SUPPLEMENTAL INFORMATION

Expansion of memory Vδ2 T cells following SARS-CoV-2 vaccination

revealed by temporal single-cell transcriptomics

Sara Terzoli^{1,2}, Paolo Marzano³, Valentina Cazzetta^{1,3}, Rocco Piazza⁴, Inga Sandrock⁵, Sarina Ravens⁵, Likai Tan⁶, Immo Prinz^{5,6}, Simone Balin³, Michela Calvi^{1,3}, Anna Carletti³, Assunta Cancellara^{1,3}, Nicolò Coianiz¹, Sara Franzese^{1,3}, Alessandro Frigo^{1,3}, Antonio Voza^{2,7}, Francesca Calcaterra^{1,3}, Clara Di Vito¹, Silvia Della Bella^{1,3}, Joanna Mikulak^{1#*} and Domenico Mavilio^{1,3#*}

*Shared last authorship; *Corresponding authors

¹Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy;

²Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy;

³Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy;

⁴Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy; ⁵Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany; ⁶Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁷Department of Biomedical Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan,

ltaly.

LIST OF CONTENTS

Our study is supported by supplemental information that include:

Page 4-5: Supplemental Figure 1. scRNA-seq analysis in the SARS-CoV-2 vaccinated subjects (related to Figure 1)

Page 6-7: Supplemental Figure 2. Identity of the specific $\gamma\delta$ T cell cluster activation following SARS-CoV-2 vaccination (related to Figure 2)

Page 8-9: Supplemental Figure 3. SARS-CoV-2 vaccination shapes the effectorness of V δ 2 T cells (related to Figure 3)

Page 10-11: Supplemental Figure 4. Specific cluster profiling of $\gamma\delta$ TCR repertoire (related to Figure 5)

Page 12: Supplemental Figure 5. Analysis of the public $\gamma\delta$ TCR clonotypes (related to Figure 6)

Page 13-14: Supplemental Figure 6. Analysis of the expanded $\gamma\delta$ TCR clones upon SARS-CoV-2 vaccination (related to Figure 7)

Page 15-16: Supplemental Figure 7. Increased effector response of Vδ2 T cells following repeated SARS-CoV-2 vaccination and peptide stimulation in vitro (related to Figure 8)

Page 17-18: Supplemental Table 1. Cross-reactive genes (related to Figure 4)

Page 19: Supplemental Table 2. Cell cycle phase genes (related to Supplemental Figure 7a)

Supplemental Figure 1. Single cell RNA-seq analysis in SARS-CoV-2 vaccinated subjects

(a) Kinetics of anti-SARS-CoV-2 IgG antibody levels in the cohort of vaccinated subjects (s01-s06) at different time points pre- and post-first and second doses of the mRNA-based *BNT162b2* vaccine. For the statistical analysis, the paired *ANOVA* Friedman statistical test was used, and statistic values are represented as *P*-values (*): **P* <0.05 and ****P* <0.001.

(b) *UMAP* visualization of the integrated single-cell transcriptomes of PBMCs (242,765 cells) identified across all time points (P0-P4), subjects (s01-s06) and cell clusters (c0-c34) after QC filtering. Cell clusters enriched in $\gamma\delta$ T cells (c8, c12, and c16), highlighted in blue boxes, were identified based on the expression of known markers (*CD3E*, *CD3G*, *TRDC*, *TRDV1*, *TRDV2*, *TRGC1*, and *TRGC2*), and re-clustered for further analysis. (c) Characterization of specific $\gamma\delta$ T cell clusters (c0-c9) obtained after re-clustering. The track plot shows the gene expression height of the top 10 DEGs (rows) for each identified $\gamma\delta$ T cell cluster.

(d) The bar plot shows the normalized frequency (%) of $\gamma\delta$ T cell cluster (c0-c9) distribution across all analyzed time points (P0-P4) for each subject (s01-s06). The cell cluster's frequencies were calculated by normalizing against all subject-related cell counts at each time point.

b

Supplemental Figure 2. Identity of the specific $\gamma\delta$ T cell cluster activation

following SARS-CoV-2 vaccination

(a) The ridge plots show the expression levels (x-axis, log-UMI) and the frequency of cells (y-axis) for each time point (P0-P4) of three DEGs (*JUN, FOS*, and *CD69*) detected in cluster c1 at P1 *vs* P0. Null gene expression cells were excluded from the analysis. The dotted line highlights the changes in gene expression levels across the different time points (P0-P4) relative to the peak gene expression at the baseline.

(**b**) The dot plot shows a selection of significantly enriched pathways with FDR values <0.05, identified among DEGs at each time point (P0-P4) for Vδ2 T cell clusters (c5, c8, and c9) and for Vδ1 T cell clusters (c3 and c4) using the *Reactome* pathway browser. Dots are colored based on FDR values and sized according to the number of DEGs enriched in each pathway.

-1

-2

-3

0

1

2

3

Supplemental Figure 3. SARS-CoV-2 vaccination shapes the effectorness of

Vδ2 T cells

Heatmap displaying the top selected 50 genes (q value <0.01) variable along the V δ 2 T cell pseudotime trajectory calculated for all time points (P0-P4). The x-axis represents cells ordered by pseudotime (from left to right), and different colors indicate the scaled (Z-scored) expression of each gene in each cell.

Supplemental Figure 4. Specific cluster profiling of $\gamma\delta$ TCR repertoire

(a) The bar plots show the frequency (%) of all paired GV/DV chains in each cluster (c0-

c9) per subject (s01-s04). The total numbers of paired $\gamma\delta$ TCR chains are indicated at

the top of each bar.

(b) The pie chart shows the frequency (%) of GV/DV paired highly expanded clones

(\geq 50 cells) within each cluster of V δ 2 T cells (c0-c2, c5-c9).

Supplemental Figure 5. Analysis of the public $\gamma\delta$ TCR clonotypes

The Venn diagram evidences the number of paired CD3Ry and CD3R δ y δ TCR

clonotypes that overlap among different subjects (s01-s04).

Supplemental Figure 6. Analysis of the expanded γδ TCR clones upon SARS-CoV-2 vaccination

(a) Distribution of γδ-TCR clones with a cell clone size ≥ 2 across all time points (P0-P4) following vaccination. For the statistical analysis, the unpaired nonparametric *ANOVA* test with Dunn's distribution was used, evaluating all time points (P1-P4) compared to baseline (P0). Statistic values are represented as *P*-values (*): ***P* <0.01 and *****P* <0.0001.

(**b**) The hierarchically-clustered heatmap shows the CD3Rγ and CD3Rδ amino acids sequence distance for expanded γδ TCR clones. Dark red indicates high similarity (low distance), while rose indicates low similarity (high distance). *GV9DV2* clones are highlighted in blue, while other clones are in red. The pie chart shows the frequency of *DV* chains of expanded paired clones.

(c) The example of hierarchically-clustered heatmap shows the CD3Rγ and CD3Rδ amino acids sequence distance for *GV9DV2* clones for subjects s01 and s04. Dark red indicates high similarity (low distance) while rose indicates low similarity (high distance). The *GV9DV2* expanded clones are highlighted in blue, while the total *GV9DV2* clones are in red.

(d) The length percentage frequency distribution (%) of CDR3y (top) and CDR3 δ (bottom) was calculated in the expanded paired y δ TCR clones following vaccination (in red), and in all other identified clones (in blue).

7

Day 17

Supplemental Figure 7

d

Supplemental Figure 7. Increased effector response of Vδ2 T cells following repeated SARS-CoV-2 vaccination and peptide stimulation *in vitro*

(a) The bar plot shows the percentage (%) of expanded $\gamma\delta$ TCR clones in the G2M cell cycle phase. For the statistical analysis, the standard error of the mean (SEM) was calculated according to the absolute cell count, and the unpaired parametric *t-test* was used between each time point (P1-P4) compared to the baseline (P0). Statistic values are represented as *P*-values (*): **P* <0.05.

(b) Schematic overview of the *in vitro* experimental design.

(c) Representative flow cytometry dot plots showing the gating strategy used to distinguish the two subsets of $\gamma\delta$ T cells, V δ 1 and V δ 2, among all the viable peripheral blood CD3⁺ lymphocytes.

(d) Functional analyses of Vδ2 and αβ T cell response upon SARS-CoV-2 Prot_S peptides stimulation showing the IFNγ expression (MFI values) after the first and the second stimulation with peptides compared to their respective controls. The frequency of Vδ2 T cells among the CD3⁺ T cells is reported at each of the three time points analyzed in the experiment. For the statistical analysis, the paired nonparametric *t-test* was used. Statistic values are represented as *P*-values (*): **P* <0.05.

Supplemental Table 1

		Effectorness	Time	Interaction			Effectorness	Time	Interaction			Effectorness	Time	Interaction
No	Gene	adj.p < 0.05	adj.p < 0.05	adj.p < 0.05	No	Gene	adj.p < 0.05	adj.p < 0.05	adj.p < 0.05	N	Gene	adj.p < 0.05	adj.p < 0.05	adj.p < 0.05
1	DUSP1	0E+00	4E-25	8E-93	61	YBX3	4E-160	4E-07	2E-09	12	1 TNF	4E-05	5E-07	4E-04
2	JUN	0E+00	2E-23	1E-83	62	NFKB1	8E-84	2E-21	2E-09	12	2 CD83	3E-24	4E-09	4E-04
3	NFKBIA	6E-292	6E-09	2E-80	63	SLFN5	1E-03	1E-12	2E-09	12	3 IFRD1	1E-42	4E-08	5E-04
4	PPP1R15A	6E-149	3E-24	3E-60	64	DYNLL1	4E-35	3E-04	2E-09	12	4 IFNG-AS1	6E-130	3E-06	5E-04
5	FOS	0E+00	3E-40	7E-59	65	MYADM	1E-42	9E-25	2E-09	12	5 FASLG	2E-16	6E-04	6E-04
6	JUNB	0E+00	2E-39	1E-54	66	CSRNP1	1E-78	8E-12	2E-09	12	6 ATF3	8E-14	2E-02	7E-04
7	GIMAP7	4E-21	6E-33	3E-53	67	MCL1	1E-55	3E-11	4E-09	12	7 HERPUD1	6E-10	2E-14	7E-04
8	CXCR4	0E+00	8E-90	1E-52	68	HOPX	2E-178	8E-03	4E-09	12	8 DDX3Y	1E-127	1E-07	8E-04
9	CD69	0E+00	2E-09	5E-52	69	HOOK2	5E-94	5E-10	4E-09	12	9 GPR183	5E-114	2E-05	9E-04
10	TNFAIP3	0E+00	4E-22	2E-45	70	KIAA2013	3E-31	9E-08	5E-09	13	0 PHLDA1	5E-10	1E-02	1E-03
11	ZFP36	0E+00	3E-78	9E-42	71	ZC3H12A	2E-13	6E-14	9E-09	13	1 HSPA1A	3E-13	9E-05	1E-03
12	NR4A2	3E-121	9E-51	1E-40	72	AC253572.2	6E-92	6E-04	1E-08	13	2 S100A9	4E-03	7E-07	1E-03
13	CX3CR1	0E+00	2E-36	7E-38	73	FCGR3A	0E+00	2E-07	2E-08	13	3 LPAR6	3E-03	8E-06	2E-03
14	GIMAP5	/E-19	3E-09	2E-34	74	TUBATA	6E-11	8E-09	2E-08	13	4 KIR2DL3	2E-106	6E-04	2E-03
15	BIG2	2E-199	1E-36	8E-31	75	108848	3E-06	2E-09	3E-08	13	5 PRDM1	1E-32	2E-09	2E-03
16	PIK3R1	0E+00	9E-65	8E-31	76	S100A4	0E+00	2E-11	3E-08	13	6 INFRSF1A	5E-13	4E-04	2E-03
17	RBM38	5E-41	6E-62	1E-30	77	IRF4	1E-29	2E-09	3E-08	13	7 TRAC	0E+00	3E-13	2E-03
18	ISC22D3	3E-85	4E-07	3E-29	/8	ISPYL2	5E-77	3E-11	7E-08	13	8 0001	9E-10	1E-02	2E-03
19	FUSB	2E-216	7E-12	5E-29	/9	SUCS3	3E-161	3E-14	2E-07	13	9 CCDC59	1E-08	4E-05	2E-03
20	GADD45B	2E-40	2E-35	8E-28	80	EML4	8E-166	6E-12	2E-07	14	0 PDE3B	3E-80	6E-06	2E-03
21	AC020916.1	4E-28	4E-03	5E-27	81	SINHG3	8E-08	2E-04	3E-07	14		3E-11	4E-07	2E-03
22		2E-09	75.00	9E-20	82		7E-34	0E-04	3E-07	14		2E-14	4E-02	3E-03
23	KLF0	3E-02	7E-60	1E-24 2E-22	83	EPB41L4A-AS1	2E-09	3E-03	3E-07	14		0E+00	6E-04	3E-03
24	ZNE221	JE-00 7E-44	5E-50	2E-25 9E-20	04	NID443	6E-17	7E-03	3E-07	14		1E-08	JE-02	JE-03
25	MADSK8	7L-44 6E-43	2E-16	JE-20	00	11 70	0E+00	2E-14 9E-19	4E-07	1/		0E+00	4E-03	4E-03
20		1E-37	2E-40	4E-19 4E-19	87	KLRC2	1E-60	2E-07	4E-07	14	7 CEMIP2	2E-02	1E-07	6E-03
20	IEP2	5E-64	2E-28	2E-19		FEE1A1	0E+00	2E-0/	6E-07	1/		4E-02	2E-02	6E-03
20	S100411	9E-11	7E-09	2E-10 8E-18	80	WHRN	6E-18	1E-04	9E-07	14	GITPRIP	4E-02 4E-12	2E-02	6E-03
30	PLEK	7E-173	2E-07	1E-17	90	RGS2	2E-21	2E-03	9E-07	15	0 RPI P1	0E+00	2E-14	6E-03
31	PDF4D	1F-38	2E 07	4F-17	91	LIBE2S	1E-39	1E-06	1E-06	15	1 CD320	1E-88	2E-03	9E-03
32	MAFE	6E-38	1E-30	2E-16	92	AKR1C3	2E-186	3E-02	2E-06	15	2 GABARAPI 1	6E-12	9E-05	1E-02
33	DUSP2	0E+00	6E-97	2E-16	93	ARL4A	5E-56	9E-05	4E-06	15	3 PRSS23	0E+00	5E-05	1E-02
34	FOSL2	4E-11	3E-27	3E-16	94	IER5L	7E-15	2E-14	4E-06	15	4 HBB	2E-04	9E-10	1E-02
35	TENT5C	6E-146	5E-37	7E-16	95	CXCR3	4E-37	1E-06	4E-06	15	5 CCDC88C	5E-54	6E-10	1E-02
36	YPEL5	9E-30	3E-21	8E-16	96	LMNA	3E-10	3E-07	5E-06	15	6 AP002387.2	3E-04	5E-03	1E-02
37	SERTAD1	3E-23	2E-27	9E-16	97	SOCS1	5E-44	3E-08	6E-06	15	7 ARID5A	5E-06	2E-04	1E-02
38	PMAIP1	1E-155	2E-14	9E-16	98	TAGAP	3E-03	1E-10	7E-06	15	8 POU2F1	8E-03	5E-04	1E-02
39	NFKBIZ	1E-120	1E-17	3E-15	99	DDIT4	1E-17	6E-40	1E-05	15	9 GADD45G	1E-07	7E-05	1E-02
40	DNAJB1	1E-160	6E-30	6E-15	100	BHLHE40	5E-43	1E-05	1E-05	16	0 TCF25	2E-163	7E-03	2E-02
41	PER1	2E-26	1E-13	7E-15	101	CAMK4	0E+00	1E-04	2E-05	16	1 KLRC4	3E-207	6E-03	2E-02
42	IER5	1E-79	3E-20	7E-15	102	SPN	5E-87	3E-07	2E-05	16	2 CD55	7E-140	2E-04	2E-02
43	PTPN6	4E-02	4E-02	1E-14	103	PTGER2	7E-31	2E-07	3E-05	16	3 AC025164.1	2E-23	1E-02	2E-02
44	SPON2	0E+00	6E-08	1E-13	104	UCP2	2E-15	4E-06	4E-05	16	4 AC004865.2	2E-35	5E-05	2E-02
45	PRF1	0E+00	4E-28	2E-12	105	HIST1H3D	1E-26	3E-04	7E-05	16	5 PTGER4	1E-26	9E-09	2E-02
46	DUSP5	2E-52	8E-16	2E-12	106	RPSA	0E+00	5E-04	7E-05	16	6 HIST1H4C	2E-20	2E-03	2E-02
47	AC245014.3	3E-81	2E-09	1E-11	107	SYTL3	9E-04	2E-18	8E-05	16	7 AREG	9E-30	3E-06	2E-02
48	ZFP36L1	1E-10	9E-03	1E-11	108	AC087623.2	2E-11	4E-06	8E-05	16	8 ID1	8E-13	3E-12	2E-02
49	RPS4Y1	0E+00	1E-34	1E-11	109	HISTIHIE	2E-04	2E-15	8E-05	16	9 IEN14B	2E-06	5E-06	3E-02
50	AC044849.1	6E-51	2E-05	1E-11	110	ST6GAL1	3E-02	1E-04	1E-04	17	0 AC004687.1	7E-15	3E-03	3E-02
51	IFNG	2E-59	2E-08	1E-11	111	GPK05	2E-04	3E-02	1E-04	1/	1 INFSF14	4E-04	1E-03	3E-02
52	ACTB CNV10	3E-90	5E-03	2E-11	112		2E-02	6E-04	1E-04	17		2E-38	4E-06	3E-02
53		9E-29	0E-03	2E-11	113		UE+00	2E-46	2E-04	1/		1E-09	/E-08	3E-02
54	METONI	3E-U2	/E-31 /E-31	9E-11 0E 11	114	PGCC	3E-39 2E 00	2E-U3 2E-14	2E-04	17		0E-25	5E-04	3E-02
55		3E-10	4E-1/	9E-11 1E 10	115		2E-88	3E-10	2E-04	1/		3E-107	/E-Ub	3E-02
50	LINC01971	0E-12 2E.22	35-13	16-10	110	SMAD7	16-07	15-09	3E-04	11	7 1012	7E-44 AE_120	SE-02	4E-02
52	CISH	9F-14	5E-05	1E-10	119	AC012615 1	1E-08	3E-02	3E-04	17		5F-22	4F-02	4E-02 4E-02
50	PIM1	2F-03	2E-10	4F-10	110	ICAM2	4F-12	1E-02	3E-04	17	PTGDR	2F-09	1F-04	5E-02
60	PI EKHE1	2E-03	6E-03	1E-09	120	SKII	1F-12	3F-02	3E-04	Ľ.	GDR	22-03	12-04	52-02
		52 54	02.05	.2 05	-20			52 02	52 04					

Supplemental Table 1. Cross-reactive genes

This table provides a list of genes whose expression was significantly modulated by effectorness and vaccination acting independently, as well as jointly due to their cross-reactive effect. Gene expression was modeled as a function of effectorness, time, and their interaction using a linear regression with interaction terms. We used *ANOVA* (two-sided) to test which gene are modulated by effectorness and vaccination acting both independently and jointly. The analysis was restricted to highly variable genes, with the removal of mitochondrial, immunoglobulin, and *TCR* genes. We report the FDR adjusted *P* (*adj*:*p*)-value for any gene with a value <0.05. Columns correspond to gene name and *adj*:*p*-value for effectorness, time and effectorness-time interaction effects.

Supplemental Table 2

Cell cycle phase genes

MCM5, PCNA, TYMS, FEN1, MCM2, MCM4, RRM1, UNG, GINS2, MCM6, CDCA7, DTL, PRIM1, UHRF1, MLF1IP, HELLS, RFC2, RPA2, NASP, RAD51AP1, GMNN, WDR76, SLBP, CCNE2, UBR7, POLD3, MSH2, ATAD2, RAD51, RRM2, CDC45, CDC6, EXO1, TIPIN, DSCC1, BLM, CASP8AP2, USP1, CLSPN, POLA1, CHAF1B, BRIP1, E2F8, HMGB2, CDK1, NUSAP1, UBE2C, BIRC5, TPX2, TOP2A, NDC80, CKS2, NUF2, CKS1B, MKI67, TMPO, CENPF, TACC3, FAM64A, SMC4, CCNB2, CKAP2L, CKAP2, AURKB, BUB1, KIF11, ANP32E, TUBB4B, GTSE1, KIF20B, HJURP, CDCA3, HN1, CDC20, TTK, CDC25C, KIF2C, RANGAP1, NCAPD2, DLGAP5, CDCA2, CDCA8, ECT2, KIF23, HMMR, AURKA, PSRC1, ANLN, LBR, CKAP5, CENPE, CTCF, NEK2, G2E3, GAS2L3, CBX5, CENPA.

Supplemental Table 2. Cell cycle phase genes

This table provides the list of marker genes specific to G1M, G2M, and S phases used

to calculate cell cycle phase score to expanded $\gamma\delta$ TCR clones (related to

Supplemental Figure 7a)