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General Materials and Methods: 

Unless otherwise noted, all chemicals and reagents for chemical reactions were purchased at the
highest commercial quality and used without further purification. Random Forest and Gaussian 
Process models used were run with default scikit-learn parameters (version 1.0.2). Morgan 
fingerprints of the amine fragments were created using the default parameters on RDKit (version 
2020.09.1). 

Code and Data Availability:1

The associated code can be found at: https://github.com/wjm41/deconvoluting_low_yield.

Peptide Bond Coupling General Procedure: 

The amide library was made by reacting the carboxylic acid under the optimized reaction 
conditions (2 eq. amine; 2 eq. EDC; 2 eq. HOAt; 5 eq. DIPEA; DMSO; RT; 24h) with 300 amines 
(202 aromatics, 49 primary, and 49 secondary aliphatic amines). For library production, we used 
Echo LDV plates and an Echo 555 acoustic dispenser for liquid handling. Plate copies were made 
after diluting the reaction mixture with 4 μL DMSO. For yield estimation, 1 μL of the diluted 
library was transferred to an LC/MS-ready 384-well plate, followed by dilution with 20% 
acetonitrile in water to the final volume of 50 μL. The desired product was identified in 60% of 
wells.

General Fluorogenic Assay Procedure:2

Compounds were seeded into assay-ready plates (Greiner 384 low volume, cat. no. 784900) 
usingan Echo 555 acoustic dispenser, and dimethylsulfoxide (DMSO) was back-filled for a 
uniformconcentration in assay plates (DMSO concen-tration maximum 1%) Screening assays 
wereperformed in duplicate at 20mM and 50mM. Hits of greater than 50% inhibition at 50 mM 
were confirmed by dose response assays. Dose response assays were performed in 12-
pointdilutions of twofold, typically beginning at 100 mM. Highly active compounds were repeated 
in a similar fashion at lower concentrations beginning at 10mM or 1 mM. 

Reagents for Mpro assay were dispensed into the assay plate in 10 ml volumes for a final volume 
of 20 mL. Final reaction concentrations were 20 mM HEPES pH = 7.3, 1.0 mM TCEP, 50 mM 
NaCl, 0.01% Tween-20, 10% glycerol, 5 nM Mpro, and 375 nM fluorogenic peptide substrate ([5-
FAM]-AVLQSGFR-[Lys(Dabcyl)]-K-amide). Mpro was preincubated for 15 min at room 
temperaturewith compound before addition of substrate and a further 30 min incubation. Protease 
reaction was measured in a BMG Pherastar FS with a 480/520 excitation/emission filter set. Raw 
data were mapped and normalized to high (Protease with DMSO) and low (No Protease)controls 
using Genedata Screener software. Normalized data were then uploaded to CDD Vault 
(Collaborative Drug Discovery). Dose response curves were generated for IC50 using nonlinear 
regression with the Levenberg–Marquardt algorithm with minimum inhibition = 0% and 
maximum inhibition = 100%. The assay was calibrated at different enzyme concentrations to 
confirm linearity and response of protease activity, as well as optimization of buffer components 
for most stable and reproducible assay conditions. Substrate concentration was chosen after 
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titration to minimize saturation of signal in the plate reader while obtaining a satisfactory and 
robust dynamic range of typically five- to six-fold overcontrol without enzyme. As positive 
control, under our assay condition, nirmatrelvir has IC50 of 2.6 nM.

Modelling, Training, and Validation Methodology:
The Gaussian Process (GP) and Random Forest (RF) models were trained using a dataset 
comprising 300 SMILES-inhibition readings from a high-throughput, direct-to-biology assay. The 
objective was to model inhibition as a regression problem, aiming to minimize the root-mean-
square error between the models' predictions and the experimental data by employing an L2 loss 
function. Given the limited size of the dataset, we adopted a leave-one-out cross-validation 
approach to achieve a reliable estimation of the models' generalization error. In this method, the 
machine learning model is trained on all but one data point (i.e., 299 in our case) and then makes 
a prediction for the excluded data point. This process is iterated for each data point in the dataset, 
with the results presented in Figure 1.

Both models leverage Morgan fingerprint features with a radius of 2 and 2048 bits for molecular 
representation. To identify the optimal hyperparameters for the models, such as the GP kernel 
bandwidth and the number of RF estimators, we utilized 5-fold cross-validation implemented 
through the GridSearchCV function in scikit-learn.
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Model MAE RMSE Spearman 
Correlation

Random Forest 12.9 18.6 0.62

Gaussian Process 15.8 21.6 0.50

"Swiss Cheese" 
Model 13.4 18.7 0.60

Table S1: Model metrics for each model. Our "Swiss Cheese" model is the mean of the Random 
Forest and Gaussian Process models.
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Figure S1: Gaussian Process regression results of initial 300 amide modelling. Each dot represents 
one potential Mpro inhibitor. Dotted diagonal line represents perfect model accuracy. Dot color 
corresponds to yield.
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Figure S2: Random Forest regression results of initial 300 amide modelling. Each dot represents 
one potential Mpro inhibitor. Dotted diagonal line represents perfect model accuracy. Dot color 
corresponds to yield.

S7



N

CF3

H2N

S1
407 nM

H2N

Cl

Cl

S2
63 nM

H2N

Cl Cl

S3
1.07 µM

H2N

N
NEt

8
28 nM

H2N Ph

Ph

S5
183 nM

H2N

N
NMe

F
11

62 nM

H2N

CF3

S6
77 nM

H2N

EtO

S7
110 nM

H2N

OEt

S4
118 nM

H2N

NH

MeS8
70 nM

H2N Ph

S10
89 nM

H2N N

S

S9
105 nM

H2N
OMe

OMe
S11

77 nM

H2N

9
34 nM

H2N

O

O

S12

104 nM

H2N
Cl

Cl
S14

77 nM

H2N

Br

S15

109 nM

H2N Bn

12
61 nM

H2N

N
O

O

S13

68 nM

H2N
Br

10
45 nM

N

Cl

O

NH
Ar

CO2H
+ N

H
R2R1

EDC, HOAt,
DIPEA,
DMSO N

Cl

O

NH
Ar

CO2NR1R2

Ar = isoquinoline

Direct-to-Biology Hits

NHMe

O

Figure S3: IC50 values for the top 20 direct-to-biology amides hits formed through the shown 
amines. Coupling location is highlighted in blue.

S8



N
NEt

FH2N
S24

108 nM

H2N

MeO

S21
109 nM

H2N

OMe

S26

83 nM

H2N

N
NMe

S20

78 nM

H2N

Me

H2N
OEt

S29

116 nM

S30

83 nM

H2N

Et

S18

109 nM

H2N

CHF2

13
50 nM

H2N
OMe

OMe

S23
104 nM

HN
Me

Ph

S28

83 nM

H2N Cl
14

52 nM

HN
Me

NHAc

S16

1.49 µM

H2N Ph

MeMe

S25
192 nM

H2N
Cl

S27

78 nM

H2N

F

S22
77 nM

H2N
OMe

S17

83 nM

S19
not successfully 

synthesized

H2N

Et

N

Cl

O

NH
Ar

CO2H
+ N

H
R2R1

EDC, HOAt,
DIPEA,
DMSO N

Cl

O

NH
Ar

CO2NR1R2

Ar = isoquinoline

In Silico Top 20 Compounds

H2N
F

15
71 nM

H2N

OH
16

77 nM

Me

17
77 nM

H2N

Figure S4: IC50 values for the top 20 most potent compounds as determined by the "Swiss Cheese" 
model of the in silico screen. Coupling location is highlighted in blue.

S9



Predicted Inhibition
Threshold

Number of 
Compounds*

50%

70%

80%

16,576

1,676

140

Percentage of 
Dataset

28.5%

2.9%

0.24%

* = Number of compounds from combined “Swiss Cheese” model (mean of GP & RF).

Figure S5: Distribution of predicted IC50 values from the Random Forest (RF) and Gaussian 
Process (GP) models. The number of compounds predicted by our "Swiss Cheese" model to have 
inhibition above 50%, 70%, and 80% are listed below. 
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Dose Response Curves for Isolated Compounds:
Associated curve is on the left.
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