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1 Topological charge evolution upon upward radiation

The polarization topological charge in the momentum space is defined by the following equation

(62):

q =
1

2π

∮
C

dk · ▽kϕ(k) (S1)



in which ϕ(k) = arg [cx (k) + icy (k)] is the major angle of the polarization vector and the C is

a simple closed path traveling around the targeted state in the counter-clockwise direction in the

momentum space; cx and cy constitute the radiation electrical field as E = cx
−→x + cy

−→y . When

block B1 is absent, the symmetry-protected BIC mentioned in the main text carries an integer

topological charge of q = −1 for both upward and downward radiation, which is recognized

as topological defects in the radiation field. By increasing the height of block B1 (namely h1),

the integer charge splits into a pair of half-charges with q = −1/2 that are carried by circular-

polarized (CP) states (54). The evolution of topological charge obeys the conservation law as a

direct consequence of Stokes theorem.

For the downward radiation, the half-integer topological charges restore to an integer charge

of q = −1 as elaborated in the main text. To guarantee the emergence of the UGR, we need to en-

sure that the half-charges are still apart upon the upward radiation, which is always true in principle

since the up-down symmetry has broken in the designed “L-shape” unit-cell. To explicitly show

this fact, we also calculate and present the topological charge evolution of the upward radiation,

as shown in Fig. S1. By increasing h1 from 0 to 100 nm, the integer charge q = −1 also splits to

half-charges q = −1/2 (the same as the downward radiation), but they monotonically separate and

depart away, thus have no chance to merge. As a result, the downward radiation channel is closed

by the restored integer charge while the upward radiation remains open, which forms a UGR that

only radiates toward a single side without placing a mirror on the other side.
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2 Design of the apodization region

The apodization region of the grating coupler acts as a transition region to connect the waveguide

mode and grating resonance mode to coordinate their difference in group velocity and momentum.

The design can start from the phase matching equation, which depicts the phase accumulation per

unit cell in the apodization region, given by (68):

2π +
2πncasinθ

λ
=

2πnb1w1

λ
+

2πnb2w2

λ
+

2πnwg(a− w1 − w2)

λ
(S2)

in which λ is the wavelength; a is the grating period; w1 and w2 are the widths of block B1 and

B2, respectively; nc is the refractive index of the upward cladding; nwg, nb1 and nb2 represent the

effective indices of waveguide modes at the unetched region, etched block B1 and etched block

B2, respectively; θ is the radiation angle of the UGR which is a negative value of −13.72◦ in this

work.

The design principle of group velocity and momentum matching has been elaborated in the

main text. Another important goal of apodization region design is to best match the upward ra-

diation field with the targeted fiber mode. In principle, the diffraction strength of the unit cell is

strongly related to the widths of blocks B1 and B2, and hence, they can be utilized to modify the

radiation strength at a given position. We thus can adiabatically change such widths in the apodiza-

tion region to connect the waveguide mode and the uniform grating where the UGR resides, at the

same time, control the profile of the radiation field in order to match with fiber mode. To ensure the

phase-matching condition is unchanged, we change the grating period a from Eq. S2 accordingly,
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given as:

a =
λ+ w1(nwg − nb1) + w2(nwg − nb2)

nwg − ncsinθ
(S3)

Here we present some extra simulation results to evaluate the designed unidirectional grating

coupler. The wavelengths versus angles map of energy fluxes for upward and downward radiation

are shown in Fig. S2, in which all the energies flowing through the reference planes (black solid

line, Fig. S2A) are taken into account, and normalized to the flux of the waveguide input (red solid

line, Fig. S2A). Owing to the protection of UGRs, most energy flows to the upward radiation (left

panel, Fig. S2B) and the downward radiation shows a broadband and ultra-low radiative region,

depicted by the -10 dB contour line (right panel, Fig. S2B).

It is noteworthy that, in order to satisfy the precision limitation of the fabrication process,

the design mentioned above (Fig. 2 in the main text) was obtained under a “minimum-feature-size

constraint” of 60 nm. Here we also present a “high precision” grating coupler design as shown

in Fig. S3, in which the minimal feature-size constraint is relaxed. By applying the same design

principles, we achieve the simulated peak coupler-to-fiber CE of -0.154 dB, which is even higher

than the low-precision counterpart. Because structure parameters can be more smoothly controlled,

upward radiation’s spatial and angular distributions can be more Gaussian that match better with

the fiber mode profile.

We emphasize that, although the radiation angle θ is kept as a constant value to match the

fiber mode, the apodization region can also be tuned to support varying θs to match with a diverged
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light beam, for instance, the emission of vertical-cavity surface-emitting laser (VCSELs). In this

case, the grating coupler can work as a micro-lens that simplifies the optics and packaging. An

example is presented in Fig. S4. Owing to the robustness of topological UGR, the grating coupler

operates in broadband from 1510 nm to 1590 nm with CE higher than -0.18 dB. The peak CE is

-0.115 dB at 1550 nm with 30◦ divergence angle.

3 Robustness of UGRs regarding the geometry variations

The performance of realistic grating couplers would inevitably degrade due to fabrication imper-

fection since the etching widths and depths would deviate from the designed values in some extent.

Accordingly, the CEs of grating couplers usually decrease. Owing to the topological protection,

the asymmetry ratio of UGRs can be kept at a high level under geometry deviations (54), which

offers good robustness of the unidirectional grating couplers. Noteworthy that the UGRs can stably

exist and evolve in any 2D parameter spaces if the in-plane mirror symmetry is preserved. As a

result, the deviation on one parameter can be compensated by tuning another parameter to guar-

antee the downward radiation still be perfectly eliminated (54) to maintain the asymmetry ratio

and CEs as high values in a wide range of geometry variations. To demonstrate that, we perform

a series of numerical simulations by independently disturbing w1, w2, h1, and h2, and calculate

the coupler-to-fiber CEs at the same incidence (Fig. S5). The threshold CE of -1 dB is marked

as a dashed line, showing that the unidirectional grating coupler can maintain considerably good

performance under structural deviations.
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4 Calibration and evaluation of coupling efficiency

In this section, we elaborate on how we calibrate the loss of optic link and obtain the coupling

efficiency (CE) between the grating couplers and external optical components. In general, the

insertion loss includes the waveguide loss, coupler to fiber CE, and coupler to detector CE, given

by

IL = CEcoupler-to-fiber + WL + CEcoupler-to-detector (S4)

in which IL is the insertion loss, WL is the waveguide loss, CE is the coupling efficiency with the

subscript denoting the scenarios.

We first calibrate the waveguide loss from a series of reference samples in which the waveg-

uide lengths are different while all of the samples have identical grating couplers acting as input

and output ends. Here we adopt a conventional grating coupler design to avoid the complexity and

uncertainty of the unidirectional grating coupler design. The waveguides are in a full-etch depth

of 340 nm and with an increment of length from 3 mm, 7 mm to 11 mm. To prove the fabrication

process is stable and repeatable, we fabricate 1 × 3 mm-sample, 2 × 7 mm-sample, and 2 × 11

mm-sample, and then group them into two sets of (3, 7, 11) mm. The total insertion loss of each

set is presented in Fig. S6A,C. We further calculate the differential values which represent the

waveguide loss in a length of 4 mm. As a result, we obtain the waveguide loss per length as 0.11

dB/mm by averaging the waveguide loss from 1510 nm to 1590 nm across the four measurements

(Fig. S6B,D). We assume the fabricated waveguides are good in uniformity, and thus apply such a

loss value in the later calculation.
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We then derive the coupler-to-fiber CE from the total link loss, which is expressed as the

ratio of power collected by the fiber to the input from the waveguide:

CEcoupler-to-fiber = 10log
Pfiber

Pinput
(S5)

= 10log
(

Pupward

Pinput
× Pfiber

Pupward

)
(S6)

in which Pupward is the upward radiation energy of the unidirectional grating coupler, Pinput is the

total input energy from the waveguide, and Pfiber is the energy received by the fiber. Similarly, we

define the coupler-to-detector CE as:

CEcoupler-to-detector = 10log
Pdetector

Pinput
(S7)

By assuming the detector has enough large aperture to collect all the upward emission energy, we

obtain the relationship of Pdetector = Pupward, which gives:

CEcoupler-to-fiber = CEcoupler-to-detector + 10log(OR) (S8)

Here OR = Pfiber/Pupward is the overlap ratio that can decompose the insertion loss to CEcoupler-to-fiber

and CEcoupler-to-detector after deducting the waveguide loss. In physics, the OR can be directly evalu-

ated from the electromagnetic fields overlap between the targeted fiber mode and upward radiation

of the unidirectional grating coupler (Fig. S7 ), given by (68):

OR =
Pfiber

Pupward
(S9)

=
Pfiber∣∣0.5Re

(∫
Eu ×H∗

u · dS
)∣∣ (S10)

=

∣∣∣∣∣Re

[(∫
Ef ×H∗

u · dS
) (∫

Eu ×H∗
f · dS

)∫
Ef ×H∗

f · dS

]
1

Re
(∫

Eu ×H∗
u · dS

)∣∣∣∣∣ (S11)
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where the (Ef ,Hf ) is the mode profile of targeted fiber mode and (Eu,Hu) is the mode profile

of upward radiation modulated by the grating coupler. Therefore, the insertion loss in Eq. S4 can

be rewritten as:

IL = 2CEcoupler-to-fiber − 10log(OR) + WL (S12)

which gives an explicit formula to calculate CEcoupler-to-fiber as:

CEcoupler-to-fiber = 0.5(IL + 10log(OR) − WL) (S13)

5 The detailed measurement of interlay coupling efficiency

We apply a similar approach to evaluate interlayer coupler efficiency, denoted as CEcoupler-to-coupler.

We first measure the insertion loss of the lower grating coupler from a fiber-to-detector link. The

insertion loss IL1 is expressed as:

IL1 = CEcoupler-to-fiber + WL + CEcoupler-to-detector (S14)

After carefully tuning the fiber position to best excite the lower grating coupler, the upper sample

with an array of the same unidirectional grating coupler is stacked subsequently, and a detector is

used to measure the total insertion loss IL2, given and derived as:

IL2 = CEcoupler-to-fiber + WL + CEcoupler-to-coupler + WL + CEcoupler-to-detector (S15)

= IL1 − CEcoupler-to-detector + CEcoupler-to-coupler + WL + CEcoupler-to-detector (S16)

= IL1 + CEcoupler-to-coupler + WL (S17)
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The above derivation assumes the upper grating coupler has almost the same coupling efficiency

as the lower one. Here the grating coupler array on the upper chip can greatly decrease the sweep

time by using motorized translation stages. Finally, the interlay CEcoupler-to-coupler is expressed as:

CEcoupler-to-coupler = IL2 − IL1 − WL (S18)

6 Comparison with reported grating couplers

In literature, a series of strategies have been adopted to improve the radiation directionality and

coupling efficiency of the grating couplers. Many structures such as dual-etched, multi-layered,

overlayed, and tilt-etched structures are investigated. In physics, all the aforementioned structures

break symmetries in either the vertical (z-) or in-plane (x-) directions while persevering the mirror

symmetry in the y direction, which fulfills the symmetry requirement of realizing the UGRs.

Some notable progress has been achieved through engineering and sweeping the param-

eters in symmetry-break structures. For instance, among the dual-etched structures, L-shaped

(20–23, 41, 42, 69–71) and interleaved geometries (19, 43, 44), the particle swarm optimization on

the parameter space (w1, w2, h1, h2) is utilized to increase the coupling efficiency (42), and the

CE of -0.8 dB with 31.3 nm bandwidth (1 dB) is experimentally demonstrated in a 340 nm SOI

at C-band. Similarly, the interleaved geometry is optimized from a subwavelength grating index-

matching structure, which experimentally shows the CE of -1.3 dB with 52 nm bandwidth (3 dB) in

a 220 nm SOI at C-band (19). In addition, multi-layered (17, 45, 72, 73) and overlayed geometries

(46, 47, 51, 74) are widely adopted. By applying a band-structure synthesis method, a high direc-
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tionality design is presented based on the 45 nm CMOS platform (17). The CE is experimentally

demonstrated as -0.36 dB but works at 1200 nm which is not a popular wavelength. A follow-

up experimental demonstration at the O-band has been reported by the same group but the CE

decreases to -0.85 dB (72). Besides, the silicon overlay structure is also employed, the CE is ex-

perimentally measured as -1.6 dB with 80 nm bandwidth (3 dB) (46). On the other hand, tilt etched

(49, 50) and trapezoid (48) geometries are also candidates of power-efficient grating couplers. A

slanted geometry is simulated in a 220 nm SOI, showing a theoretical directionality of -0.8 dB and

-1.9 dB coupler-to-fiber CE. Accordingly, such a design demonstrates a -3.32 dB coupler-to-fiber

CE with about 80 nm bandwidth (3 dB) in the experiment (50). Moreover, a self-imaging apodized

grating coupler design using trapezoid geometry experimentally shows a -3.27 dB and -3.48 dB

coupler-to-fiber CEs at 1550 nm and 775 nm, respectively, on a Lithium-Niobate-On-Insulator

platform (LNOI) (48). For the convenience of comparison, we list the detailed performance of the

reported grating couplers in Table S1. Here we only count the results in the silicon-on-insulator

(SOI) platform with experimentally evaluated performance. To the best of our knowledge, the

proposed unidirectional grating coupler has the highest coupling efficiency of -0.34 dB with a

sufficient broad 1 dB bandwidth of 32 nm.

Compared to the existing methods, the advantages of the topological method lie in two as-

pects. First, the topological perspective gives a global view of optimization rather than specific

parameter sweeping or engineering. We prove in theory that the UGRs can exist in the aforemen-

tioned symmetry-breaking structures, showing a group of geometries are applicable to support uni-

directional radiation, which is part of the reason that the reported results can achieve fairly good
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performance owing to the same underlying physics. Second, the topological method provides a

systematic approach to achieve unidirectional radiation from the inter-band coupling effect. The

picture of topological charge can clearly indicate how far the states under engineering deviate from

the ideal design, and we can safely tune different parameters in a cascaded manner to reach the

target design, rather than brute force scanning the high-dimension parameter space.

It is noteworthy that our design is based on a 340nm-thick SOI wafer, suggesting that a rela-

tively thick wafer is more favorable for realizing a suitable UGR with its dispersion better matching

with the waveguide mode because of the relatively large effective refractive index contrast (75,76).

Might be the same reason, the multi-layered structure on SOI in Ref (17) requires an extra de-

position of SiN with n ≈ 2.0 to increase the contrast that gives a better radiation directionality.

Nevertheless, the realizing of UGR only asks for an in-plane mirror symmetry but doesn’t rely on

any symmetries in the vertical direction, and thus the proposed method is expected to be valid for

some materials in which fabricating vertical side wall is difficult (for instance lithium niobate films

and III-V materials), to significantly promote the coupling efficiency.

7 More exemplary designs of unidirectional grating coupler

We emphasize that the L-shape geometry presented in the main text is not the only choice for

realizing unidirectional grating couplers. The physical origins of UGR come from the evolution

of the BICs (54) or interband coupling effect (57). As long as the structures meet the symmetry

requirements, we can possibly design the UGRs with appropriate quality factors, wavevectors, and
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band dispersions to construct realistic grating coupler devices. To demonstrate the generality of the

proposed principle, we present more exemplary designs on the multi-layered structure and shallow

etched structure, to show sufficient high CEs and bandwidths can still be achieved with the aid of

unidirectional radiation.

Specifically, the multi-layered and shallow etched structures with UGRs are shown in the

upper panels of Fig. S8A and B, in which the electrical fields radiating towards the lower substrate

are eliminated. The Qs, incident angles, and group velocities are carefully designed to appropriate

values. Similarly, the apodization regions are subsequently designed to match the group velocity

and momentum between the UGR and waveguide mode. As a result, the electrical field distribu-

tions of grating couplers are shown in the middle panels, and the coupler-to-fiber CEs are presented

in the lower panels in Fig. S8A,B. The peak CE of the multi-layered structure is about -0.579 dB

and the shallow etched structure has a -0.357 dB peak CE with a 1dB bandwidth of 28.2 nm and

36.4 nm, respectively.

Noteworthy that constructing an appropriate UGR to realize a full-featured unidirectional

grating coupler needs to simultaneously meet the requirements of asymmetric ratio, bandwidth,

incident angle, etc, thus usually asking for sufficiently strong light confinement and symmetric

breaking. Therefore, the task could be relatively more challenging for thin SOIs (such as 220nm-

SOI) or half-etched structures (as shown in Fig. S8B). Nevertheless, the proposed design strategy

is valid for different wafer platforms and could lead to other practical designs.
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Fig. S1. Topological charge evolution upon the upward radiation. (A) The vectorial polariza-

tion field of the upward radiation in the momentum space when the height of block B1 (h1) varies

from 0 to 100 nm. (B) The trajectory of topological charge evolution for the upward radiation with

a varying height h1. The integer charge q = −1 carried by the symmetry-protected BIC splits into

a pair of half-charges q = −1/2 when h1 increases. Different from the trajectory of downward

radiation, here the half-charges monotonically depart and move away which ensures the upward

radiation channel remains open.

13



-3 dB
-1 dB

0

-10

|E
y|

2 
(d

B)

A B

0-20

1650

1450
Angle (deg)

W
av

el
en

gt
h 

(n
m

) Upward radiation
Upward radiation

Downward radiation

-10 dB

Angle (deg)

Downward radiation

0-20

Fig. S2. Flux maps of upward and downward radiation of unidirectional grating coupler. (A)

Schematic of the energy flux characterization, where the solid lines represent the monitor planes,

and the y-polarized electrical field is taken into account. (B) The energy flux maps of the grating

coupler for the upward and downward radiation. For the upward radiation, the -1 dB and -3 dB

contour lines are labeled as blue and red lines. Similarly, the -10 dB contour line is labeled as a

red line for downward radiation where most radiation is forbidden by the unidirectional emission

feature of UGR.
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Fig. S3. Unidirectional grating coupler design without minimum-feature-size constraint. (A)

The grating coupler structure and electrical field distribution of y-polarized component at 1550

nm of the unidirectional grating coupler excited by the mode source. The design relaxes the

“minimum-feature-size constraint” of 60 nm in Fig. 2. (B) The spatial and angular distributions

of the upward radiation modulated by the unidirectional grating coupler, showing they are more

smooth and close to Gaussian shape and thus can better couple into targeted fiber mode compared

with Fig. 2. The monitor is placed at about 40 µm above the structure. (C) The coupler-to-fiber

CE of the unidirectional grating coupler without minimum feature size constraint reaches a peak

value of -0.154 dB.
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Fig. S4. Angular radiation control of the apodized unidirectional grating coupler. (A) The

grating coupler structure and electrical field distribution of y-polarized component at 1550 nm of

the unidirectional grating coupler excited by the mode source. The entire grating is apodized to

modulate the angular distribution of upward radiation, to best match a diverged light beam, for

instance, a VCSEL with a large divergence angle. (B) The spatial and angular distributions of

the upward radiation modulated by the unidirectional grating coupler. The monitor is placed at

about 35 µm above the structure. The angular distribution shows it matches well a VCSEL with

a divergence angle of 30◦. (C) The coupler-to-detector CE of the unidirectional grating coupler

with the designed angular distribution, which shows it keeps in higher value than -0.18 dB over a

broadband with -0.115 dB at 1550 nm.
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CEs with geometry variations of w1 in which the CEs higher than -1 dB are kept in a range within

[-85,150] nm. (C) The CEs with geometry variations of h2 in which the CEs higher than -1 dB are

kept in a range within [-50,40] nm. (D) The CEs with geometry variations of h1 in which the CEs

higher than -1 dB are kept in a range within [-55,90] nm. The apodization region follows the same

geometry variations in each simulation to better capture the realistic deviation in fabrication.
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grating couplers as input and output ports. (A) and (C) are two sets of the tests (3, 7, 11) mm in

which the samples have an equal length difference of 4 mm. (B, D) The differential waveguide

loss per length obtained from (A, C). The waveguide loss shows a flat spectrum, indicating the

waveguide loss is almost wavelength-independent in the range from 1510 nm to 1590 nm. Repeat

the same procedure for both sets (A, C), the waveguide loss is calculated as 0.11 dB/mm by taking

the average of four measurements for the two sets.
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Fig. S8. Other exemplary unidirectional grating coupler designs from the same topological

principle. (A) The upper panel: a schematic of multi-layered structure with w1 = 356.73 nm,

w2 = 103.4 nm, a = 517 nm, h1 = 220 nm, h = 440 nm, and s = 62 nm. The corresponding

electrical field (Ey) shows the UGR. The middle panel: the electrical field distribution (Ey) at 1550

nm of the UGR based on the multi-layered structure excited by the mode source. The lower panel:

the coupler-to-fiber CE under the incidence of nearly Gaussian beam with the -0.579 dB peak CE

and 28.2 nm bandwidth. (B) The upward panel: the shallow etched structure with w1 = 776.54

nm, a = 925 nm, h1 = 342 nm, and h = 600 nm. The corresponding electrical field (Ey) shows

the UGR. The middle panel: the electrical field distribution (Ey) at 1550 nm of the UGR based on

the shallow etched structure excited by the mode source. The lower panel: the coupler-to-fiber CEs

under the incidence of nearly Gaussian beam with the -0.357 dB peak CE and 36.4 nm bandwidth.
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Table S1. Comparison with other grating couplers

Structure Wavelength CE (dB) Bandwidth (nm) Reference

220 nm SOI + Dual-etched structure C-band -1.5 49 (3 dB) (69)

220 nm SOI + Dual-etched structure C-band -1.3 52 (3 dB) (19)

220 nm SOI + Dual-etched structure C-band -2.2 47 (3 dB) (44)

220 nm SOI + Overlayed structure C-band -1.6 80 (3 dB) (46)

220 nm SOI + Tilt-etched structure C-band -3.32 80 (3 dB) (50)

220 nm SOI + Dual-etched structure O-band -1.9 23 (1 dB) (22)

250 nm SOI + PhC with metal mirror C-band -0.58 71 (3 dB) (30)

SOI + Multi-layered structure O-band -0.85 47 (1 dB) (72)

SOI + Multi-layered structure T-band -0.36 NA (17)

300 nm SOI + Dual-etched structure C-band -2.7 62 (3 dB) (20)

340 nm SOI + Single-etched grating C-band -1.2 45 (3 dB) (75)

340 nm SOI + Dual-etched grating C-band -0.8 31.3 (1 dB) (42)

340 nm SOI + Nano-pillar grating C-band -5.6 73 (1 dB) (77)

340 nm SOI+ Dual-etched structure C-band -0.34 32 (1 dB) This work
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