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S1 THE MATHEMATICAL MODEL

We employ a 3D, on-lattice agent-based model that includes heterogeneous tumor cells and cytotoxic T
lymphocytes (CTLs) as agents. We shall use T to represent tumor cells and x ∈ T as a specific tumor
cell agent. Similarly, y ∈ I will represent immune cells. Our agent-based model (ABM) is a hybrid
continuous-discrete computational model because it contains three different diffusible factors: an immune
stimulatory factor (ISF), an anti-FGFR3 small molecule inhibitor (SMI), and an anti-PD1 monoclonal
antibody for immune checkpoint inhibition (ICI). All of these entities interact in a tumor microenvironment
(TME) defined as a rectangular prism, partitioned into a lattice of voxels, that can contain at most one agent.
We let Λ ⊂ R3 represent the set of center points in each of these voxels. In each dimension, we use the
same uniform step size, h. The density of each diffusible factor is approximated by the local concentrations
on this grid, though we make further coarse-graining assumptions about these discussed below. All model
parameters can be found in Table S1. All model variables, functions, and other nomenclature can be found
in Table S2.

S1.1 Tumor Cells

S1.1.1 Initialization

The TME is initialized with N0 = 100 tumor cells near the center of the TME to match the distribution of
tumor cells in a tumor that reached this size starting with a single tumor cell. To calculate this distribution,
we ran simulations beginning with a single tumor cell, stopping once the tumor grew to N0 cells. If the
tumor spontaneously regressed, we discarded the simulation. We then fit a model of the distribution of the
radial distance of each tumor cell from the center of mass and used that for future model initializations.

S1.1.2 Tumor Heterogeneity

Tumor cells have three dimensions along which they can differ from one another: antigenicity, FGFR3
mutation, and FGFR3 dimer concentration. All three are passed on to daughter cells with all FGFR3-
based complex concentrations, including FGFR3 dimers, for the new daughter cells being set as half the
concentration of the parent cell; the total FGFR3 on a single tumor cell is preserved by adding new FGFR3
monomers. Antigenicity and FGFR3 mutation are binaries divided into low vs. high and wild type vs.
mutant, respectively. Antigenicity is discussed further in Section S1.9. Tumor cells possessing the FGFR3
mutation will be able to undergo ligand-independent dimerization of their FGFR3 monomers, leading to
changes in their proliferation and apoptosis rates as discussed in Section S1.4. In addition, this FGFR3
signaling can affect the immune system as discussed in Section S1.7.2. Antigenicity and FGFR3 mutation
status are assumed independent upon initialization and the initial proportions of each are parameters varied
in the model.

Total FGFR3 monomer concentration is a continuous variable that is randomly chosen for each
tumor cell upon initialization from normal distributions (truncated at 0). For all results presented here,
these distributions have zero variance for simplicity. The random variables for mutant and non-mutant
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concentrations, FM and FN , respectively, are assumed to be proportional, related by pRT = FN
FM

so that
pRT ∈ [0, 1] is the ratio of FGFR3 on non-mutants compared to mutants. All other receptor concentrations
(FGFR3 dimers, etc.) are initially set to 0.

S1.2 Immune Cells

S1.2.1 Recruitment

Initially, no immune cells are present in the TME. They are recruited into the TME after each tumor
update based on the size of the tumor, NT , at the start of the iteration. We assume that the rate of immune
cells arriving in the TME is directly proportional to the tumor size. We model the arrival of new immune
cells into the TME as a Poisson process based on this rate. These new immune cells are placed randomly at
empty lattice sites that are identified as perivascular.

S1.2.2 Cell State

Immune cells enter the TME at perivascular sites (See Section S1.3). As they move around the TME, they
may conjugate with a tumor cell for a period of time, and during this time their cell fate decisions are altered
(See Section S1.5). These conjugations result in either tumor cell apoptosis or immune cell exhaustion.
Upon successfully causing apoptosis in a target tumor cell, an immune cell returns to an disengaged status.

Immune cell deactivation is mediated through PD-1 signaling. Immune cells that have become deactivated
eventually undergo apoptosis, and otherwise they take no further actions. They do remain on the lattice,
taking up space which can affect movement and proliferation.

S1.3 Vasculature

A static vasculature model is included to model the influx of drugs and immune cells. By default,
blood vessels are located on the border of the lattice, B ≡ ∂Λ ⊂ Λ. Lattice sites in B are referred to as
“perivascular”.

S1.4 Tumor Cell Updates

The simulation is discretized into uniform time steps of ∆t with a default value of 15min. During each
step, every tumor cell, x, has a vector of probabilities, ⟨pi(x)⟩, to make a cell fate decision either to
proliferate or to undergo apoptosis, which we consider independent events during one time step. These
probabilities are computed using the exponential distribution with rate parameter ri(x):

pi(x) = Pr(ti ≤ ∆t) =

∫ ∆t

0
ri(x)e

−ri(x)t dt

= 1− e−ri(x)∆t, i ∈ ET = {proliferation, apoptosis}
(S1)

where ri(x) is the cell-specific rate of each process defined below. To choose the fate of each cell, we
take random draws si(x) ∼ U(0, 1) for each (x, i) ∈ T × ET . If si(x) < pi(x), cell x will perform event i.
For each selected event, a delay ti(x) ∈ [0,∆t] is calculated following a truncated exponential distribution
to order the events (see Equation S4). This is significant insomuch as it decides which cell gets first choice
at proliferating into a new space and it decides if a proliferation occurs before or after apoptosis when
both events are selected for the same cell. The events are then carried out in this order, ensuring cells that
undergo apoptosis in this iteration do not subsequently proliferate.
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The tumor module of this ABM and its functional forms are built on our previous work (Okuneye et al.,
2021; Bergman et al., 2022). Full details follow.

S1.4.1 Fractional FGFR3 Occupancy

Every tumor cell has FGFR3 receptors. Those that have the associated mutation will have its receptors
dimerize as governed by the reaction equations found in Section S1.6 with ramifications for cell fate
decisions as exposited in subsequent sections. Otherwise, these receptors will only interact with inhibitor
molecules. We define the active FGFR3 dimer fractional occupancy by

ϕD(x) =
DA(x)

RT
(S2)

where DA(x) represents the concentration of active dimers on tumor cell x and RT is the average
concentration of total FGFR3 on tumor cells harboring the FGFR3 mutation. Due to there being, by
definition, at most half as many dimers as monomers, we know that ϕD(x) ≤ 1

2 ∀x ∈ T .

S1.4.2 Proliferation

The tumor cells proliferate at a base rate of αT that is increased by FGFR3 signaling. This increase is
dependent upon ϕD(x) by

rproliferation(x) = αT + αϕD
ϕD(x) (S3)

When executing a proliferation event, the neighborhood of the tumor cell is checked for sufficient space
to proliferate. This reflects a density-dependent proliferation. Specifically, if there are > O

prolif
T occupied

lattice spots in the Moore neighborhood around a tumor cell, we prohibit proliferation. If there are sufficient
open spots, then these are weighted by the reciprocal of their distance in the Euclidean norm from the
tumor cell and one is selected randomly based on these weightings for the new cell to be placed in.

There are two important ways we change this base rate based on whether a cell has recently proliferated.
The first is that a cell must reside in a resting state for a duration of LG0 before becoming proliferative
again, reflecting the part of the cell cycle in which the cell is growing in volume and incapable of dividing.
During this time, the proliferation rate is fixed at rproliferation(x) = 0. When the cell does proliferate, it is
assumed that it happens at a random time during the interval, using the exponential distribution. The CDF
for these times is readily given by Equation S4.

F (t) =

∫ t
0 ri(x) exp(ri(x)s) ds∫ ∆t
0 ri(x) exp(ri(x)s) ds

=
1− exp(−ri(x)t)

1− exp(−ri(x)∆t)
(S4)

Second, if this waiting period expires during the update step, then the remaining time is used in place of
∆t for cell x. That is, if the cell must still wait w < ∆t hours at the start of the update, then ∆t in Equation
S1 is replaced by ∆t− w for the proliferation probability of cell x. Together, these make the proliferations
more realistic–not allowing the same cell to proliferate multiple times in a short time interval–and creating
greater consistency between different choices of ∆t.
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S1.4.3 Apoptosis

The tumor cells undergo apoptosis at a base rate δT that is decreased by FGFR3 signaling. This decrease
is also dependent on ϕD(x):

rapoptosis(x) =
δT

1 + ϕD(x)/γϕD

(S5)

After the immune cell updates are resolved, the apoptotic cells are removed from the lattice.

S1.5 Immune Cell Updates

After performing the updates for all the tumor cells in Section S1.4, the immune cells then update. Because
immune cells are allowed to move around the TME, a shorter timestep is required, ∆timm ≤ 1 h with 10min
being the default value. The event space for immune cells is EI = {proliferation, apoptosis, movement,
conjugation, exhaustion, AICD}. Details of each follow below. As with the tumor updates in Section S1.4,
these probabilities come from the exponential distribution defined by the rate at which they occur (see
Equation S1). Dissimilar from tumor cells, we make the simplifying assumption that immune events are
mutually exclusive on the shorter immune time scale. Practically, this means we order the event probabilities
in a vector p(y) = ⟨pi(y)⟩i∈EI , compute the vector of cumulative sums c(y) = ⟨

∑i
j=1 pj(y)⟩

|EI |
i=1, take a

random draw s(y) ∼ U(0, 1), and select event i = min {i ∈ EI |s(y) < ci(y)}. The minimum here should
be interpreted based on the chosen ordering of events in assembling p(y). A final event of resting is
appended to the end so that p(y) sums to 1. If this probability is negative, i.e. the event probabilities add up
to more than 1, a smaller time step is chosen. Due to these time intervals being short relative to the rates of
these events, we approximate the truncated exponential distribution as uniform and randomly shuffle the
order in which these events are carried out.

S1.5.1 Proliferation

Immune cells proliferate at a base rate of αI with this being set to 0 if the immune cell is either currently
conjugated with a tumor cell or has already become exhausted. It is increased based on the local immune
stimulatory factor (ISF, see Section S1.9) concentration following a Hill function. This rate is then given in
Equation S6.

rimmune
proliferation(y) = αI

(
γnI
I + fIF(y)nI

γnI
I + F(y)nI

)
(S6)

where F(y) is the local immune stimulatory factor concentration at y (See Section S1.9). The ISF factor
increases from 1 to fI as F(y) increases from 0 to ∞.

As with tumor cells, immune cells must have sufficient space to proliferate and they must rest between
proliferations. The density-dependent proliferation restriction for immune cells, Oprolif

I , is slightly weaker
to reflect their smaller size.

S1.5.2 Apoptosis

Immune cells undergo apoptosis at a base rate of δI at all times.

rimmune
apoptosis(y) = δI (S7)
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If the CTL is engaged with a tumor cell when it is undergoes apoptosis, the target tumor cell has its
clearance values updated as described in Section S1.5.4.1.

S1.5.3 Movement

The ability of immune cells to move is paramount to their functionality. Immune cell movement requires
the cell to be not conjugated with a tumor cell and to be not exhausted. Such immune cells have a constant
rate of movement, m. To allow for persistent movement in a single direction, and to improve simulation
efficiency, immune cells move nmove steps at a time. Therefore, the rate at which the movement event is
selected is given by Equation S8.

rmove(y) =
m

nmove
(S8)

Immune cells can chemotax towards tumor cells in a manner inspired by the modeling choices
implemented in PhysiCell (Ghaffarizadeh et al., 2018). When an immune cell moves, it first samples
the local ISF (see Section S1.9) gradient, G(y) ≡ ∇F|y, converting the norm of this vector into a bias
b(y) ∈ [0, 1] by Equation S9.

b(y) =
∥G(y)∥nm

2

γnm
m + ∥G(y)∥nm

2

(S9)

A random movement direction is then chosen by linearly combining the gradient direction with a random
vector, ξ, on the unit sphere:

v(y) = (1− b(y))ξ + b(y)
G(y)

∥G(y)∥2
(S10)

The immune cells then begins a sequence of nmove steps in this direction. At each step, it assigns weights
to each of the 26 neighboring sites in a Moore neighborhood by multiplying two factors: (1) the inner
product of the displacement vector and v(y) and (2) the Euclidean distance to the lattice site. Any sites off
the grid, occupied, or with a negative weight have weight set to 0. A site is then selected based on these
weights. If all the weights are 0, then no further movement can occur and the movement halts.

S1.5.4 Conjugation

During every immune update, immune cells attempt conjugation with neighboring tumor cells at a
constant rate, β, independent of whether a tumor cell is actually present to be targeted. Only unengaged,
active immune cells can make this attempt; the rest have this rate set to 0. When an immune cell attempts to
conjugate with a tumor cell, it looks for a non-apoptotic tumor cell in its Moore neighborhood and selects
one at random while weighting these by the inverse of their distance from the immune cell. If the immune
cell successfully engages the tumor cell, then the immune cell is labeled as engaged and the tumor cell
begins to be cleared.

S1.5.4.1 Accumulating Clearance

For each tumor cell, x, we track its current rate of immune clearance, rclearance(x), and its progress
towards clearance, pclearance(x). When a tumor cell with low antigenicity is engaged by an immune cell,
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we add δslow to rclearance(x). For high antigen tumor cells, we add δfast. As more immune cells target a
particular tumor cell, these rates accumulate and the tumor cell may be cleared faster.

After each immune update, each tumor cell has its progress towards clearance updated according to
Equation S11.

∆pclearance(x) = rclearance(x)∆timm (S11)

If this results in pclearance(x) ≥ 1, then x is considered apoptotic and the immune cells targeting it are
returned to an unengaged status.

S1.5.4.2 Apoptosis or Exhaustion while Engaged

Should an immune cell die or become exhausted while engaged with a tumor cell, x, that tumor cell’s
clearance rate is decremented by the rate at which it was being cleared by that immune cell. If no immune
cells remain engaged with that tumor cell so that rclearance(x) = 0, then x undergoes apoptosis with
probability pclearance(x) and otherwise pclearance(x) is reset to 0.

S1.5.5 Exhaustion

All immune cells express PD-1 and are thus subject to PD-1 signaling, which can trigger exhaustion.
As explained in Section S1.8, every immune cell is assigned an average concentration of PD-1-PD-L1
complexes on its cell surface, Q(y), where y ∈ I represents an immune cell in the TME. This value then
modulates the exhaustion rate according to Equation S12.

rdeactivation(y) = de
Q(y)ne

γne
e +Q(y)ne

(S12)

The EC50, γe is set to be Q(y∗)/2 where y∗ is conjugated with a tumor cell in the absence of PD-1
inhibitor. If an immune cell is engaged when it is exhausted, the target tumor cell has its clearance values
updated as described in Section S1.5.4.1. Exhausted immune cells wait to die and otherwise affect the
system only by taking up space.

S1.5.6 AICD

Immune cells can undergo activation-induced cell death (AICD) when they go long periods without
conjugating with a tumor cell (Green et al., 2003; Krammer et al., 2007). Once an immune cell has gone a
sufficient duration without conjugating with a tumor cell, it acquires a constant rate of AICD, da. Otherwise,
the AICD rate is 0. When immune cells first enter the TME, this duration is tseek,0; after a successful
conjugation and the subsequent decoupling, the duration is tseek,1.

S1.6 FGFR3 Dynamics

To compute the amount of FGFR3 signaling and the effects of an FGFR3 inhibitor on tumor cells, we
employ what we call a global method (Bergman et al., 2022). Rather than use local concentrations of
receptors, inhibitor, and complexes as state variables in an ordinary differential equation (ODE) for each
and every tumor cell, we divide the TME into regions (see Section S1.6.3) and update state variables
averaged across these regions. To account for intra-region heterogeneity, we further divide each region into
three subregions: non-mutant-occupied, mutant-occupied, and tumor-free. We build to the full system of
ordinary differential equations (Equation S17) by first describing the kinetic reactions (Equation S14), then
the diffusion (Equation S15), and finally the pharmacokinetic model (Equation S16). The pharmacokinetic
and kinetic models are taken from (Okuneye et al., 2021) and the diffusion from (Bergman et al., 2022).
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S1.6.1 FGFR3 Dimerization

In describing the kinetic equations, we omit the spatial context to simplify notation; the spatial context
will be added in Section S1.6.5. In the absence of inhibitor, the surface-bound FGFR3 monomers, R, on
mutant tumor cells will dimerize on the cell surface to create active dimers, DA. These dimers will unbind
and be recycled via internalization, returning them to a monomer. Thus, we model these terms by Equation
S13.

dR

dt
= −2kf1R

2 + 2kr1DA + 2kpDA

dDA

dt
= kf1R

2 − kr1DA − kpDA

(S13)

S1.6.2 FGFR3 Inhibitor

When inhibitor, C, is present in the system, three new complexes can appear on tumor cells. First,
inhibitor can bind to monomers, forming a receptor-inhibitor complex, RC . Second, inhibitor can bind
to dimers, forming a dimer-inhibitor complex, DC

A . Third, FGRF3 monomer-inhibitor complexes can
dimerize, forming a monomer-inhibitor dimer, DC . All of these reactions are reversible and DC can also
be recycled through internalization in which the attached inhibitor is lost. The new terms are in black in
Equation S14.

dR

dt
= −2kf1R

2 + 2kr1DA + 2kpDA − kf2RC + kr2R
C

dDA

dt
= kf1R

2 − kr1DA − kpDA − kf3DAC + kr3D
C
A

dC

dt
= −kf2RC + kr2R

C − kf3DAC + kr3D
C
A

dRC

dt
= kf2RC − kr2R

C − 2kf1

(
RC

)2
+ 2kr1D

C + 2kpD
C

dDC
A

dt
= kf3DAC − kr3D

C
A

dDC

dt
= kf1

(
RC

)2
− kr1D

C − kpD
C

(S14)

S1.6.3 Global Method Diffusion

Free inhibitor in the TME follows a diffusion PDE given by ut = αC∇C−λCC where D is the diffusion
coefficient and λC is the degradation rate. To update the concentration C using a global method, we
partition the TME into regions divided by their distance from the vasculature. Specifically, we select an
increasing sequence of distances 0 = d0 < d1 < · · · < dn and define Ri = {x ∈ Λ|d(x, B) ∈ [di−1, di)}
where B ⊂ Λ is the set of perivascular lattice sites. Within each region, we further subdivide into non-
mutant-occupied (N ), mutant-occupied (M ), and tumor-free (free) sites. We update the concentration
of inhibitor in the TME by using the average concentrations in each of these subdivisions, CS,i where
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S ∈ {N,M, free}. Letting pS1S2
ij be the proportion of region i neighbors occupied by S1 that are located

in region j and occupied by S2, we use Equation S15 to update the CS1,i. In brief, this takes a weighted
average of all concentration differences to update CS,i so that

∑
j

∑
S2

pS1S2
ij = 1. See Bergman and

Jackson (2023) for a derivation of this equation.

C ′
S1,i

= 2 ·#dimensions · αC

h2

 n∑
j=1

∑
S2

pS1S2
ij (CS2,j − CS1,i)

− λCCS1,i (S15)

S1.6.4 Distribution and Elimination

Finally, we describe the pharamacokinetic model we use for inhibitor entering circulation, distributing
into the periphery, and being eliminated. We use a two-compartment model for this, using concentration of
drug in systemic circulation, Csys, and the TME as our two compartments.

At the time of a dose of the drug, the circulation concentration is instantaneously increased a discrete
amount to model an intravenous injection. Once in circulation, the drug experiences a monophasic
elimination with elimination rate kCe Grünewald et al. (2019). Inhibitor from circulation diffuses across
capillary walls with a rate kC12 and proportional to the concentration gradient. By definition of the regions,
this exchange happens exclusively with R1. The pharmacokinetic (PK) model is summarized in Equation
S16.

dCS,1
dt

= kC12
(
Csys − CS,1

)
dCsys

dt
= −kCe Csys

(S16)

S1.6.5 Full FGFR3 Model

We put each of the above differential equations into a single system that we solve fully coupled. For
the concentrations in Equation S14, a subscript i is added to indicate the average concentration on tumor
cells in that region. In addition, the monomer forms of FGFR3, both R and RC , exist on both mutant
and non-mutant tumor cells and these will be distinguished by an additional subscript of M for mutants
and N for non-mutants. Kronecker deltas are used below, defined as δyx = 1 exactly when x = y and is 0
otherwise.
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dRN,i

dt
=− kf2RN,iCN,i + kr2R

C
N,i

dRM,i

dt
=− 2kf1R

2
M,i + 2kr1DA,i + 2kpDA,i − kf2RM,iCM,i + kr2R

C
M,i

dDA,i

dt
=kf1R

2
M,i − kr1DA,i − kpDA,i − kf3DA,iCM,i + kr3D

C
A,i

dCS,i
dt

=
(
1− δfree

S

)(
−kf2RS,iCS,i + kr2R

C
S,i

)
+ δMS

(
−kf3DA,iCS,i + kr3D

C
A,i

)
+ αC

6

h2

 n∑
j=1

pij
(
CS,j − CS,i

)− λCCS,i

+ δ1i k
F
12

(
Csys − CS,i

)
, S ∈ {N,M, free}

dRC
N,i

dt
=kf2RN,iCN,i − kr2R

C
N,i

dRC
M,i

dt
=kf2RM,iCM,i − kr2R

C
M,i − 2kf1

(
RC
M,i

)2
+ 2kr1D

C
i + 2kpD

C
i

dDC
A,i

dt
=kf3DA,iCM,i − kr3D

C
A,i

dDC
i

dt
=kf1

(
RC
M,i

)2
− kr1D

C
i − kpD

C
i

dCsys

dt
=− kCe Csys

(S17)

S1.7 FGFR3 Effects

FGFR3 signaling results in alterations to tumor cell fate decisions. Changes for a tumor cell are due to
that tumor cell’s FGFR3 signaling. We also consider the possibility that FGFR3 signaling has downstream
effects on the immune system. Specifically, it can decrease immune recruitment to the TME and it can also
decrease immune efficacy. This leads to four hypotheses for the effect of FGFR3 signaling on the immune
system.

S1.7.1 Tumor Cell Fate Decisions

The effects on tumor cell fate decisions are covered in Section S1.4 and briefly recapped here. A tumor
cell, x, will have some fractional occupancy of active FGFR3 dimers (see Section S1.4.1), ϕD(x). This
increases the proliferation rate of x by αϕD

ϕD(x). It decreases the apoptosis rate of x by multiplying by(
1 + ϕD(x)/γϕD

)−1 ∈ (0, 1].

S1.7.2 Immune Effects

S1.7.2.1 Recruitment Effect

The first possible immune effect we consider is a decrease to the recruitment rate of immune cells to
the TME. When we assume this effect occurs, we allow for FGFR3 signaling to decrease the expected
immune recruitment by a factor dependent on the average ϕD value, ϕ̄D ≡

∑
x∈T ϕD(x)/NT . We then set
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the current per-tumor-cell recruitment rate as a weighted average of the base recruitment rate, µ, and the
FGFR3-mediated rate, µmin with weights given by the parameter γµ and ϕ̄D, respectively. See Equation
S18.

rrecruitment =
γµµ+ ϕ̄Dµmin

γµ + ϕ̄D
NT (S18)

As stated above (Section S1.2.1), we use rrecruitment∆t as a Poisson parameter and take a random draw
from that distribution to determine the new number of immune cells at this iteration.

S1.7.2.2 Efficacy Effect

The second possible effect is on immune cell efficacy. Specifically, if an immune cell attempts to conjugate
with a mutant tumor cell (see Section S1.5.4), then there is a probability that the conjugation fails and the
immune cell ends up resting for that immune update. The probability of evading is given by Equation S19

pevasion(x, y) =
ϕD(x)

γβ + ϕD(x)
(S19)

S1.8 PD-1/PD-L1/aPD-1 Dynamics

To determine the amount of PD-1 signaling on each immune cell, we make use of another implementation
of a global method similar to that used for FGFR3 inhibitor and a quasi-equilibrium assumption. We first
solve reaction-diffusion equations for PD-1 inhibitor reacting with PD-1 on immune cells. Then, we solve
for the quasi-equilibrium of the PD-1-PD-L1 reactions.

S1.8.1 PD-1-aPD-1 Reaction

Let P represent the local concentration of immune-cell-bound PD-1, A the concentration of PD-1
inhibitor, and let PA represent its complex with PD-1. The kinetic equations describing this reaction are
given in Equation S20

dP

dt
=

dA

dt
= −dPA

dt
= −kf4PA+ kr4P

A (S20)

We solve this across the TME in a spatially resolved way using a global method analogous to the FGFR3
dynamics. We choose to use the same regions as those defined for FGFR3 dynamics, Ri. In this case,
regions are not further subdivided based on the cell types present. The full dynamics are given in Equation
S21. The concentration in systemic circulation is denoted by Asys.
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dPi

dt
= −kf4PiAi + kr4P

A
i

dAi

dt
= −kf4PiAi + kr4P

A
i + αA

6

h2

 n∑
j=1

pij (Aj − Ai)

+ δ1i k
A
12Asys

dPA
i

dt
= kf4PiAi − kr4P

A
i

dAsys

dt
= −kAe Asys

(S21)

where δ1i is the Kronecker delta which is 1 when i = 1 and 0, otherwise. Here, this simply reflects that
Region 1 is defined as the perivascular region. This equation is solved at every immune cell iteration prior
to selecting immune cell updates.

S1.8.2 PD-1/PD-L1 Reaction

After updating the average free PD-1 across all regions using Equation S21, this quantity is used as an
initial condition for solving the PD-1-PD-L1 reaction. Setting PD-L1 as L and PD-1-PD-L1 complex as Q,
the law of mass action dictates the kinetics of this reaction whenever an immune cell is conjugated with a
tumor cell (Equation S22).

dP

dt
=

dL

dt
= −dQ

dt
= −kf5PL+ kr5Q (S22)

We note that this can be reduced to a single equation whose equilibrium value is the smaller root of the
quadratic equation given in Equation S23.

dQ

dt
= Q2 −

(
kr5
kf5

+ P̄ + L̄

)
Q+ P̄ L̄ = 0

⇒ Q =
1

2

(
kr5
kf5

+ P̄ + L̄

)
−

√(
kr5
kf5

+ P̄ + L̄

)2

− 4P̄ L̄

 (S23)

where P̄ and L̄ are the total concentrations of all receptors and ligands, respectively, not currently bound
by antibody. For an immune cell, y, in region i currently conjugated to a tumor cell, this region-specific
quantity is used to update the current event rates for y as described in Section S1.5.

S1.9 Immune Stimulatory Factor

To model the immune-promoting role of the tumor, we include an immune stimulatory factor (ISF)
concentration throughout the TME. This factor has two effects on immune cells: increasing their
proliferation and directing their movement as described in Sections S1.5.1 and S1.5.3. That is, it performs
similar roles as cytokines such as IL-2 and chemokines such as CXCL9.
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All tumor cells contribute to the ISF in the TME. We assume these contributions are local, that is they are
maximized near the tumor cell and decay to 0 far from the tumor cell. We also assume that high antigen
(HA) tumor cells contribute more to the local ISF concentration than their low antigen (LA) counterparts.
To model this, we use a Gaussian function centered at the tumor cell with covariance given by the identity
matrix where the units are one cell length. These functions are then scaled based on the antigenicity of
the tumor cell: by aL for low antigen tumor cells and by aH for high antigen tumor cells. Thus, letting
F represent the ISF concentration at a given point p in the TME and letting a(x) ∈ {aL, aH} be the
antigenicity of tumor cell x located at L(x), the ISF concentration in the TME is given by Equation S24.

F(p) =

∑
x∈T

a(x)
exp

(
−1

2∥p− L(x)∥22
)

(2π)3/2
(S24)

By abuse of notation, we use F(y) to represent the ISF concentration located at an immune cell, y. To
simplify computations, we restrict the reach of each tumor cell’s contributions to the total ISF concentration
to those lattice points within areach.

S2 SUPPLEMENTARY TABLES AND FIGURES

S2.1 Figures

Figure S1. Demonstrations of the convex hull calculation. The 3D tumor spheroid is first sectioned along
the plane z = 0. In this plane, a convex hull is drawn around the tumor cells (dashed black line). The
immune cells within this region are counted (dark blue dots). The density of the immune cells in this hull is
calculated as their number per area of the convex hull.
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Figure S2. Comparison of mouse model and ABM tumor growth curves. All volumes are normalized
to volume at Day 0. See (Okuneye et al., 2021) for experimental setup. Mean (solid line) ±1 standard
deviation (shaded area) shown. A. Normalized tumor size of the mouse model. B-D. Normalized tumor
size in ABM of LA (B), Mixed antigenicity (C), and HA (D) tumors.
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Figure S3. Dosing schedule corresponding to Figure 5. FGFR3 targeted therapy is administered M-F.
Anti-PD-1 antibody is administered on MTh.

Figure S4. Pharmacokinetics of therapeutic agents in time. A. Concentration of anti-FGFR3 SMI in central
compartment. B. Concentration of anti-PD-1 antibody in central compartment. C. Concentration of anti-
FGFR3 SMI within the TME by region used in the global method. D. Concentration of anti-PD-1 antibody
within the TME by region used in the global method. In CD, increasing region number corresponds with
increasing distance from vasculature. Region 1 is perivascular. Region 26 is furthest from vasculature.
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Figure S5. Pharmacokinetics of therapeutic agents in space. Concentrations shown for anti-FGFR3 SMI
monotherapy (left) and anti-PD-1 antibody monotherapy (right) following the schedules in Figure S3.
Concentrations in middle z-slice of the TME are shown. Times are shown on the left both as simulation
time (6 d, 6.25 d, . . . ) and Day of Week/Time (Mo 00:00, Mo 06:00, . . . ) with dose administered at 00:00.
Normalized concentrations are shown on each axis with the maximum concentration shown over the axes.
Colorbars are constant within each column, except first row (AB). The tumor from this slice (not shown) is
centered on these axes, i.e., at (x, y) = (0.5mm, 0.5mm).
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Figure S6. Decision diagram explaining how the optimal therapy is identified. Begin at the top, following
the arrows corresponding to the answer to each question. Once at a terminal box, color according to the
color of that box. Boxes that are not observed in our examples are left blank.

Figure S7. Minimal therapy to reach a threshold outcome. Top row: to reach 30% reduction on Day 25.
Bottom row: to reach 90% reduction on Day 25. Left column: beginning with HA tumor cells with 50-50
split in FGFR3 status. Right column: beginning with only HA mutant tumor cells.
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S2.2 Tables

Name Description Value(s) Source/Notes
Tumor Cell Parameters

αT
Base post-G0

proliferation rate
2 d−1

de Pillis et al. (2005);
Mehrara et al. (2007);
Talkington and Durrett

(2015)

αϕD

FGFR3-induced
increase in post-G0

proliferation
10−2 − 102d−1 Varied

δT Apoptosis rate 0.05 d−1 Chosen as 2.5% of αT

γϕD

EC50 for FGFR3
downregulation of

apoptosis
1/600− 100/6

Grünewald et al. (2019),
Varied

Immune Cell Parameters

µ
Tumor-induced

recruitment to TME
0.025 CTL/Tumor d−1 Estimated based on

immune infiltrate

αI
Base post-G0

proliferation rate
0.5 d−1

Estimated as slower than
tumor in the absence of

ISF

δI Apoptosis rate 0.2 d−1 Chosen for mean 5 day
lifespan

β
Immune cell

conjugation rate
1.2 h−1 Liadi et al. (2015)

m Movement rate 2 µmmin−1 Estimated

nmove

Number of consecutive
movement steps

attempted when an
immune cell moves

4
Chosen to allow for 30
minutes of persistent

movement

da AICD rate 1 h−1 Liadi et al. (2015)

tseek,0

Time immune cells
have to conjugate upon

entering the TME
before AICD

∞
Allow immune cells to

reach tumor after
entering TME

tseek,1

Time immune cells
have to conjugate after

completing a
conjugation event

before AICD

2 h Liadi et al. (2015)

Immune Stimulatory Factor Parameters

aL
ISF expression by LA

tumor cells
1 Normalized

aH
ISF expression by HA

tumor cells
2

Assumed twice that of
LA cells
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γI

EC50 for ISF
stimulation of CTL

proliferation
1

Chosen as value of ISF
one space away from HA

tumor cell

nI

Hill coefficient for ISF
stimulation of CTL

proliferation
2

Chosen for shape of
activation

fI

Factor determining
maximal possible

increase to immune
proliferation due to ISF

2.5 Estimated

γm

EC50 for magnitude of
ISF gradient affecting

immune cell movement
along gradient

2
Chosen as magnitude of
ISF gradient two spaces

from HA tumor cell

nm

Hill coefficient for
magnitude of ISF
gradient affecting

immune cell movement
along gradient

2
Chosen for shape of

activation

areach

Maximum reach of ISF
from one tumor cell in

any one direction
5

Ignore contributions
below 2.5% maximal

value
Cell-kill Parameters

δslow Slow-killing rate 12 d−1 Hassin et al. (2011)
δfast Fast-killing rate 48 d−1 Hassin et al. (2011)

FGFR3 Parameters

RT

Average FGFR3
concentration on tumor

cell with FGFR3
mutation

8.31 nM Filion and Popel (2004)

pRT

Proportion RT on
non-mutant tumor cells
relative to mutant tumor

cells

0.5 Assumption

kf1

Forward rate of
dimerization of FGFR3
on mutant tumor cells

460.8 nM−1 d−1 Zhao et al. (2010)

kr1

Reverse rate of
dimerization of FGFR3
on mutant tumor cells

400 d−1 Zhao et al. (2010)

kp

FGFR3 dimer
internalization and

recycling rate
112.32 d−1 Zhao et al. (2010); Filion

and Popel (2004)

FGFR3 Inhibitor Parameters
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kf2
Association rate of

inhibitor and FGFR3
100 nM−1 d−1 Tassa et al. (2010);

Grünewald et al. (2019)

kr2

Dissociation rate of
inhibitor-FGFR3

complex
780 d−1 Tassa et al. (2010);

Grünewald et al. (2019)

kf3

Association rate of
inhibitor and FGFR3

dimer
100 nM−1 d−1 Tassa et al. (2010);

Grünewald et al. (2019)

kr3

Dissociation rate of
inhibitor-dimer

complex
780 d−1 Tassa et al. (2010);

Grünewald et al. (2019)

C0
Initial concentration of

drug in circulation
1000 nM Grünewald et al. (2019)

kCe
Elimination rate of

inhibitor in circulation
log(2)/.125 d−1 Grünewald et al. (2019)

kC12
Distribution rate into

periphery
10 d−1

Jain and Stylianopoulos
(2010); Thurber et al.

(2008)

αC

Diffusion rate of
FGFR3 inhibitor in

TME
1× 106 µm2 d−1 Jain and Stylianopoulos

(2010); Evans (2019)

λC

Degradation rate of
FGFR3 inhibitor in

TME
14.4 d−1 Shipley and Chapman

(2010)

FGFR3 Signaling Effects Parameters

µmin

Minimum recruitment
of CTLs due to FGFR3

signaling
2.5× 10−3 CTL/Tumor d−1 Assumption

γµ

EC50 for average
FGFR3 signaling effect
on immune recruitment

1/6 Grünewald et al. (2019)

PD-1/PD-L1 Parameters

ρP
Concentration of PD-1

on CTLs
0.6426 nM Cheng et al. (2013)

kf5
Association rate of

PD-1-PD-L1 reaction
100 nM−1 d−1 Lee et al. (2019)

kr5
Dissociation rate of

PD-1-PD-L1 reaction
8.25× 105 d−1 Lee et al. (2019)

de
Max PD-1-induced

exhaustion rate
3 d−1

Chosen to match time
taken to clear 8 tumor

cells

γe

EC50 of PD-1-PD-L1
complex effects on

immune cells
7.53× 10−4 nM Computed
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ne

Hill coefficient of
PD-1-PD-L1 complex
effect on immune cell

exhaustion

2 Chosen

PD-1 Inhibitor Parameters

A0
Initial concentration of

drug in circulation
100 nM Computed

kAe
Elimination rate of

inhibitor in circulation
log(2)/3 d−1

Empirically chosen to
match known half-life of

drug in circulation in
murine models

kA12
Distribution rate into

periphery
0.51 d−1 Bajaj et al. (2017)

αA
Diffusion rate of aPD-1

in TME
6 µm2min−1 Thurber et al. (2008)

kf4
Association rate of

PD-1-aPD-1 reaction
1× 103 nM−1 d−1 Lee et al. (2019)

kr4
Dissociation rate of

PD-1-aPD-1 reaction
1.45× 103 d−1 Lee et al. (2019)

Miscellaneous Parameters
∆t Tumor update duration 15min Chosen

∆timm
Immune update

duration
7.5min Chosen

LG0

Length of time in G0

during which cells
cannot proliferate

9 h Macklin et al. (2012)

h
Distance between
adjacent voxels

20 µm One cell width

O
prolif
T

Maximum number of
occupied neighbors that
still allows tumor cell

proliferation (out of 26)

20 Assumption

O
prolif
I

Maximum number of
occupied neighbors that
still allows immune cell
proliferation (out of 26)

22 Assumption

Omove
max

Maximum number of
occupied neighbors that
still allows movement

(out of 26)

25 Assumption

Table S1: All model parameters.
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Name Description Notes

T The set of tumor cells present in
the TME

NT = |T |

x A specific tumor cell
Four phenotypes: LA, HA, LA

Mut, HA Mut

I The set of immune cells present
in the TME

NI = |I|

y
A specific immune cell in the

TME
Can exist in exhausted, active,

and conjugated states
Ω ⊂ R3 The TME A rectangular prism
Λ ⊂ Ω The grid of voxels in the TME A regular 3D grid
B ⊂ Λ The perivascular voxels

L : T ⊔ I → Λ Location of cells
F : Λ → R ISF concentration F(y) ≡ F(L(y))
G : Λ → R3 ISF gradient G ≡ ∇F
Ri ⊂ Λ Region i in TME By default, R1 = B

S ∈ {N,M, free} The subdivisions of each region,
Ri

N=non-mutant-occupied,
M=mutant-occupied,

free=tumor-free

R
Concentration of unbound

FGFR3 monomers on tumor
cells

RS,i is the average concentration
in subdivision S ∈ {N,M} of

region Ri

DA
Concentration of active FGFR3
dimers on mutant tumor cells

DA,i is the average
concentration on mutant tumor

cells in region Ri

C
Concentration of unbound

FGFR3 inhibitor

CS,i is the average concentration
in subdivision S of region Ri;
Csys is the concentration in

circulation

RC Concentration of
FGFR3-inhibitor complexes

RC
S,i is the average concentration

in subdivision S ∈ {N,M} of
region Ri

DC
A

Concentration of active FGFR3
dimers bound with inhibitor on

mutant tumor cells

DC
A,i is the average

concentration on mutant tumor
cells in region Ri

DC
Concentration of

FGFR3-inhibitor dimers on
mutant tumor cells

DC
i is the average concentration

on mutant tumor cells in region
Ri

P
Concentration of unbound PD-1

on immune cells
Pi is the average concentration

in region Ri

A
Concentration of unbound PD-1

inhibitor

Ai is the average concentration
in region Ri; Asys is the

concentration in circulation
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PA Concentration of PD-1-inhibitor
complexes

PA
i is the average concentration

in region Ri

L
Concentration of unbound

PD-L1 on tumor cells
Li is the average concentration

in region Ri

Q : I → R PD-1 signaling
Table S2: State variables, functions, and other nomenclature
used in defining the model.
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