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Figure S1. SRIM simulation of 3 keV >N implantation in (100) diamond. The threshold
energy (T,) for displacement of carbon atoms from lattice position was taken to be 37.5
eV.! The average depth of lattice vacancies was ~ 3.5 nm (maximum depth of NV ~ 12
nm). Whereas, the average penetration depth was ~ 5.5 nm (maximum depth of implanted
Nitrogen ~ 15 nm). Considering that nitrogen ions remain immobile during annealing
procedure (post implantation NV fabrication step), the NV concentration profile should

closely follow nitrogen stopping range curve (Blue).
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Figure S2. ODMR spectra before and after laser exposure for (a) NVD under vacuum (b)

AC-NVD under vacuum (c) NVD under air and (d) AC-NVD under air respectively.
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Figure S3. Normalized PL spectra under different conditions before and after high power

laser exposure. (a) and (b) show normalized spectra for BD sample under air and vacuum

respectively. (c) and (d) show the PL spectra of AC-ED sample under air and vacuum

respectively.
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Figure S4. Normalized PL spectra of NVD and AC-NVD samples before high power laser

exposure under (a) air and (b) vacuum respectively.
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The sample preparation for the XPS has been summarized in fig. S5. Fig. S6(a) shows the Al
2p core level spectrum for AC-ED. Fig. S6(b) shows the calculated C/O atomic ratios for ED
samples laser exposed under different atmospheric environments. For the quantification of
different carbon species, the C Ls core level spectra were fitted using Gaussian Lorentzian
sum functions. A representative fitted C ls core level spectrum for ED_Air Exposed (Laser
exposed under air environment) is shown in Fig. S6(C). For ED sample at laser unexposed
and exposed positions under air environment (ED_Air), the binding energy positions for sp3
carbon were found to be 285.3 eV and 285.0 eV, respectively. For ED sample at laser
unexposed and exposed positions under vacuum environment (ED-Vac.), the binding energy
positions for sp? carbon were found to be 285.2 eV and 284.7 eV, respectively. The sp?
carbon for each sample is shifted ~ -1.0 eV w.r.t. sp carbon positions. The calculated sp’/sp’

ratio for different samples has been shown in fig. S6(d).
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Figure SS. Sample preparation for XPS measurements. (a) shows the Raman mapping
pattern over diamond. (b) and (c) show the laser exposed region of different samples under

air and vacuum respectively.
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Figure S6. (a) Al 2p core level spectrum for AC-ED sample. (b) C/O atomic ratio for EDs
after high power laser exposure under different environments. (¢) Representative C 1s fitted
core level spectrum for sample ED after laser exposure under air environment. (d) The sp*/sp?
carbon ratio for different ED samples estimated from peak fit analysis of the corresponding C

Ls core level spectra.
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Figure S7. (a) O 1s core level spectra for EDs after laser exposure under different

environments. (b) Peak fit of the O ls core spectrum for ED sample after laser exposure

under vacuum environment. (¢) and (d) show C-O (%) and C=0 (%) respectively for laser

exposed EDs under different environments. Here, C-O represents ether (C-O-C) or alcohol

(C-O-H) and C=0 represents ketone surface functionality.>?
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Figure S8. a) Experimental scheme for Raman spectroscopy. (b) Raman spectra for ED and

AC-ED samples at low excitation laser power and corresponding zoomed D and G band

regions. There is no observable feature related with defects (D band) and graphitic carbon (G

band) at low laser excitation power. (d) and (e) show the comparison of characteristic

diamond Raman features (spectra were acquired at low laser power) before and after high

laser power exposure under air environments for ED and AC-ED samples respectively. (f)

Normalized Raman spectra for ED and AC-ED samples under high power laser illumination

1n air.
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