 12-CH3), 1.42 (3H, s, 12-CH3), 1.36 (1H, t, J
8.5, SH), 1.09 (3H, s, 2-CH3), 0.97 (3H, s, 2-CHj3). 6c¢ (101 MHz, CDCl3) 171.1 (C-8), 170.2 (C-4),
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99.1 (C-12), 77.1 (C-3), 71.4 (C-1), 42.4 (C-10), 36.1 (C-7), 34.8 (C-6), 32.9 (C-2), 29.5 (12-CH3),
22.1 (2-CH3), 18.9 (2-CHs), 18.7 (12-CHj3). Data in accordance with the literature.!'!)

S-((4R,8R,98,E)-9-((tert-Butyldimethylsilyl)oxy)-3-hydroxy-1-0x0-4,8-dimethyldec-6-ene-1-yl)-
pantetheine-1',3'-dimethyl ketal 8

L o
3 HO O HS/\/N\[]/\/NN 10
H S
Z yy N~( 0 o]
Q/S imidazole
OTBS

Thiazolidinethione 6 (37.0 mg, 0.0830 mmol) was dissolved in CH,Cl, (1.0 mL). Imidazole (17.0 mg,
0.249 mmol) and pantetheine 7 (30.4 mg, 0.0955 mmol) were added and the yellow reaction mixture
was stirred for 4 h. The solvent was removed in vacuo and the crude residue was purified by column
chromatography (50 — 80% EtOAc in petroleum ether) to give 8 (48.9 mg, 91%) as a colourless oil. dn
(400 MHz, CDCls): 6.99 (1H, br s, NH), 6.43 (1H, br s, NH), 5.55 — 5.21 (2H, m, 6-H and 7-H), 4.06
(1H, s, 3'-H), 4.04 — 3.85 (1H, m, 3-H), 3.66 (2H, m, 1'-HH and 9-H), 3.58 — 3.39 (4H, m, 6'-H, and
10'-Hz ), 3.34 (2H, m, 10'¢ias-H2), 3.26 (1 H, d, J 11.5, 1'-HH), 3.16 — 3.03 (2H, m, 11'-HH), 3.03 —
291 (2H, m, 11"-HH), 2.78 — 2.59 (2H, m, 2-H»), 2.40 (2H, t, J 6.5, 7'-H>), 2.23 — 2.14 (1H, m, 5-HH),
2.12 - 2.05 (1H, m, 8-H), 1.86 (1H, m, 5-HH), 1.65 — 1.52 (1H, m, 4-H), 1.44 (3H, s, 12'-CH3), 1.40
(3H, s, 12'-CH3), 1.01 (3H, s, 2’-CH3), 1.00 (3H, d, J 6.0, 10-H3), 0.95 (3H, s, 2'-CH3), 0.94 (3H, d, J
5.5, 8-CH3), 0.92 — 0.88 (3H, m, 4-CH3), 0.86 (9H, s, C(CH3)3), 0.01 (6H, s, SiCH3). 6¢ (101 MHz,
CDCls): 199.5 (C-1), 171.3 (C-8"), 170.6 (C-4"), 134.8 (C-7), 128.0 (C-6), 99.2 (C-12"), 77.2 (C-3'),
72.5 (C-3dias), 72.0 (C-3), 71.9 (C-9), 71.5 (C-1"), 48.9 (C-2), 48.1 (C-24ias), 44.4 (C-8), 39.3 (C-10"),
39.2 (C-104ias), 39.0 (C-4), 38.9 (C-44ias), 36.4 (C-5), 36.3 (C-7"), 35.3 (C-6"), 33.1 (C-2"), 29.6 (12'-
CHs), 28.8 (C-11"), 26.0 (C(CHs)3), 22.3 (2'-CH3), 20.8 (C-10), 19.0 (2'-CHs), 18.8 (12'-CH3), 18.2
(C(CHz3)3), 16.3 (8-CHz3), 15.2 (C-44iss), 14.2 (C-4), 4.2 (SiCH3), —4.7 (SiCH3). HRMS cale. for
[C32HsoN207SSi+H]" 645.3963, found 645.3968. vmax (neat)/cm™ 3321, 2958, 2929, 1658, 1529, 1462,
1376, 1252.

S-((4R,8R,98,E)-9-((tert-Butyldimethylsilyl)oxy)-1,3-dioxo0-4,8-dimethyldec-6-ene-1-yl)-
pantetheine-1',3'-dimethyl ketal S10

HO 0 o 0
H o Q 10 - N o $ e §
-z 5 DMP 9 A 5 :
', S\/\NJI\/\NJ% T . "y S\(\NJSIN./\NJ“%T
OTBS H H 0. 0 CH.Cl OTBS moH 7T H 071%0
8 $10
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Protected pantetheine 8 (0.22 g, 0.3411 mmol) was dissolved in CH>Cl> (7 mL) and the solution
cooled to 0 °C. DMP (0.159 g, 0.375 mmol) was added and the reaction mixture was stirred at 0 “C for
1 h. The reaction mixture was quenched by the addition of 10 % aq. Na,S;03 (3.5 mL) and sat. aq.
NaHCOs (3.5 mL). The layers were separated and the aqueous layer was extracted with CH>Cl» (3 x
10 mL). The combined organic extracts were washed with brine (3 x 10 mL) and sat. aq. NaHCOs (3 x
10 mL), dried over Na,SOs, filtered, and concentrated in vacuo. The crude residue was purified by
column chromatography (10 — 40% EtOAc in petroleum ether) to give S10 (0.134 g, 61%) as a
colourless oil. [a]3* =+ 5.0 (¢ 0.8, CHCL3). 85 (500 MHz, CDCl5) 12.60 (1H, s, 2eno-H), 7.04 (1H, br
s, NH), 6.24 (1H, br s, NH), 5.54 — 5.37 (1H, m, 7-H), 5.35 — 5.20 (1H, m, 6-H), 4.07 (1H, s, 3'-H),
3.72 (2H, d, J 3.0, 2¢e0-H>), 3.68 (1H, d, J 12.0, 1’-HH), 3.68 — 3.62 (1H, m, 9-H), 3.63 — 3.52 (2H, m,
6'-H»), 3.55-3.37 (2H, m, 10"-H»), 3.27 (1H, d, J 11.5, 1'-HH), 3.10 - 3.02 (2H, m, 11'-H>), 2.66 (1H,
tq, J 10.0, 7.0 4we0-H), 2.43 (2H, td, J 6.0, 3.0, 7"-H»), 2.39 — 2.26 (1H, m, 5-HH), 2.22 (1H, m, 4cnol-
H), 2.15 - 2.05 (3H, m, 5-HH and 8-H), 1.46 (3H, s, 12"-CHs), 1.41 (3H, s, 12’-CH3), 1.12 3H, d, J
7.0, 4eno-CHs), 1.10 (3H, d, J 7.0, 4«eto-CH3), 1.03 (3H, s, 2'-CH3), 1.01 (3H, d, J 6.0, 10-H3), 1.00 (3H,
d, J 6.0, 10en0-Hs), 0.97 (3H, s, 2'-CH3), 0.94 (3H, d, J 7.0, 8-CH3), 0.93 (3H, d, J 7.0, 8eno-CHs), 0.87
(9H, s, C(CHz3)3), 0.02 (3H, s, SiCHs), 0.02 (3H, s, SiCH3). &c (126 MHz, CDCl;) 205.7 (C-3), 194.3
(C-lenot), 192.4 (C-lketo), 180.9 (C-3enor), 171.5 (C-8'), 171.3 (C-8'cnol), 170.3 (C-4'cna), 170.2 (C-4'),
136.2 (C-7), 135.7 (C-Teno1), 126.7 (C-6enot), 126.1 (C-6), 99.2 (C-12"cno1), 99.2 (C-12"), 98.3 (C-2enot),
77.3 (C-3"), 72.0 (C-eno1), 71.9 (C-9%et0), 71.6 (C-1"), 55.9 (C-2), 47.2 (C-4), 44.4 (C-8), 44.4 (C-8cnol),
39.9 (C-4 cnol), 39.8 (C-10"cna1), 39.3 (C-10"), 37.4 (C-5), 36.8 (C-5cnot), 36.4 (C-7"), 34.9 (C-6"cro), 34.8
(C-6"), 33.1 (C-2"), 29.6 (12'-CH3), 29.3 (C-11"), 27.9 (C-11"eno1), 26.0 (C(CH3)3), 22.3 (2'-CH3), 21.0
(C-10keto), 20.9 (C-10enor), 19.0 (2'-CHs), 18.8 (12'-CH3), 18.2 (C(CHs)3), 17.4 (4enol-CHs), 16.5 (8keto-
CHs3), 163 (8o-CH3), 15.7 (4ke-CH3), —4.2 (SiCH3), —4.7 (SiCHs). HRMS calc. for
[C32HssN20-SSi+Na]" 665.3626, found 665.3624. vimax (neat)/cm™ 3313, 2957, 2930, 2858, 1722,
1659, 1613, 1525, 1461, 1375, 1252.
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S-((4R,8R,98,E)-9-((tert-Butyldimethylsilyl)oxy)-1,3-dioxo0-4,8-dimethyldec-6-ene-1-yl)-

pantetheine 9

O, (0] O, (0]
H 0 0O aq. HCI H N EE w 9 & O
NF o . IAF "
“y S\/\NJ\/\NJ% (1.5m) O "y S\/\NJSJ'\/\N NN
OTBS H H OXO THE OH L I L
S10 9

S10 (0.1113 g, 0.1731 mmol) was dissolved in THF (3.0 mL) and aq. HCI (1.5 M, 0.26 mL, 0.389
mmol) was added. The reaction mixture was stirred at room temperature for 2.3 h. Saturated aq.
NaHCOs (1.5 mL) was added and the layers were separated. The aqueous layer was extracted with
EtOAc (4 x 5 mL). The combined organic extracts were dried over Na,SOs, filtered and concentrated
in vacuo. The crude residue was purified by column chromatography (0 — 10% MeOH in CH,Cl,) to
give 9 (0.0754 g, 89%) as a colourless oil. [a]3° =+ 20.0 (¢ 0.1, CHCI3). 8x (500 MHz, CDCls): 5.50
(1H, s, 2eno-H), 5.48 — 5.28 (2H, m, 6-H and 7-H), 3.90 (1H, s, 3’-H), 3.89 — 3.81 (2H, m, 2ke0-H2),
3.63 — 3.57 (1H, m, 9-H), 3.55 — 3.41 (3H, m, 6’-H; and 1'-HH), 3.41 — 3.33 (3H, m, 10’-H; and 1'-
HH), 3.06 (2H, td, J 7.0, 2.5, 11'-H>), 2.75 (1H, tq, J 10.5, 7.0, 4«o-H), 2.42 (2H, t, J 6.5, 7"-H,), 2.40
—2.31(1H, m, 5-AH), 2.36 — 2.24 (1H, m, 4 eno-H), 2.20 — 2.07 (2H, m, 5-HH and 8-H), 1.13 (3H, d, J
6.5, 4enoi-CHs), 1.09 (3H, d, J 6.5, 4keto-CHs), 1.08 (3H, d, J 6.5, 10keto-H3), 1.07 (3H, d, J 6.5, 10eno1-
H3), 0.98 (3H, d, J 7.0, 8keto-CH3), 0.96 (3H, d, J 7.0, 8cno1-CHs), 0.92 (6H, s, 2'-CH3). d¢ (126 MHz,
CDCl) 207.7 (C-3), 195.4 (C-1enot), 193.7 (C-1), 180.9 (C-3cnot), 176.0 (C-4'cnot), 176.0 (C-4"), 173.9
(C-8"), 173.9 (C-8'cnot), 136.4 (C-7), 136.1 (C-Tenot), 128.7 (C-6¢not), 128.3 (C-6), 99.3 (C-2enal), 77.3
(C-3", 72.0 (C-9), 70.3 (C-1"), 56.6 (C-2), 48.0 (C-4), 45.2 (C-8), 45.2 (C-8cno1), 40.8 (C-4cnor), 40.5
(C-107), 39.8 (C-10"cno1), 38.4 (4eno-CHs), 36.8 (C-5), 36.4 (C-7"), 36.3 (C-6'cnot), 36.3 (C-6"), 29.7 (C-
11), 28.4 (C-11ena), 21.3 (C-2"), 20.9 (2"-CH3 x 2), 20.3 (C-10), 20.1 (C-10cno1), 17.7 (4-CH3), 16.5 (8-
CH3), 16.4 (8eno-CH3), 15.9 (4eno-CH3). HRMS calc. for [CasHaN,O;S+Na]™ 511.2448, found
511.2458. vimax (neat)/cm™ 3301, 2966, 2928, 2875, 1719, 1614, 1645, 1531, 1453, 1405, 1375, 1291.

20



(2-C)-S-((4R,8R 9S,E)-9-((tert-Butyldimethylsilyl)oxy)-1,3-dioxo-4,8-dimethyldec-6-ene-1-yl)-
pantetheine 9

§ aq. HCI w 9 & ©
"y, S\/\NJI\/\ J% (1 5 M ‘*y, S\I/\NJJ\T/\NJ“% 1
OTBS H H  OH OH
(2-'3c)s23 (2-3c)9

(2-3C)9 was prepared in accordance with procedures of compounds 87 to 9. [a]3° = +12.0 (¢ 0.5,
CHCI3). 81 (500 MHz, CDCl5) 5.48 — 5.32 (2H, m, 6-H and 7-H), 3.89 (1H, s, 3'-H), 3.66 — 3.55 (1H,
m, 9-H), 3.55 - 3.42 (3H, m, 6’-H; and 1’-HH), 3.41 — 3.33 (3H, m, 10’-H; and 1’-HH), 3.06 (2H, t, J
7.0, 11'-Hy), 2.75 (1H, tq, J 10.5, 7.0, 4o-H), 2.42 2H, t, J 6.5, 7"-H>), 2.39 — 2.32 (1H, m, 5-HH),
2.31-2.23 (1H, m, 4 no-CH3), 2.20 — 2.03 (2H, m, 5-HH and 8-H), 1.13 (3H, d, J 6.0, 4cnoi-CH3), 1.08
(3H, d, J 6.0, 4«eto-CH3), 1.08 (3H, d, J 6.5, 10keto-H3), 1.06 (3H, d, J 6.5, 1010-H3), 0.98 (3H, d, J 7.0,
8keto-CH3), 0.96 (3H, d, J 7.0, 8eno-CH3), 0.92 (6H, s, 2'-CH3). dc (126 MHz, CDCl3) 207.8 (d, J 36.0,
C-3), 193.7 (d, J 46.3, C-1eno1), 192.3 (C-1), 180.9 (d, J 64.0 C-3cno1), 176.0 (C-4"), 174.0 (C-8"), 173.9
(C-8'cnal), 136.4 (C-7), 136.1 (C-Tenot), 128.7 (C-6enot), 128.3 (C-6), 100.22 — 98.06 (m, C-2enot), 77.3
(C-3, 72.0 (C-9), 70.3 (C-1"), 59.9 — 54.4 (m, C-2), 50.1 (C-4keto0), 45.3 (C-8), 45.2 (C-8cnol), 40.4 (C-
10'ket0), 39.9 (C-10"cno1), 36.8 (C-5), 36.4 (C-7"), 36.3 (C-6"cnal), 36.3 (C-6'), 29.7 (C-11"), 28.4 (C-
11eno1), 21.3 (C-2"), 20.9 (2'-CH3 % 2), 20.3 (C-10), 20.1 (C-10cno1), 17.7 (4enoi-CH3), 16.5 (8-CH3), 16.4
(8eno-CH3), 15.8 (4-CHs). HRMS calc. for [*CCaHaN2O7S+H]" 490.2663, found 490.2665. Vimax
(neat)/cm™ 3302, 2967, 2930, 2875, 1718, 1646, 1598, 1530, 1452, 1374, 1267.

(8)-3-(tert-Butyldimethylsilyloxy)dihydrofuran-2(3H)-one S12

TBSCI
imidazole 0
DMAP 5
(0]
OH CHZCIZ ~OTBS
5

S$12

Lactone S11 (200 mg, 1.96 mmol) was dissolved in CH,Cl, (10 mL). Imidazole (200 mg, 2.94 mmol),
TBSCI (532 mg, 3.53 mmol) and DMAP (24.0 mg, 0.20 mmol) were added and the reaction was
stirred for 16 h at room temperature. The reaction was quenched by addition of H>O (10 mL), the
layers were separated and the aqueous layer was extracted with CH>Cl, (3 x 10 mL). The combined
organic extracts were dried over MgSOs, filtered and concentrated in vacuo to give S12 as a colourless
oil (413 mg, 97%). [a]3°=—10.0 (c 1.0, CHCl3). 8u (400 MHz, CDCls) 4.38 (2H, m, 5-HH and 3-H),
4.18 (1H, tdd, J 9.0, 6.5, 0.5, 5-HH), 2.45 (1H, dddd, J 12.5, 7.5, 6.5, 3.5, 4-HH), 2.21 (1H, dddd, J
12.5, 9.0, 8.5, 8.0, 4-HH), 0.90 (9H, s, SiC(CH3)3), 0.16 (3H, s, SiCH3), 0.14 (3H, s, SiCH3). dc (101
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MHz, CDCls) 176.0 (C-2), 68.4 (C-3), 64.9 (C-5), 32.5 (C-4), 25.8 (SiC(CHs)3), 18.4 (SiC(CHs)s), —
4.6 (SiCHs), 5.1 (SiCHs;). HRMS calc. for [CioHxOsSi+Na]™ 239.1074, found 239.1077. Vmax
(neat)/cm™ 2935, 2864, 1784, 1151.

(35)-3-(tert-Butyldimethylsilyloxy)-2-methyltetrahydrofuran-2-ol S13

o) OH

MelLi 2
O —> O
OTBS THF OTBS

S12 S$13

Lactone S12 (2.40 g, 11.2 mmol) was dissolved in anhydrous THF (25 mL) and the solution cooled to
—78 °C. MeLi (1.6 M in Et,0, 7.69 mL, 12.3 mmol) was added and the reaction mixture was stirred for
3 h at =78 °C. The reaction was quenched by the addition of sat. aqueous NH4Cl (15 mL), the layers
were separated and the aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic
extracts were dried over MgSQs, filtered and concentrated in vacuo. The crude residue was purified by
column chromatography (20% EtOAc in petroleum ether) to give lactol S13 as a colourless oil (2.1 g,
81%). 'H NMR showed a dr of 3:1, spectral data reported for the major product. 8 (400 MHz, CDCl5)
4.03 (1H, m, 3-H), 4.00 (1H, m, 5-AHH), 3.80 (1H, m, 5-HH), 2.14 (1H, m, 4-HH), 1.81 (1H, m, 4-
HH), 1.39 (3H, s, CH3), 0.91 (9H, s, SiC(CHj3)3), 0.12 (6H, s, SiCH3 x 2). 8¢ (101 MHz, CDCl3) 102.6
(C-2), 76.1 (C-3), 64.7 (C-5), 33.5 (C-4), 25.7 (SiC(CH3)3), 25.1 (CH3), 18.0 (SiC(CH3)3), —4.7
(SiCH3), —5.1 (SiCHsz). HRMS calc. for [CiiH2;0:Si+H-H,O]" 215.1462, found 215.1469. Viax
(neat)/cm™ 3434, 2961, 2929, 2864, 1252, 1103.

(8)-3-(tert-Butyldimethylsilyloxy)-4-methylpent-4-en-1-o0l S14

OH 2
Potasis R . TBSO OH
0 etasis Reagen
THF 5
S13 S14

Lactol S13 (112 mg, 0.50 mmol) was dissolved in anhydrous THF (2 mL) in a boiling tube. Petasis
reagent (0.21 M, 7.14 mL, 1.5 mmol,) was added and the reaction was stirred at 75 °C for 16 h. The
reaction mixture was cooled to room temperature, diluted with petroleum ether (10 mL) and filtered
through celite. The filtrate was washed with 2 M HCI (10 mL) and brine (ca. 10 mL), dried over
MgSO,, filtered and concentrated in vacuo. The crude residue was purified by column
chromatography (20% EtOAc in petroleum ether) to give alcohol S14 as a pale orange oil (67 mg,
58%). [a]3’=-12 (c 0.5, CHCl;). 8u (400 MHz, CDCls) 4.98 (1H, s, 5-HH), 4.84 (1H, s, 5-HH), 4.29
(1H,t,J5.5, 3-H), 3.73 (2H, m, 1-H»), 2.36 (1H, t, J 5.5, OH), 1.79 (2H, q, J 6.5, 5.5, 2-H»), 1.69 (3H,
s, 4-CH3), 0.91 (9H, s, SiC(CHs)s), 0.08 (3H, s, SiCH3), 0.03 (3 H, s, SiCH3). 6c (101 MHz, CDCls)
147.0 (C-4), 111.2 (C-5), 75.9 (C-3), 60.5 (C-1), 37.7 (C-2), 26.0 (SiC(CHs)3), 18.3 (SiC(CHs)3), 18.1
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(4-CH3), 4.6 (SiCH3), —5.2 (SiCHs). HRMS calc. for [C12Hz60,Si+Na]™ 253.1594, found 253.1595.
Vmax (neat)/em! 3430, 2955, 2930, 2858, 2251, 1471, 1256.

(4S,3R,E)-4-(tert-Butyldimethylsilyloxy)-1-iodo-3-methylpent-1-ene S6

_0 CrCly, CHIg 5 4 i |
> 3
THF 2
OoTBS OTBS
S5 S6

Anhydrous THF (10 mL) was stirred vigorously at 0 °C. CrCl, (3.58 g, 29.3 mmol) and CHI; (2.55 g,
6.48 mmol) were added to the stirred THF portionwise over 10 mins. Aldehyde S5 (700 mg, 3.24
mmol) in anhydrous THF (16 mL) was then added dropwise. The resulting solution was stirred at 0 °C
for 20 mins, followed by 2 h at room temperature. The reaction was quenched by addition of sat. aq.
Na»S,03 (30 mL) and then stirred for a further 30 mins. The layers were separated and the aqueous
layer extracted with Et,O (3 x 25 mL), the combined organic extracts were dried over MgSQO4 and the
solvent removed in vacuo. The crude residue was purified by column chromatography (100%
petroleum ether) to give vinyl iodide S6 as a pale yellow oil (350 mg, 32%). [a]3°= +17.0 (¢ 1.0,
CHCL). éu (400 MHz, CDCls) 6.46 (1H, dd, J 14.5, 8.5, 2-H), 5.97 (1H, dd, J 14.5, 1.0, 1-H), 3.64
(1H, qd, J 6.0, 5.0, 4-H), 2.17 (1H, m, 3-H), 1.07 (3H, d, J 6.0, 5-H3), 0.98 (3H, d, J 7.0, 3-CH3), 0.89
(9H, s, Si(CHz3)3), —0.04 (6H, s, 2 x SiCH3). 6c (101 MHz, CDCls) 149.2 (C-2), 74.9 (C-1), 71.4 (C-4),
48.5 (C-3), 26.0 (SiC(CH3)3), 21.4 (C-5), 18.2 (SiC(CHz3)s), 15.9 (3-CH3), —4.2 (SiCH3), —4.6 (SiCHa).
HRMS calc. for [C1,HasIOSi+Na]" 363.0612, found 363.0608. vinax (neat)/cm™ 2955, 2928, 2856, 2462,
1372, 1250.

(8)-1,3-Bis(zert-butyldimethylsilyloxy)-4-methylpent-4-ene S15

TBSCI )
TBSO. OH imidazole TBSO OTBS
I\/ DMAP 1\1/
B — e —
CH20|2 5
S14 S$15

Alcohol S14 (200 mg, 0.77 mmol) was dissolved in anhydrous CH>Cl, (5 mL) and TBSCI (142 mg,
1.16 mmol), imidazole (206 mg, 1.37 mmol) and DMAP (5 mg, 0.08 mmol) were added. The reaction
mixture was stirred at room temperature for 16 h before the addition of H»O (5 mL). The aqueous
layer was extracted with CH,Cl, (3 x 10 mL), the combined organic extracts were dried over MgSOQy,
and the solvent removed in vacuo. The crude residue was purified by filtration through a pad of silica
which was washed with EtOAc (ca. 40 mL). The solvent was removed in vacuo to give silyl ether S15

as a colourless oil (268 mg, 94%). [a]3°= —14 (c 0.5, CHCls). 8u (400 MHz, CDCl;) 4.86 (1H, s, 5-
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HH), 4.75 (1H, s, 5-HH), 4.21 (1H, dd, J 7.5, 5.0, 3-H), 3.63 (2H, m, 1-H,), 1.73-1.64 (2H, m, 2-H,),
1.68 (3H, s, 4-CHs), 0.89 (9H, s, SiC(CH3)3), 0.89 (9H, s, SiC(CHzs)3), 0.04 (3H, s, SiCHzs), 0.04 (6H,
s, SiCHs x 2), 0.01 (3H, s, SiCH3). 6¢ (101 MHz, CDCl3) 148.0 (C-4), 110.6 (C-5), 73.6 (C-3), 59.9
(C-1), 39.7 (C-2), 26.1 (SiC(CHz3)3), 26.0 (SiC(CHz3)3), 18.4 (SiC(CHz3)3), 18.4 (SiC(CH3)3), —4.6
(SiCH3), —5.0 (SiCH3), —5.1 (SiCH3), —5.1 (SiCH3). HRMS calc. for [CisH0,Si>+Na]™ 366.2465,
found 366.2456. Viax (neat)/cm‘1 2954, 2929, 2857, 1471, 1361, 1253.

(3S,4R,8R.9S,E)-1,3,9-Tris(tert-butyldimethylsilyloxy)-4,8-dimethyldec-6-ene S16

2
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Pd(dppf)Cly, AsPhs
Cs,CO3, THF/DMF/H,0
Alkene S15 (150 mg, 0.40 mmol) was dissolved in degassed anhydrous THF (1.5 mL) and the solution
cooled to —78 °C. 9-BBN in THF (0.5 M, 2.40 mL, 1.20 mmol) was added and the resulting solution
was allowed to warm to room temperature and stirred for 14 h. The reaction was quenched by the
addition of degassed H,O (1.5 mL) and stirred for a further 1 h. In a separate flask, vinyl iodide S6
(115 mg, 0.34 mmol) was dissolved in degassed DMF (9 mL). Cs;COs (397 mg, 1.22 mmol),
Pd(dppf)Cl> (66 mg, 0.09 mmol) and AsPh; (26 mg, 0.09 mmol) were added and the mixture was
stirred for 10 mins at room temperature. The previously prepared borane solution was then added
dropwise to this mixture and the reaction stirred at room temperature for 8§ h. The reaction was
quenched by the addition of H,O (10 mL) and the mixture was filtered through a pad of celite. The
aqueous layer was extracted with Et2O (3 x 30 mL) and the combined organic extracts were dried over
MgSO; and the solvent removed in vacuo. The crude residue was purified by column chromatography
(petroleum ether) to give silyl ether S16 as a colourless oil (168 mg, 89%). [a]?®= 2.0 (¢ 1.0,
CHCIl;). 61 (400 MHz, CDCls) 5.35 (2H, m, 6-H and 7-H), 3.73-3.68 (3H, m, 9-H and 1-H>), 3.63 (1H,
dt, J 10.0, 7.5, 3-H), 2.13 (1H, qd, J 6.5, 4.0, 8-H), 2.02 (1H, ddd, J 11.0, 9.0, 5.5, 5-HH), 1.79 (1H, m,
5-HH), 1.63 (1H, m, 4-H), 1.58 (2H, m, 2-H»), 1.03 (3H, d, J 6.5, 10-Hs), 0.96 (3H, d, J 6.5, 8-CH3),
0.90 (9H, s, SiC(CHzs)3, 0.89 (18H, s, SiC(CHs); x2), 0.86 (3H, d, J 6.5, 4-CH3), 0.05 (6H, s, SiCH3
x2), 0.04 (12H, s, SiCH3 x4). d¢ (101 MHz, CDCl;) 134.0 (C-7), 129.1 (C-6), 72.2 (C-3), 72.1 (C-9),
60.7 (C-1), 44.4 (C-8), 39.6 (C-4), 36.4 (C-5), 36.2 (C-2), 26.2 (SiC(CH3)3), 26.1 (SiC(CH3)s), 26.1
(SiC(CHs)3), 20.6 (C-10), 18.5 (SiC(CHj3)3), 18.3 (SiC(CHz3)3), 18.3 (SiC(CHas)s), 16.1 (8-CHs), 14.4
(4-CH3), —4.2 (SiCH3), —4.2 (SiCHs), —4.4 (SiCHs), —4.6 (SiCHs), —5.1 (SiCHs), 5.1 (SiCH3). HRMS
calc. for [C30HesO3Sis+Na]™ 580.4217, found 580.4211. vima (neat)/cm™ 2955, 2928, 2856, 1471, 1462,
1252.
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(3S,4R,8R,9S,E)-3,9-Bis(tert-butyldimethylsilyloxy)-4,8-dimethyldec-6-en-1-o0l S17

2
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TBS ether S16 (100 mg, 0.18 mmol) was dissolved in anhydrous MeOH (2 mL) and the solution
cooled to 0 °C. Py.Br; (2.87 mg, 0.009 mmol) was added and the reaction mixture was stirred at 0 °C
for 2.5 h. The reaction was quenched by the addition of sat. aq. NaHCOs3 (ca. 5 mL), the layers were
separated and the aqueous layer extracted with EtOAc (3 x 10 mL). The combined organic extracts
were dried over MgSO4 and the solvent removed in vacuo. The crude residue was purified by column
chromatography (5% EtOAc in petroleum ether) to give alcohol S17 as a colourless oil (32 mg, 40%).
[@]3°=-7.0 (c 1.0, CHCls). 8 (400 MHz, CDCl3) 5.33 (2 H, m, 6-H and 7-H), 3.79 (1H, dt, J 8.5, 4.0,
3-H), 3.74 (2H, m, 1-H,), 3.68 (1H, m, 9-H), 2.16 (1H, m, OH), 2.13 (1H, m, 8-H), 2.01 (1H, m, 5-
HH), 1.79 (1H, ddd, J 13.5, 8.5, 5.5, 5-HH), 1.70 (1H, m, 4-H), 1.66 ( H, m, 2-H»), 1.03 (H, d, J 6.5,
10-Hs), 0.96 (3H, d, J 6.5, 8-CH3), 0.90 (9H, s, SiC(CH3), 0.88 (9H, s, SiC(CH3), 0.86 (3H, d, J 6.5, 4-
CHs3), 0.09 (3H, s, SiCH3), 0.07 (3 H, s, SiCH3), 0.03 (3H, s, SiCHs), 0.03 (3H, s, SiCHs). &¢ (101
MHz, CDCl3) 133.1 (C-7), 128.5 (C-6), 74.7 (C-3), 72.1 (C-9), 61.1 (C-1), 44.4 (C-8), 39.1 (C-4), 36.9
(C-5), 33.2 (C-2), 26.0 (SiC(CHz3); x 2), 20.7 (C-10), 18.3 (SiC(CH3)), 18.2 (SiC(CH3)), 16.2 (8-CH3),
14.0 (4-CH3), -4.2 (SiCH3), —4.2 (SiCH3), —4.4 (SiCH3), —4.7 (SiCHs). HRMS calc. for
[C24H5203Si>+Na]" 467.3358, found 467.3353. vmax (neat)/cm™ 3789, 2953, 2929, 2836, 1251.

(3S5,4R,8R,9S,E)-3,9-Bis(tert-butyldimethylsilyloxy)-4,8-dimethyldec-6-enal S18

2
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Alcohol S17 (130 mg, 0.29 mmol) was dissolved in CH>Cl, (10 mL), NaHCOs (121 mg, 1.45 mmol)
was added and the reaction mixture was cooled to 0 °C. DMP (0.35 M solution in CH>Cl,, 1.08 mL,
0.38 mmol) was added dropwise and the reaction mixture stirred at room temperature for 1.5 h. The
reaction was quenched by the addition of sat. ag. Na;S,03 (ca. 5 mL), the layers were separated and
the aqueous layer extracted with CH>Cl, (3 x 10 mL). The combined organic extracts were dried over
MgSO4 and the solvent removed in vacuo. The crude residue was triturated with Et;O (ca. 2 mL),
filtered and concentrated in vacuo to give aldehyde S18 (125 mg, 98%) as a colourless oil which was
used without further purification. [a@]3°= +2.0 (¢ 1.0, CHCls). &u (400 MHz, CDCl3) 9.79 (1H, dd, J
3.0, 2.0, 1-H), 5.34 (2H, m, 6-H and 7-H), 4.15 (1H, dt, J 8.0, 4.0, 3-H), 3.68 (1H, qd, J 6.5, 4.0, 9-H),

25



2.50 (1 H, ddd, J 15.5, 8.0, 3.0, 2-HH), 2.38 (1H, ddd, J 15.5, 4.0, 2.0, 2-HH), 2.11 (1H, m, 8-H), 2.01
(1H, m, 5-HH), 1.82 (1H, m, 5-HH), 1.71 (1H, m, 4-H), 1.02 (3H, d, J 6.5, 10-H3), 0.95 (3H, d, J 6.5,
8-CHs), 0.87 (21H, m, 2 x Si(CHs); and 4-CH3), 0.03 (12H, m, 4 x SiCHs). 8¢ (126 MHz, CDCl;)
202.8 (C-1), 134.8 (C-7), 128.1 (C-6), 72.0 (C-9), 71.1 (C-3), 46.5 (C-2), 44.4 (C-8), 39.7 (C-4), 36.6
(C-5), 26.0 (C(CHz3)3), 25.9 (C(CHz3)3), 20.8 (C-10), 18.3 (C(CHas)3), 18.2 (C(CH3)3), 16.3 (8-CH3),
142 (4-CH;3), 4.2 (SiCHs), —4.3 (SiCH3), —4.5 (SiCH3), —4.7 (SiCHs3). HRMS calc. for
[C24Hs5003Si,+H]" 443.3371, found 443.3373. Vmax (neat)/cm™ 2929, 2857, 1729, 1462, 1375, 1253.
(3S5,4R,8R,98,E)-3-(tert-Butyldimethylsilyloxy)-9-hydroxy-4,8-dimethyldec-6-enoic acid S19

2
TBSO -0 TBSO 0
oxone 6 s
Y\/\J;\/ —_— 10\9(\/\%\54
DMF ; 5

OTBS OH
S$18 S$19

[=-p X111}

Aldehyde S18 (30 mg, 0.07 mmol) was dissolved in anhydrous DMF (0.7 mL), oxone (20 mg, 0.07
mmol) was added and the reaction mixture was stirred at room temperature for 3 h. The reaction was
quenched by the addition of HCI (1 M, ca. 1 mL), the layers were separated and the aqueous layer
extracted with EtOAc (3 x 1 mL). The combined organic extracts were washed with water (3 x 5 mL),
dried over MgSO4 and concentrated in vacuo. The crude residue was purified by column
chromatography (20-100% EtOAc in petroleum ether) to give acid S19 (12.5 mg, 52%) as a colourless
oil. [a]3°= +4.0 (c 1.0, CHCl3). 81 (500 MHz, CDCls) 5.48 (1H, dt, J 14.5, 7.0, 6H), 5.38 (1H, ddt, J
15.5, 8.5, 1.5, 7-H), 4.09 (1H, m, 3-H), 3.53 (1H, p, J 6.0, 9-H), 2.43 (2H, d, J 6.0, 2-H>), 2.08 (2H, m,
8-H and 5-HH), 1.88 (1H, m, 5-HH), 1.73 (1H, m, 4-H), 1.16 (3H, d, J 6.5, 10-H3), 1.00 (3H, d, J 6.5,
8-CHs), 0.88 (3H, d, J 6.5, 4-CH3), 0.87 (9H, s, SiC(CHs)s, 0.07 (3H, s, SiCH3), 0.06 (3H, s, SiCH3).
dc (126 MHz, CDCl;) 176.4 (C-1), 133.9 (C-7), 130.4 (C-6), 72.2 (C-3), 71.2 (C-9), 44.9 (C-8), 39.0
(C-4), 37.6 (C-2), 36.2 (C-5), 25.8 (SiC(CH3)3), 20.2 (C-10), 18.0 (SiC(CHs)3), 16.6 (8-CHs), 14.3 (4-
CH3), —4.6 (SiCH3), —4.8 (SiCH3). HRMS cale. for [CisH3504Si-H]™ 343.2305, found 343.2313. Viax
(neat)/cm™ 3410, 2959, 2929, 2866, 1712, 1462, 1378, 1252, 1080.

S-((35,4R,8R,9S,E)-3,9-dihydroxy-1-0x0-4,8-dimethyldec-6-ene-1-yl)-pantetheine 12
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Acid S19 (9.5 mg, 0.03 mmol) was dissolved in CH,Cl, (0.2 mL). Protected pantetheine 7 (29 mg,
0.09 mmol) and DMAP (0.4 mg, 0.003 mmol) were added. The reaction mixture was cooled to 0 °C
and EDCI (7.2 mg, 0.038 mmol) was added. The reaction was stirred at 0 °C for 5 mins and then
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allowed to warm to room temperature and stirred for 16 h. The reaction was quenched by the addition
of HCI (1 M, 1 mL), the layers were separated and the aqueousf layer was extracted with EtOAc (3 x1
mL). The combined organic extracts dried over MgSO4 and the solvent removed in vacuo to give a
pale yellow oil (16.5 mg, 0.03 mmol) which was dissolved in THF (0.5 mL). HCI (2 M, 0.25 mL) was
added and the reaction mixture was stirred at room temperature for 9 h. The reaction was quenched by
the addition of sat. ag. NaHCO;3 (ca. 1 mL), the layers were separated and the aqueous layer extracted
with EtOAc (3 x 5 mL). The combined organic layers were dried over MgSO4 and concentrated in
vacuo. The crude residue was purified by column chromatography (5-15% MeOH in CH»CL,) to give
12 as a colourless oil (14.7 mg, 98% over two steps). [a]3>= +4.0 (c 0.5, CD;0D). 8y (500 MHz,
CDs0OD) 5.46 (2H, m, 6-H and 7-H), 3.97 (1H, ddd, J 9.0, 6.0, 3.0, 3-H), 3.92 (1 H, s, 3’-H), 3.63 (1H,
qd, J 6.0, 5.0, 9-H), 3.47 (2 H, m, 6'-H»), 3.47 (1 H, m, 1’-AHH), 3.40 (1H, m, 9'-HH), 3.36 (2H, m, 10'-
H»), 3.03 (2H, t, J 6.5, 11'-H»), 2.74 (1H, dd, J 15.0, 3.5, 2-HH), 2.69 (1H, m, 2-HH), 2.42 2H, t, J
6.5, 7-H,), 2.21 (1 H, m, 5-HH), 2.16 (1H, m, 8-H), 1.91 (1H, m, 5-HH), 1.64 (1H, m, 4-H), 1.12 (3H,
d, J6.5,10-Hs), 1.02 (3H, d, J 6.5, 8-CH3), 0.93 (6H, s, 2 x 2’-CH3), 0.90 (3H, d, J 6.5, 4-CH3). ¢ (126
MHz, CD;0D) 199.4 (C-1), 176.1 (C-4"), 174.0 (C-8'), 135.3 (C-7), 130.1 (C-6), 77.3 (C-4"), 73.0 (C-
3), 72.2 (C-9), 70.4 (C-1"), 49.1 (C-2), 45.3 (C-8), 40.4 (C-4), 40.0 (C-10"), 36.7 (C-5), 36.4 (C-7"),
36.3 (C-6'), 29.3 (C-11"), 21.3 (C-2'), 20.9 (2'-CH3 x 2), 20.2 (C-10), 16.6 (8-CH3), 15.6 (4-CHx).
HRMS calc. for [C23HN>07S+Na]™ 513.2570, found 513.2572. Vinax (neat)/cm™ 3676, 3344, 2972,
2920, 2904, 1708, 1655, 1578, 1451, 1404, 1252.

9. Materials and methods for molecular biology techniques.

Reagents were purchased from Sigma-Aldrich, Thermo Fisher or Merck Millipore. E. coli competent cells
were purchased from New England Biolabs (T7 Express and 5-a) or Merck Millipore (Novagen BL21

(DE3)). All enzymes used were purchased from Thermo Fisher Scientific.

10. Plasmid generation, protein expression and purification

The gene encoding MupA was amplified from P. fluorescens NCIMB 10856 genomic DNA with
MupA FOR:

5'-AAGTTCTGTTTCAGGGCCCGATGTCAGTTGAACAATTACTCGGCCTGGGTGTG-3’
and MupA_REV:

5'- ATGGTCTAGAAAGCTTTACTGTGCTGACCGCTCCTGGAACGAG-3’
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primers and subcloned into the pOPINF vector (pOPINF-MupA), bearing an N-terminal Hise tag and a
3C protease cleavage site (LEVLFQGP). The nucleotide sequence for ACP_D4, ACP_A1 and Fre were
synthesized and sub-cloned into a pET151-D/TOPO plasmid bearing an N-terminal Hiss tag and a
tobacco etch virus (TEV) cleavage site (ENLYFQ) by Thermo Fisher. Both MupN and

CoaA/CoaD/CoaE were expressed and purified as described previously 2.

Individual plasmids were transformed into E. coli T7 Express cells. Cultures were grown to ODsgo = 0.7
in LB media (37 °C) supplemented with carbenicillin (100 pg/mL) and induced (0.5 mM isopropyl -D-
1-thiogalactopyranoside) at 16 °C (16 h) before cell pellets were harvested by centrifugation (6000 rpm,
10 mins) and resuspended in buffer A (50 mM Tris-HCI, 500 mM NaCl, 10% (v/v) glycerol, pH 8.0).
Harvested cells were sonicated and the soluble fraction was purified by immobilized metal affinity
chromatography (IMAC) via a HiTrap 5 ml HP Ni column (GE Healthcare). Protein was eluted using a
linear gradient from 6-100% of Buffer B (50 mM Tris-HCI, 500 mM NacCl, 10% (v/v) glycerol, 800 mM
imidazole, pH 8.0). Eluted protein was further purified by size exclusion chromatography (SEC) using
either a HiPrep 26/60 Sephacryl S100 or S200 column (GE Healthcare) in Buffer C (25 mM Tris-HCI,
150 mM NaCl, pH 7.5, 1 mM DTT) before protein concentration. Proteins were either immediately used
or stored at -20 °C. Both ACP_D4 and ACP_A1 were cleaved overnight using in house TEV protease
prior to SEC. Purified protein (50 uM) was analysed by analytical size exclusion chromatography using
either a Superdex 75 10/300 or Superdex 200 increase 10/300 GL column (GE Healthcare) calibrated

with molecular weight standards (GE Healthcare) ',

For NMR studies '°N labelled protein was produced from cells grown to ODgo = 2.0 in LB media
supplemented with carbenicillin (100 pg/ml) at 37°C. Cells were then pelleted by centrifugation (6000
rpm, 10 mins), washed twice with sterile M9 media and then exchanged into M9 minimal media at a 4:1
volumetric ratio. Cells were supplemented with 1 gL' *'NH4Cl, 0.5% (v/v) glycerol and 0.05% (w/v)
glucose and induced with 0.5 mM IPTG, then harvested after 16 hrs at 16 °C. Cells were resuspended

into buffer A and purified as described above for the unlabelled protein.

11 Whole cell biotransformation with MupA

For in vivo biotransformations 50 ml of overnight culture of E. coli (T7 express) cells were harvested
and resuspended in 2 ml 0.1 M K,HPO4 pH 7.2 buffer supplemented with 20 mM glucose and 0.5 mg
of 7-keto pantetheine 9 or 7-hydroxy pantetheine 12 dissolved in MeOH. Cells were incubated at 30 °C,
180 rpm for 6-16 hrs. Reactions were quenched by adding equal volume acetonitrile, then vortexed and

centrifuged. The acetonitrile layer was injected for LC-MS analysis.
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12 In-vitro LCMS assays

5 mM of 7-keto pantetheine substrate (9) dissolved in DMSO was incubated with 20 pM MupA, 20 uM
Fre, 1 mM FMN and 10 mM NADH in Buffer C for 1 h. Proteins were then isolated by methanol

chloroform precipitation and the resultant organic layer was injected for LC-MS analysis.

13 ESMS

Samples were desalted for ESMS analysis using a C; ZipTip (Merck) per the manufacturer’s
instructions. Denatured samples were analysed on a Synapt G2-Si (Waters) fitted with a TriVersa
NanoMate (Advion) using the following parameters: sample cone, 10 V; capillary voltage 1.5 kV; trap
collision energy, 10 V. The source as set to positive mode and spectra were acquired over 500-3000 m/z
and analysed using MassLynx 4.1 software. For Ppant ejection assays, an appropriate charge state was
isolated using the MSMS functionality. The transfer collision energy was increased until fragmentation

was observed (typically 5 V to 20 V) and spectra were collected from 200-1000 m/z.

14 MupA ESMS assay

100 uM ACP_D4 and ACP_A1 were both upgraded with pantethine substrates: 7-keto pantetheine 9 or
7-hydroxyl-pantetheine 12 (100 ul reactions) as previously described ' and desalted using a Zeba
column (Thermo Fisher) equilibrated in buffer C. *C-7-keto pantetheine 9 was upgraded to ACP_D4
(100 uM) on a larger scale (1.5 ml) before desalting using a 5 ml HiTrap desalting column (GE
Healthcare) and the upgraded ACP was further concentrated using VivaSpin concentrators

(ThermoFisher).

Loaded ACP (100 uM), FMN (1 mM), Fre (20 uM) and NADH (5 mM) were mixed in Buffer C. Upon
reduction of flavin, MupA was added (20 uM) and the reaction was incubated at room temperature in
the absence of light for 0-1 h and analysed by MS (10 ul aliquot) at regular intervals. Ppant ejection was

used to determine the outcome of the reaction.
15 NMR parameters

All protein NMR experiments were acquired on a Bruker AVANCE"P 700 MHz spectrometer equipped
with a 1.7 mm triple-resonance cryogenically cooled detection probe. For titrations of ACP_D4 and

ACP_A1 with MupA or MmpA_KS°, 'H-"*N HSQC spectra were recorded at pH 8.0 and 298 K.

For 'H-"C SO-FAST HSQC assays, derivatised ACP samples (100-300 pM) were maintained at 288 K

and experiments were carried out following the ESMS protocol. NMR data acquisition was completed
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within 5-10 minutes after the addition of MupA. Higher (300 uM) derivatised ACP concentrations were
found to offer no significant advantage in signal detection than using the lower concentration (100 uM).
Both one-dimensional 'H-NMR and 'H-">C SO-FAST HSQC spectra were acquired. Control spectra of
50 mM NADH, 50 mM FMN, 25 mM 9 and 10 mM "*C 9 were also obtained. All spectra were acquired
in 10% D,0 and were referenced using 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS).
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Scheme S1. A) General mechanism for oxygen activation in flavin-dependent monooxygenases using flavin (R =

FAD/FMN). The reaction of reduced flavin with oxygen generates the flavin C4a-(hydro) peroxide that reacts with
electrophilic or nucleophilic substrates to form the flavin C4a-hydroxide. Release of water regenerates the oxidised FMN. B)
Proposed mechanism for type I BVMO oxidations. The peroxyflavin attacks the substrate carbonyl via a nucleophilic
mechanism. Within the active site, the arginine is responsible for activation of the substrate ketone, supported by the 2’OH
from the ribose of the NADP™. If this ketone is substituted for an alcohol, nucleophilic attack can no longer proceed. The

proposed scheme is adapted from Scheme 3 of [151,
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Figure S1. Multiple sequence alignment of structurally characterised Class C monoxygenases. A) P. putida CamE36
(uniprot: DFUER1), V. harveryi Luciferase LuxA subunit (uniprot: Q9S4D7) and E. coli SsuD (uniprot: P80645) with P.
fluorescens MupA. The secondary structure elements of LuxA are included. (Inset) sequence identity between Class C
monooxygenases and MupA (%). B) Three-dimensional X-ray crystallographic structures of several Class C
monooxygenases, all of which display a TIM barrel fold (a/B)s with their PDB codes highlighted: CamE36 (light blue),
SsuD (light green), Luciferase LuxA subunit (orange), LadA (light pink), MsuD (light yellow), the latter two are regarded as
belonging to the SsuD sub-family of class C monooxygenases. An ab initio homology model of MupA (red) is included for
structural comparison ['%, For clarity, only a single monomeric subunit is shown for each structure. Structures that have been
co-crystallised with FMN are shown with sticks. Figure made using T-Coffee [/ and ESPRIPT ['%],
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A mmpD mmpA la-hydroxylation module

Figure S2. Biosynthetic pathways that contain the monooxygenase domain and the proposed a-hydroxylation module
architecture. A) Proposed timing of action of the putative monooxygenase MupA within the mupirocin biosynthetic
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pathway. MupA is proposed to act in between two type 1 modules (mmpD and mmpA prior to a KS® domain), on either a
hydroxy or keto substrate. B) Proposed timing of action of the putative monooxygenase CalD within the calyculin A
biosynthetic pathway. CalD is homologous to MupA and proposed to act between two type 1 modules (calC and calE)
acting on a hydroxyl substrate. C) The timing of action of the monooxygenase OocM within the oocydin A biosynthetic
pathway. OocM acts between two modules (OocL and OocN) to install an a-hydroxyl group at C14 on a 3-keto substrate
and constitutes a functioning a—hydroxylation module. D) The proposed timing of the cis-encoded monoxgenase PtzB_OX
within the type 1 module pzzB within the Patellazole biosynthetic pathway. The monooxygenase (OX) acts in cis preceding a
KS° domain rather than in trans as predicted for mupirocin and calyculin A and shown for the oocydin A biosynthetic
pathways, reflecting an unusual o-hydroxylation module. E) Proposed timing of the cis-encoded monooxygenase (OX)
encoded within the type 1 module puwE in the hybrid NRPS/PKS biosynthetic pathway of Puwainaphycin A. Here the
PuwE OX domain acts in cis, where it hydroxylates the growing acyl chain following the PKS module before the
subsequent NRPS modules extend the chain to form the puwainphycins "1, The fatty acid chain (n) is either a 7 or 9 carbon
chain, with the R position referring to the Gln or Asn side chain. Inset: a-hydroxylation module whereby a frans acting
monooxygenase acts inbetween two type I PKS modules. Within panels B, D and E only a snapshot of the type 1 PKS
modules CalE, PtzE and PtzC are depicted. Domains with a strikethrough are inactive domains. A:Adenylation domain,
ACP: Acyl carrier protein, AmT: Aminotransferase domain, C: Condensation domain, DH: Dehydratase domain, DH’: DH-
like domain, ECH: Enoyl CoA dehydratase, FH: FhkB like domain, KR: Ketoreductase, KS: Ketosynthase, KS:
Ketosynthase domain incapable of chain extension, MT: Methyltransferase, OMT: O-methyltransferase domain, OX:
monooxygenase domain, P: Peptide carrier protein, PS: Pyran synthase.
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Figure S3. Multiple sequence alignment of MupA (uniprot: Q9AHS80) with Flavin dependent monooxygenases. A)
Sequences from Candidatus Entotheonella sp. (CalD, accession no. AB933566.1), Serratia plymuthica (OocM,
AFX60335.1), Theonella swinhoei symbiont bacterium (OnnC, AY688304.2), Candidatus Endolissoclinum faulkneri strain
L5 (PtzB_OX, K7ZDMB) and Cylindrospermum alatosporum CCALA 988 (PuwE_OX, AOAOAOWDCS6). (Inset): MupA
displays high sequence identity (%) to all these putative TIM (0/B)s barrel containing monooxygenases. Lower sequence
identity is observed with Flavin dependent monooxygenases from Paederus fuscipes symbiont bacterium (PedG: 17.7%
identity, AAS547561.1) and Serratia marcescens strain MSMU97 (OocK: 19.0% identity, AFX60310.1) which clade
together as FAD-containing monooxygenases.[?’l B) Structural comparison of MupA with monoxygenase domains from
related PKS systems. Ab initio homology models of MupA (red), CalD (blue), OocM (orange), OnnC (green), PtzB_OX
(yellow), PedG (pink) and three-dimensional X-ray crystal structures of PuwE_OX (purple, PDB:6KET), and the type 1
BVMO Cyclohexanone monooxygenase (CHMO) (light green, PDB: 3UCL). Structural conservation between MupA and
other monoxygenases is highlighted in parenthesis (RMSD). Both PedG and CHMO contain Rossman folds predicted to
bind FAD and NAD(P)H.
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Figure S4. Sequence alignment of identified homologs of MupA and NAD(P)H: flavin dependent oxidoreductases encoded
within P. fluorescens by protein-BLAST !l A) Multiple sequence alignment of MupA with LLM class flavin dependent
oxidoreductases. The accession number of each homolog is used as their sequence name: WP_134924869 (91.60 %),
WP_080889042 (35.00 %), WP_150675473 (27.59 %), WP_115488688 (24.83 %) and WP_224794946 (24.59 %) with the
sequence identity to MupA in parenthesis. B) Multiple sequence alignments of candidate NAD(P)H: flavin dependent
oxidoreductases with the model NAD(P)H: flavin dependent oxidoreductase E. coli Fre. The accession number of each
homolog is used as their sequence name: WP_012535170 (40.62 %), 0XS23022 (28.15 %) and MBM7764721 (27.64 %)
with the sequence identity to Fre in parenthesis.
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Figure SS: In vivo whole-cell biotransformations of 9 with MupA. LC-MS (total ion current; positive mode) traces of A)
9 (1 mg/ml), B) 9 (1 mg/ml) incubated with MupA- producing whole cells at 30 °C for 6 hr, C) 9 (1 mg/ml) incubated with
MupA-producing whole cells at 30 °C for 16 hrs and D) MupA producing whole cells without 9 at 30 °C for 16 hrs. Mass
highlighted at 10.1 min corresponds to 9: Mass: 511.4 (M+Na"). Hydrolysis corresponding to hydrolysis of the thioester
(Mass: 229 Da) was observed at 9.02 min for B) and C).
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Figure S6.Protein purification and characterisation. A) ACP_D4. SDS-PAGE following the purification after
sonication, IMAC before cleavage of the Hiss tag and SEC post cleavage. Analytical SEC showing ACP_D4.6His eluting as
a monomer and non-native ESMS confirming the correct sequence of cleaved ACP_D4. B) ACP_Al. As A) with
analytical SEC confirming a monomeric species and non-native ESMS confirming the correct sequence of cleaved ACP_Al.
C) MupA. SDS-PAGE following the purification of MupA.6His after sonication to isolation via IMAC and SEC. Analytical
SEC showing elution of MupA.6His as a dimer and non-native ESMS of denatured MupA.6His. D) Fre. SDS-PAGE
following the purification of Fre.6His after sonication and isolation via IMAC and SEC. Analytical SEC showing elution of
Fre.6His as a dimer and non-native ESMS of monomeric Fre.6His. E) '"H NMR spectra of ACP_D4, ACP_A1, MupA and
Fre. F) Calibration curve for the Analytical S75 and Analytical S200 column using the following calibrants: Aprotinin (AP),
Ribonuclease A (RA), Carbonic Anhydrase (CA), Ovalbumin (OV), Conalbumin (CO), Cytochrome C (CC), Bovine Serum
Albumin (BSA), Alcohol Dehydrogenase (ADH), f—Amylase (BA) and Thyroglobulin (TG).
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Figure S7. In vitro bioassays with 9 (pantetheine substrate, no ACP). LC-MS (total ion current; positive mode) traces of
A) 9 (5 mM) and B) 5 mM 9 incubated with 20 pM MupA, 20 uM Fre, 1 mM FMN, 10 mM NADH incubated at 16 °C for
30 mins. The mass highlighted at 10 min corresponds to (9): Mass: 511.4 (M+Na™).
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Figure S8. Control reactions of the hydroxylation reaction 9-ACP_D4 by MupA monitored by ESMS. A) Mass:Charge
ratio (m/z) spectra of the hydroxylation reaction 9-ACP_D4 with denatured MupA. (right): deconvoluted spectra of ACP_D4
after incubation with denatured MupA (holo ACP_D4: observed mass: 10,645 Da, expected mass: 10,646 Da, 9-ACP_D4:
observed mass:10,856 Da, expected mass: 10,855 Da). B) m/z spectra of the hydroxylation reaction of 9-ACP_D4 when
FMN, NADH and Fre were omitted. (right): deconvoluted spectra of ACP_D4 (9-ACP_D4: observed mass: 10,855 Da). C)
m/z spectra of the hydroxylation reaction of 9-ACP_D4 when NADH and Fre were omitted. (right): deconvoluted spectra of
ACP_D4 (observed mass: 10,855 Da). D) m/z spectra of the hydroxylation reaction, where 9-ACP_D4 was substituted for
holo ACP_D4. (right): deconvoluted spectra of ACP_D4 (holo ACP_D4: observed mass: 10,645 Da). As with the native
assay, a by-product at 10,732 Da was also observed corresponding to a modified holo ACP_D4 (+87 Da, 10,731 Da).
Species corresponding to solo, 9-ACP_D4 and a by-product are highlighted in pink, blue and grey respectively.
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Figure S9. Attempted hydroxylation of 9-ACP_A1. A) Proposed reaction scheme for the hydroxylation of 9 attached to
ACP_Al. B) 'H-"N HSQC spectra of apo ACP_A1 (blue) and in the presence of 3-fold excess of MupA (red). C)
Deconvoluted ESMS spectrum for 9-ACP_A1(blue) with observed and expected mass indicated. (inset) Ppant ejection assay
for this species. D) Deconvoluted ESMS spectrum for 9-ACP_A1 + MupA + Fre + FMN + NADH. Holo ACP_A1 (pink), 9-
ACP_A1 (blue) and a non-productive by-product (grey) are highlighted. The by-product appears to arise from modification
of holo-ACP.

ACP_A1 control 298K ACP_A1:MupA (1:3) 298K
& 9-ACP_A1 _ d.“' W e
NADH FMNH, i v o e ;S—A e E &
) Fre ( >MupA" Hydroxylation Sl ,;. . Eo . . E o
NAD+ FMN - '-'u::.’;_‘., . E b ! E
s i Ezs « 4 : Ezs
' 3 E 130 ' )
”' \K;U & 95 " 9‘0‘ VB! " 'JU N '7‘5’ " v7'07 ' 55 ”V o 710‘0“ 9"5‘ " vS‘O' 8[5“ ‘80 o ;7‘57 = 7’0’ = '6’5‘ :
C Obs: 9563 Da Obs: 10114 Da D i
Exp: 9562 Da Exp: 10114 Da Obs: 9988 Da
o s @ <By product .
@ H Q 0. S
() Apo _~, O Obs: 471.2933 Da '
&, Holo L 7

oo, . ‘s

14 V] % ||
400 500 600
9500 10000 10500 Mass:Charge ratio (m/z) 9500 10000 10500

Molecular weight (Da) Molecular weight (Da)

41



Figure S10. Reference 'H->C spectra for cofactors and substrates. A) 50mM NAD(P)H with carbon atoms annotated. B)
50mM FMN C) 25mM 9 (no '*C label) D) Mixture of NADH and '3C labelled pantetheine derivative of the C-6 13C labelled
B-keto substrate 9. Hydrolysis product was visible after acquisition of this control spectrum. At 10mM, the minor enol
species was also detectable at C-6 in D). This species was not visible at lower concentrations used in the NMR assays
(Figure 4).
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Figure S11. Purification and characterisation of MmpA KS°. A) SDS-PAGE following the purification of
MmpA KS°.6His after sonication to isolation via IMAC and SEC. Analytical SEC showing elution of MmpA_KS°.6His as a
monomer and non-native ESMS of denatured MmpA_KS°.6His.

Ve =14.5ml| Obs: 65,273 Da
Mwapp = 50.9kDa Exp: 65,261 Da “

0 5 10 15 20 25 800 1000 1200 1400 1600 1800 2000 2200 64,000 66,000
Mass:Charge ratio (m/z) Mass:Charge ratio (m/z) Molctiar waight (02)

A

IMAC Flowthrough
IMAC MmpA_KS0
SEC MmpA_KS0

3
o
a
c
K<}
®
L
€
S
12}

Sonication S/N

=

Size (kDa)

75
50
37
25
20

15
10

Figure S12: The oxidation state of C7 controls the timing of hydroxylation and ensures appropriate processing by
downstream enzymes. A) Proposed mechanistic scheme for a-hydroxylation within the mupirocin biosynthetic pathway.
Hydroxylation of a B-keto thioester attached to ACP_D4 occurs before ketoreduction by MmpD KR6 enabling the correct
downstream processing to produce PA-A. B) Ketoreduction of the B-keto thioester to a 7-OH group prevents hydroxylation
by MupA resulting in metabolites lacking the 10,11-epoxide or THP ring and truncated fatty acid chains (mupirocin A5, A6
and A7, grey). C) If ketoreduction does not occur after hydroxylation of the f3-keto thioester, no epoxidation or THP ring
formation occurs with only 7-keto mupirocin W4 and 7-keto mupirocin W5 (grey) produced. D): The lack of hydroxylation
and ketoreduction causes an accumulation of 7-keto analogues lacking the 10-11-epoxide, the THP ring and truncated fatty
acid side-chains (mupirocin Al, A2, A3, grey). The oxidation state of C7 is highlighted in yellow and the o-hydroxyl
moiety in red.
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Figure S13. Sequence analysis of PKS termini within a-hydroxylation modules for putative docking domain regions.
A) Analysis of the C-termini modules MmpD, CalC and OocL which contain an ACP domain, with comparison to the
sequence of ACP Vir5b from the virginamycin frans-AT PKS which contains a C-terminal docking domain region (CDD)
which is highlighted by a black bar. The stop site for each ACP is highlighted by a blue box, indicating the absence of an
apparent CDD domain in MmpD, CalC and OocL. B) Analysis of the N-termini modules of MmpA, CalN and OocN which
contain a KS domain, with comparison to the sequence of the VirFG KS domain which contains an N-terminal docking
domain region (NDD), highlighted with a black bar. The conserved ketosynthase start site is highlighted with a black arrow.
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Figure S14. Bioinformatic analysis of the candidate docking domains within o-hydroxylation modules. A)
MmpD/MmpA, B) CalC/CalE, C) OocL/OocN PKS interfaces and for comparison the characterised VirA/VirFG (D)
sequences are included. Secondary structure prediction with PSIPRED 221 was carried out for each ACP_CDD sequence and
the candidate NDD sequence identified from multiple sequence alignment. Intrinsic disorder/interaction propensity
prediction using TUPred2A 231 was also carried out. For each prediction, the end site of the annotated ACP sequence is
highlighted with a black arrow and candidate CDD sequences are highlighted in a black bar. The characterised CDD and
NDD of VirA/VirFG is also highlighted with a black bar.
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NMR data from general synthesis

Figure S15. 'H (top) and "*C (bottom) NMR spectra of S2
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Figure S16. 'H (top) and *C (bottom) NMR spectra of S3
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Figure S17. 'H (top) and *C (bottom) NMR spectra of S4
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Figure S19. 'H (top) and *C (bottom) NMR spectra of 1
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Figure S21. 'H (top) and *C (bottom) NMR spectra of (7-*C) 5
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Figure S22. 'H (top) and "*C (bottom) NMR spectra of S8
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Figure S23. 'H (top) and "*C (bottom) NMR spectra of 2
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Figure S24. 'H (top) and "*C (bottom) NMR spectra of 3
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Figure S25. 'H (top) and *C (bottom) NMR spectra of S9
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Figure S26. 'H (top) and "*C (bottom) NMR spectra of 4
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Figure S27. 'H (top) and "*C (bottom) NMR spectra of 6
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Figure S28. 'H (top) and *C (bottom) NMR spectra of S22
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Figure S29. 'H (top) and "*C (bottom) NMR spectra of 7
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Figure S30. 'H (top) and "*C (bottom) NMR spectra of 8
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Figure S31. 'H (top) and *C (bottom) NMR spectra of S10
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Figure S32. 'H (top) and *C (bottom) NMR spectra of 9
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Figure S33. 'H (top) and "*C (bottom) NMR spectra of (2-'*C)9

T
O
T
o

13999 NK01-73F3.10.fid

0'9
20°€

6'T
LE'T
14
S0

0°C

6'T

f1 (ppm)

13999 NK01-73F3.11.fid

P

-10

T T T T T T T T T
220 210 200 190 180 170 160 150 140 130 110
f1 (ppm)

T
230

68



Figure S34. 'H (top) and *C (bottom) NMR spectra of S12
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Figure S35. 'H (t
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Figure S36. 'H (top) and "*C (bottom) NMR spectra of S14
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Figure S37. 'H (top) and *C (bottom) NMR spectra of S6
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Figure S38. 'H (top) and *C (bottom) NMR spectra of S15
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Figure S39. 'H (top) and *C (bottom) NMR spectra of S16
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Figure S40. 'H (top) and "*C (bottom) NMR spectra of S17
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Figure S41. 'H (top) and "*C (bottom) NMR spectra of S18
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Figure S42. 'H (top) and "*C (bottom) NMR spectra of S19
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Figure S43. 'H (top) and "*C (bottom) NMR spectra of 12
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Figure S44. 'H (first), °C (second),

spectra of Mupirocin Al
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Figure S45. 'H (first), 'H-'H COSY (second) NMR spectra of Mupirocin A2
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Figure S47. 'H (first), 'H-'H COSY (second), HSQC (third) and HMBC (fourth) NMR spectra of
Mupirocin A4
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Figure S48. 'H (first), °C (second) 'H-'H COSY (third), HSQC (fourth) and HMBC (fifth) NMR

spectra of Mupirocin A5
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Figure S49. 'H (first), *C (second) 'H-"H COSY (third), HSQC (fourth) and HMBC (fifth) NMR
spectra of Mupirocin A6
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Figure S49. 'H (first), "H-"H COSY (second), HSQC (third-fourth) and HMBC (fifth) NMR spectra
of Mupirocin A7
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List of sequences

MupA

MAHHHHHHSSGLEVLFQGPMSVEQLLGLGVTNAARAPRQPAFSLLFFSDVREDISASEKYEFARSLTLEGD
AQGFEAVYFPERHFHEFGATYPDSAVMAASLIPQTRHIRFRTAGISLPLHHPARVVESWSMNDVLSGGRVD
LGFGSGWSRPDFLLAPHAYEDRREVMWORIEQVRRLWAGERLSFPGPGGDPVSVVTFPRPLOTSLNVWILV
AQNTESFIAAGKAGEFNVFTMLYGIDLPDLAEKIGLYRQARRDAGEFDPASGRVTLMLHTLVGPDSAWVRRAV
EAPFKDYIRSSLVAHMKARATPDGRPLDATEQENVLOYAFERYYETGALFGTVDEVRYRVGQVLETGVDET
ACLMDFGVDYAVVHQSLPYLEQLVASFQERSAQ

Calc Mw (-M): 43,292.96 Da

E.coli Fre

MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFTMTTLSCKVTSVEAITDTVYRVRIVPDAAFSFRAGQYLM
VVMDERDKRPFSMASTPDEKGFIELHIGASEINLYAKAVMDRILKDHQIVVDIPHGEAWLRDDEERPMILI
AGGTGFSYARSILLTALARNPNRDITIYWGGREEQHLYDLCELEALSLKHPGLQVVPVVEQPEAGWRGRTG
TVLTAVLODHGTLAEHDIYIAGRFEMAKIARDLFCSERNAREDRLEFGDAFAFT

Calc Mw: 30025.23 Da

MmpA KSO

MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFTEPVAITIGLSANVAQSASVROQFWQALDDDRSLIEEIPAT
REDEFTSWYAGSNIEEGKMRTRWGGFIPAIDQFDPVEFFGMLPAEARKMDPOQORLLLMSVRQTFEDAGYRHTD
WKGSATGVFIAAERNEYHLNLLQAQIDPGEGLDQAASMLANRVSHEYDLRGPSERIDAMCAGGAVALHHAV
TALRSGQINAAIVGACNLLLRPDVEVTLSQSGOMSPEPTVRSFGAGADGYLRGEGVCSLLLKPLSKAEADG
DHIYGLIRNTAVNYNGGDAASIAAPSVSAHSSLVODCYRRAGIDPRHVSYIEAQGMGNPVADIAEWDALNH
GLLALGREQGVQLQEGQCAISTLKPMSGHMHAASAIGALFKIIRSLOTEKIHKILDFEQPNLHLHTAGQPC
RLATHTVDWPROATPRLAGLHSYGAGGNNAHILVEEYVHQAPGRVVPSQAPLLFPLSAPTPALLALLAAQM
HOQALIDEPTLCLESVSDTLKEFGREKFAAAVVIVAMERPGLLDVLAQLHTGDLTGAVVEFAKDVAAPTDAALD
PWAELWLAGERPMAKATRAPRVPLPTTPEDTQSEW

Calc Mw = 65261.2 Da
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ACP_D4.6His

MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFTPSAPRPATVGAGALLEQVREVIERVLVVDEPDLDTAFS
RYGMDSVGAMQVSSALSRALGWLVEPRWLVQHATIRALAEFLOSRNEAATQ

Calc Mw = 13457.23 Da
ACP D4 (Hisg cleaved)

GIDPFTPSAPRPATVGAGALLEQVREVIERVLVVDEPDLDTAFSRYGMDSVGAMQVSSALSRALGWLVEPR
WLVQHATIRALAEFLQOSRNEAATQ

Calc Mw = 10304.69 Da

ACP_Al.6His

MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFTRAWSPDAAEQAVREALAQALEQPAASLDLDAQFSELGFEF
DSMMVRQLCRHMRDQDIVVEPAVLEFEHATPARLVAWLACAPAQ

Calc Mw = 12715.40 Da

ACP_Al (Hise cleaved)

GIDPFTRAWSPDAAEQAVREALAQALEQPAASLDLDAQFSELGFDSMMVRQLCRHMRDODIVVEPAVLEFEH
ATPARLVAWLACAPAQ

Calc Mw = 9562.85 Da
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