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Fig. S1. Generation of Pgbd5-/- mice and the survival curves for the medulloblastoma model. 
(A) Generation of Pgbd5-/- mice. The top shows the Pgbd5 wildtype (WT) gene locus including
exon (En) 3-5 at chromosome 8. The targeted vector (second from top) consists of LacZ and neoR
cassettes flanked by FRT sequences (black inverted square flag) and exon 4 flanked by LoxP
sequences (black inverted triangle flag). Red and blue regions are 5’ and 3’ homology arms,
respectively. The third line shows a successfully targeted gene locus which is confirmed by
genotyping using SC2 and SC4 primers. These successfully targeted ES cell clones were
microinjected into Balb/c blastocysts and resulting chimeras were crossed with FLP deleter mice
to remove the LacZ and neoR cassettes. The bottom line shows the Pgbd5 floxed allele after
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removal of the LacZ/neoR cassettes. This individual was crossed with an EIIa-Cre mice to generate 
global Pgbd5-/- mice, as confirmed by genotyping with SC2 and SC5 primers. (B) Representative 
images of the ISH using a BaseScope probe set against exon 4 of Pgbd5 transcripts. Sagittal 
sections of Pgbd5+/+ (left) and Pgbd5-/- (right) cortices show Pgbd5+/+-specific signal in red. 
Nuclei were counter-stained with Hematoxylin (blue). (C) Three independent survival analyses in 
the Ptch1-mutant model conducted in 2018, 2019, and 2020-2021. Pgbd5-/- (red) mice exhibited 
significant protection from tumor development in all three cohorts (log-rank p = 3.0e-7, 1.0e-7, 
and 1.9e-4). The aggregated survival is shown in Fig. 1D. (D) Allele copy number analysis of nine 
Pgbd5fl/- tumor and one tail tissues by genomic qPCR. Green and blue indicates allele copy 
numbers of null and floxed alleles relative to those of jun, respectively. 10874 and 7982 tumors 
lost the floxed alleles while the other seven tumors retain the floxed alleles.  
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Fig. S2. The MASTR is the most stringent conditional approach to induce concurrent 
expression of SmoM2 and deletion of Pgbd5. (A) Schematic showing strategy of the MASTR 
approach. Upon Tamoxifen injection at P0, FlpoER removes a stop cassette to drive GFP-Cre 
(green) expression, which induces SmoM2 protein (yellow) expression and concurrent deletion of 
Pgbd5. Triangle and square flags indicate LoxP and FRT sequences, respectively. (B) Allele copy 
number analysis of five normal cortices (left) and their corresponding tumors (right) by genomic 
qPCR. C03, C07, C08, C09, and C18 are Pgbd5fl/fl; C12 is Pgbd5+/+. Black, blue, and red indicate 
wildtype, floxed, and null alleles, respectively. In the tumors (T), except for T09, the floxed alleles 
are retained. 
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Fig. S3. Residual Pgbd5 is observed in the MASTR tumor. (A&B) In situ hybridization (ISH) 
images of BaseScope Pgbd5 probe set for Pgbd5+/+ (positive control) (A) and Pgbd5-/- (negative 
control) (B) cerebella. Pgbd5 signal is detected by Fast Red in Pgbd5+/+ cerebellum whereas no 
signal is observed in Pgbd5-/-. Nuclei are counterstained with hematoxylin. High magnification 
images are shown in the black insets. (C) Representative Pgbd5 ISH image of a tumor from the 
MASTR-SmoM2; Pgbd5fl/fl mouse. (D) Cre FISH image of the adjoining section of (C). Red 
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fluorescence represents the Cre signal. Nuclei are counterstained with DAPI. (E&F) Higher 
magnification images of tumor areas (white rectangles) in (C) and (D), respectively. Residual 
Pgbd5 signal is observed in the tumor (E) which is marked by the homogeneous Cre signal (F). 
Scale bars: 20 µm. 
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Fig. S4. Comparable Atoh1-GFP+ cell numbers in the Pgbd5+/+ and Pgbd5-/- cerebella. Total 
Atoh1-GFP+ cell numbers in the Pgbd5+/+ (A) and Pgbd5-/- (B) cerebella between 3 and 8 weeks 
by FACS. Both show similar numbers of the total Atoh1-GFP+ cells (t-test p = 0.16). 
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Fig. S5. No significant correlation between age and numbers of structural variants. (A) 
Scatter plot showing the relationship between the age of tumors and numbers of somatic structural 
variants in the Ptch1-mutant model. Both Pgbd5+/+ (black) and Pgbd5-/- (red) tumors did not show 
significant correlation between age and numbers of structural variants. (B) Numbers of different 
types of structural variants in Ptch1- (left) and SmoM2-mutant (right) tumors. Both models show 
similar numbers of mutation types regardless of the presence of Pgbd5. 
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Fig. S6. Analyses of numbers of SNVs and mutational signatures. (A) Comparison of numbers 
of SNVs and small indels between Pgbd5+/+ (black: N = 9) and Pgbd5-/- (red: N = 4) Ptch1-mutant 
tumors. Both tumors have similar numbers of SNVs and small indels. Bars indicate means. (B) 
Comparison of numbers of SNVs and small indels between Ptch1- (N = 9) and SmoM2- (N = 10) 
mutant tumors. Both tumors show relatively low numbers of mutations. (C) Mutational signature 
analysis. Ratios of contribution of the major signatures found in SNVs. The left five are from the 
Ptch1-mutant tumors (2 Pgbd5-/- and 3 Pgbd5+/+) and the right ten are from the SmoM2-mutant 
tumors. SBS1; dark green, SBS5; light green, SBS18; purple, SBS8; orange. SBS5 is the most 
dominant signature, followed by SBS18 and SBS1. The only exception is SmoM2-mutant CS33-
RH exhibiting the SBS8 contribution instead of SBS18.  
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Fig. S7. Cancer census genes affected by somatic structural variants in a cohort of human 
SHH medulloblastomas. (A) Schematic to identify genes putatively affected by SVs. Genes were 
considered affected by structural variants if the gene was intersected by a structural variant 
breakpoint, if the gene was between a duplication, inversion, or deletion, or if the gene was within 
25kb of a translocation breakpoint. (B) Many recurrent medulloblastoma tumor suppressors and 
oncogenes are affected by SVs. In the cohort of SHH subtype medulloblastoma (Fig. 4A), 71 
tumors had structural variants. Genes known to be recurrently affected in human medulloblastomas 
are affected in >10% of cases, including CXCR4, MYCN, PPM1D, PTCH1, GLI2, and others.   
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Fig. S8. Genes recurrently affected by somatic structural variants in human 
medulloblastoma are also affected in Pgbd5+/+; Ptchfl/fl medulloblastomas and SmoM2-
mutant medulloblastoma. (A) Venn diagram depicting the overlap among cancer census genes 
between human medulloblastomas and each mouse tumor model, including those affected by 
structural variants and point mutations. The numbers boxed in black are mouse specific genes (B), 
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and the numbers boxed in blue represent overlaps between human and mouse tumors (C). (B) 
Genes affected in two or more mouse tumors that are not affected by structural variants in more 
than 10% of SHH medulloblastomas in this cohort. Affected genes are chosen with the same 
criteria as in Fig. S7A. (C) Set of genes affected in both human and mouse medulloblastomas, 
including structural variants and point mutations. 
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Fig. S9. Oncoprint depicting recurrently affected genomic regions (cytobands), stratified by 
structural variant type, in Ptch1-mutant tumors. The left nine and right four columns indicate 
tumors from Pgbd5+/+ and Pgbd5-/- mice, respectively. Red, blue, light blue, pink, and gray 
symbols indicate amplifications, deletions, translocations, inversions, and no alteration, 
respectively. 
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Fig. S10. Methods for breakpoints analyses. (A) Schematic describing the method used to 
extract 50mer flanking sequences from structural variant breakpoints in mouse medulloblastoma 
genomes. Following somatic mutation detection, 50mer sequences were extracted using bedtools 
in FASTA format compatible with MEME (see methods). (B) Depiction of paremters for MEME 
analysis. Discriminative MEME was used with default settings. Pgbd5-wildtype tumor 50mers 
were used as the primary sequences (2480  50mers) and Pgbd5-/- tumor 50mers were used as the 
control sequences (708 50mers). MEME was used with 11, 12, 13, 14, 15, and 16 maximum base 
pairs. Repetitive sequences were eliminated and specific sequences were chosen as putative Pgbd5 
specific motifs. 



Submitted Manuscript: Confidential 

Fig. S11. Comparisons of numbers of the specific and repetitive motifs between Pgbd5+/+ and 
Pgbd5-/- Ptch1-mutant tumors. (A) Comparison of the number of Pgbd5-specific motifs shown 
in the left diagram of (C) between Pgbd5+/+ (black) and Pgbd5-/- (red) Ptch1-mutant tumors (Left 
graph). Pgbd5+/+ tumors harbor more specific motifs (t-test p = 2.7e-3). Right graph shows 
comparison of numbers of the repetitive motifs shown in the right diagram of (C) between 
Pgbd5+/+ and Pgbd5-/- tumors. No significant difference in the number of repetitive motifs was 
observed. (B) Numbers of motifs in each tumor from the Ptch1-mutant model. Left nine and right 
four tumors are from Pgbd5+/+ and Pgbd5-/- mice, respectively. Blue indicates the total numbers 
of the three Pgbd5-specific motifs depicted in the left of (C) and orange indicates total numbers of 
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the repetitive motifs shown in the right diagram of (C). (D) Size of structural variants in the Ptch1-
mutant model. Error bars indicate standard deviations. 
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Fig. S12. Specific motifs identified in SmoM2-mutant tumors share similarity with previously 
identified PSS motifs. E-value indicates significance based on the number of motifs that are 
expected should the motifs be shuffled. Frequency is the instance number within the set of 
breakpoint 50mers. Some of these motifs were similar to previously identified PSS motifs, as 
measured using TomTom . 
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Fig. S13. Verification of similarities among breakpoint motifs. (A) Method description on how 
the similarity is verified. The shuffled target motifs were used as background. If the p-value of a 
target motif falls within the lowest 5% of all p-values, the similarity is verified. (B) Histograms of 
all the p-values (target motif plus its 10,000 shuffled motifs) for mouse medulloblastoma (mMB) 
motifs vs. previously identified PSS motifs. Red arrows point to the p-value of target motifs. The 
p-value and its ranking are shown under the histogram. (C) Comparison of human
medulloblastoma (hMB) motifs vs. mMB motifs. (D) Comparisons of hMB motifs vs. previously
identified PSS motifs.
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Fig. S14. FIMO analysis and its validation method. (A) An example of FIMO analysis. The q-
value is a modification of the p-value, corrected for the respective false discovery rate. Each row 
represents a sequence that matched to the queried motif. (B) Graphical representation of the output 
when 50mers from human SHH subtype structural variants were queried with different motifs, 
including previously identified PSS motifs (Rhabdoid and RPE) and motifs known not to be 
associated with Pgbd5 activity, including the RAG1/2 specific signal sequence and a scrambled 
motif. The line indicates the q-value above which all sequences with PSS sequences are correctly 
identified, with negligible number of negative control sequences. This threshold was chosen as the 
q-value for breakpoint sequence motif identification. (C) Receiver operating characteristic curve
analysis of values from (B), demonstrating the separation of PSS sequences from negative controls
with 100% sensitivity and 75% specificity using q-value cutoff of 0.3.
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Fig. S15. Specific sequence motifs enriched in human medulloblastomas at structural variant 
breakpoints. (A) Example output from MEME and method for eliminating repetitive motifs. 
Motifs were chosen based on whether they were sequence-specific (i.e., not repetitive) and whether 
they were enriched using discriminative MEME relative to a set of 50,000 50mers randomly 
sampled from the hg19 reference genome. (B) Specific motifs identified in human 
medulloblastomas. The “discovered” column describes the subtype of medulloblastoma where the 
motif was initially discovered based on the method in A. The E-values list strengths of apparent 
associations. (C) Example of motif comparison between a de novo discovered motif (hMB_4) and 
a previously identified Pgbd5-specific signal sequence motif (PSS_RPE). 
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Fig. S16. Counting gH2AX foci in the preneoplastic GCPs from SmoM2-mutant model at 
P22/23. (A) Representative images of the vermis from Atoh1-CreERT2; R26SmoM2 mice. 
Preneoplastic lesions are morphologically distinguishable by the outermost cell layer that does 
not exist in normal cerebellum at P22/23. The preneoplastic lesions contain dividing cells which 
are stained by EdU (white). Scale bar: 1mm. (B) Representative images of gH2AX (green) and 
EdU (magenta) double staining of preneoplastic lesions. DAPI was used to stain DNA. Top two 
and bottom two panels are from a Pgbd5+/+ and Pgbd5-/- mouse, respectively. Scale bar: 10 µm. 
(C) Graph showing gH2AX foci counts per nucleus for EdU-negative and positive nuclei from
Pgbd5+/+ (black dots, n=360 nuclei from n=4 mice) and Pgbd5-/- (red dots, n=270 nuclei from
n=3 mice) preneoplastic cells. EdU-negative Pgbd5+/+ vs. Pgbd5-/-; t-test p=0.02; EdU-positive
Pgbd5+/+ vs. Pgbd5-/-; t-test p=0.44. (D) Graph showing average gH2AX foci counts per animal.
Both Pgbd5+/+ (n=4) and Pgbd5-/- (n=3) animals show similar counts in gH2AX foci. EdU-
negative Pgbd5+/+ vs. Pgbd5-/-; t-test p=0.22; EdU-positive Pgbd5+/+ vs. Pgbd5-/-; t-test p=0.72.
Error bars represent standard deviations.
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Fig. S17. Identification of malignant cells through inferred copy number variants (CNV). 
CNVs were called within each singe cell multiome sample using inferCNV tool and their 
corresponding single nuclei RNA-seq data. Malignant cell identification is shown for a sample 
(MY-2015-7982) where all inferred cells were malignant (A-C). (A) Heatmap generated by 
inferCNV tool with denoising method applied. Chromosomal amplifications are inferred from red 
blocks of expression, while deletions are inferred from blue blocks. Top: baseline expression 
values across chromosomal regions for the normal reference cells. Bottom: expression of non-
reference cells. Left: Dendrogram for the non-reference cells cut into subtree clusters (k = 3). (B,C) 
UMAP plots of corresponding sample (N = 6,786). (B) Left: Cells are colored by cell class 
annotations. Right: Cells are colored by their corresponding subtree cluster from inferCNV 
heatmap. (C) Cells are colored by malignant calls based on the presence of CNV alterations 
observed. Malignant cell identification as in (A-C) in a different sample (MY-2015-8053) where 
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inferred cells clustered based on noticeable CNV alterations and by lack of alterations, 
corresponding to malignant and normal cells, respectively (D-F). 
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Fig. S18. Pgbd5+/+ and Pgbd5-/- medulloblastomas belong to the granule cell lineage. (A-C) 
UMAP plots of single nuclei RNA-seq of Pgbd5+/+ (N = 17,812) and Pgbd5-/- (N = 15,745) 
medulloblastomas samples. (A) Cells are colored by cell class annotations. (B) Cells pertaining to 
each sample are highlighted. (C) Malignant cells belonging to Pgbd5+/+ (bottom) and Pgbd5-/-

(top) genotype are highlighted. (D) Bar plots depicting the cell class consensus predictions for the 
malignant cells in each sample. 



Submitted Manuscript: Confidential 

Table S1. 
Combinations of similar motifs by motif comparison. 
Motif ID No. of sites 

(%frequency) 
Similar PSS p-value p-value ranking among

10001 shuffled motifs
(%rank)

Mouse motifs 
 

Ptch1_ mMB1 69 (2.8) PSS_4 7.60E-03 160 (1.6) 
Ptch1_mMB2 42 (1.7) PSS_Rhab 4.54E-02 364 (3.6) 
Ptch1_mMB3 38 (1.5) PSS_7 2.42E-02 434 (4.3) 
Smo_mMB3 102 (2.0) PSS_7 1.32E-02 30 (0.3) 
Smo_mMB5 93 (1.8) PSS_2 5.20E-03 245 (2.4) 
Smo_mMB5 93 (1.8) PSS_5 5.20E-03 439 (4.4) 
Smo_mMB6 57 (1.3) PSS_7 2.36E-02 128 (1.3) 
Smo_mMB6 57 (1.3) PSS_1 3.39E-02 478 (4.8) 

Human motifs 
hMB1 1957 (6.3) Smo_mMB4 5.30E-06 1 (0.01) 
hMB4 785 (2.5) Smo_mMB5 1.04E-02 3 (0.03) 

Human motifs 
hMB4 785 (2.5) PSS_Rhab 3.32E-02 347 (3.5) 
hMB4 785 (2.5) PSS_RPE 6.03E-04 14 (0.14) 
hMB1 1957 (6.3) PSS_9 4.51E-02 386 (3.9) 
hMB3 1274 (4.1) PSS_HPRT 2.52E-02 118 (1.2) 
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Table S2. 
Affected putative driver genes associated with Pgbd5-specific motifs. 

Gene References Sample SV 
type 

SV location Motif 

Smo Northcott et al (78), 
many others 

AK192 TRA chr6: 29749194-
chr13:74529530 

PSS_Rhab, 
PSS_RPE 

AK195 INV chr6: 3136615-
52335113 

Ptch1_mMB2 

Nrg1 Gilbertson et al 
(79), Aldaregia et al 
(80), Gu et al (81) 

AK192 DEL chr8: 27353926-
37114336 

Ptch1_mMB2 

AK196 INV chr8: 28362263-
37097181 

PSS_Rhab, 
PSS_RPE 

AK164 DEL chr8: 23477067-
123425802 

Ptch1_mMB2, 
PSS_Rhab, 
PSS_RPE 

Wrn Fukushima et al 
(82), Kloosterman 

et al (83) 

AK192 DEL chr8: 27353926-
37114336 

Ptch1_mMB2 

AK196 INV chr8: 28362263-
37097181 

PSS_Rhab, 
PSS_RPE 

AK164 DEL chr8: 23477067-
123425802 

Ptch1_mMB2, 
PSS_Rhab, 
PSS_RPE 

Muc1 
Ntrk1 Bcl9 

Fbxw7 
Tdpoz1-9 

Arnt 

Thomaz et al (84) 
for Ntrk1 

5758 DUP chr3: 61656127-
98398034 

Ptch1_mMB2 

Lrp1b Northcott et al (85) AK201 TRA chr2: 42665203-
chr9:83248869 

Ptch1_mMB2 

Gfi1 
Ptpn13 

Aff1 

Northcott et al (86) AK164 DUP chr5: 43061691-
137976554 

Ptch1_mMB1 
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