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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The manuscript by Liu et al. addressed possible evolutionary trajectories and transition fates of cells in 

HNSCC at different clinical stages, including tumor initiation, progression, recurrence and metastasis. 

Through integrated analyses of scRNA-seq data, authors provide a comprehensive landscape of the 

TME in stepwise HNSCC progression at single-cell resolution and report the critical subpopulation of 

malignant cells and its role in tumor progression. The manuscript is well-written, the study design is 

original with innovative potential and presented data are interesting and of high clinical relevance for 

the field of interest. However, though some presented data are supported by analysis of publicly 

accessible bulk RNA-seq datasets and immunostaining analysis, several final conclusions are not 

supported by experimental evidence and remain speculative as outlined in more detail below. 

 

1. Worth noting that all patients (n=13) had tumors in the oral cavity and other anatomical subsites 

for HNSCC were not represented in this study. Obviously, samples from recurrent tumors were not 

from treatment-naïve patients as stated at page 4, which needs to be corrected and information on 

therapy should be added to Supplemental Table S1. In addition, authors should also include 

information on epidemiological risk factors (e.g. tobacco, alcohol, viruses) in Supplemental Table S1. 

2. To demonstrate clinical relevance of their findings by scRNA-seq profiling, authors analyzed 

molecular and clinical data from TCGA-HNSC and explored differences in overall survival by KM plots 

(Fig. 2D, Fig. 3D, Fig. 4D, Supplemental Fig. 2F & J). However, statistically significant differences are 

modest and should be confirmed by multivariate Cox regression hazard models adjusted for all 

relevant prognostic risk factors. Did the authors observe differences for subgroups related to 

anatomical subsites? Finally, the number of cases at risk for most KM plots is n=500 except for Fig. 4D 

(n=501) and Supplemental Fig. 2J (n=546) – why? 

3. MYBL2 and TFDP1 are activated in cancer cells of cluster 1 and top ranked among TF regulons (Fig. 

2H-I). Furthermore, TFDP1 is associated with worth OS in TCGA-HNSC (Fig. 2J), but no data on clinical 

relevance is given for MYBL2. Authors should consider a survival analysis for subgroups of tumors 

from TCGA-HNSC in which both transcription factors are co-expressed, absent or only one is highly 

expressed. The manuscript would benefit from experimental evidence substantiating the conclusion 

that TFDP1 and MYBL2 regulation promote cancer development and classify an aggressive subgroup of 

malignant epithelial cells in HNSCC progression. As examples: Are cancer cells with co-expression of 

both transcription factors as assessed by co-IF staining on tumor sections or spatial transcriptomics 

enriched at specific regions such as the invasive front? Does gain of function of one or both 

transcription factors promote malignant transformation of normal mucosal cells in 2D and 3D cultures 

or their loss of function impair tumor-relevant traits in cancer cell lines? 

4. Data presented in Fig. 3 suggest that POSTN+ fibroblasts shape an aggressive phenotype of HNSCC 

through ECM remodeling and immune regulation. However, does the analysis of TCGA-HNSC confirm 

differences in the immunophenotype, quantity or quality of immune cell subsets between HNSCC (in 

particular OSCC) with high versus low POSTN transcript levels (Fig. 3D)? Any association between 

POSTN transcript values and abundance of cluster 1 cancer cells for TCGA-HNSC? 

5. In a cohort of 68 HNSCC samples, authors confirmed the prevalence of POSTN+ fibroblasts and 

SPP1+ macrophages in the tumor stroma and representative images as well as quantitative data are 

presented in Fig. 3K. Are these tumor sections derived from the n=13 patients, from which samples 

were used for scRNA-seq or from an independent cohort. If latter, please provide clinical information in 

a Supplemental Table and include relevant information in the section Materials and Methods. By 

multiplex IF staining with tissue sections of this cohort authors could investigate the potential 

association between the prevalence of POSTN+ fibroblasts and abundance of distinct immune cell 

subsets in the TME. 

6. Data presented in Fig. 4 indicate that the mutual interaction between POSTN+ fibroblasts and 

SPP1+ macrophages promotes desmoplastic structure formation in the TME of more advanced HNSCC. 

Though Fig. 4B shows representative images of a co-IF staining for POSTN and SPP1, experimental 

evidence to substantiate the final conclusion that this combination promotes formation of immune-



excluded desmoplastic structures and exclusion of T-cell infiltration is missing. Authors should consider 

a multiplex co-IF staining including antibodies for relevant T cell subsets and desmoplastic structure or 

alternatively conduct a histopathological staining to visualize desmoplastic structure on serial tissue 

sections. 

7. In the discussion at page 21, authors state that the interaction between POSTN+ fibroblasts and 

SPP1+ macrophages contributes to ECM remodeling and coordinates to form a desmoplastic 

microenvironment by enhancing tumor cell ECM-receptor interactions, cell-substrate junction 

organization and the PI3K−Akt signaling pathway. Authors should present data on differences in 

phosphorylation of AKT and downstream targets in cancer cells on tumor sections with varying 

amounts of POSTN+ fibroblasts and SPP1+ macrophages or even better their spatial distribution 

within larger tumor areas. Authors claim that their study highlights the potential value of identifying 

and establishing therapeutic strategies targeting POSTN+ fibroblasts, SPP1+ macrophages, or the 

molecules involved in their crosstalk to inhibit HNSCC progression. Therapeutic strategies targeting 

HNSCC progression are rather unlikely as most patients are diagnosed at advanced stages and 

fundamental goal of the therapy of primary tumors is a treatment with curative intend. 

Pharmacological prevention of progression might be relevant for premalignant lesions in the oral 

cavity, but this was not the focus of this study. 

8. Differences in the infiltrative frequency of CD4+ Tregs between the LN-out and LN-in groups are 

modest (Supplementary Fig. 5A-B) and should be confirmed by quantitative assessment (IF staining 

or FACS) in samples from a larger HNSCC cohort. 

9. Are differences in expression of representative ligand-receptor pairs (Supplemental Fig. S5 F, violin 

plots) between CD8 Tex cells and tumor cells among LN-in versus LN-out samples statistically 

significant – please provide p values? Do LN-out samples show a higher relative frequency of cancer 

cells with phospho-ERK1/2 and phospho-STAT1/3 staining (by either IF or IHC staining) as compared 

to LN-in samples and is the staining intensity positively associated with the abundance of CXCL13+ 

Tex cells? In Fig. 5J, authors show the proportion of CXCL13+ Tex in LN-in and LN-out samples (n=10 

for each group), but again information on the source of samples is missing. 

10. The last section of the study addressed distinct phenotypes of malignant epithelial cells favoring 

HNSCC recurrence. Authors probed the tumor niche atlas in recurrent stage and primary stage tumors 

from different patient, but no matched samples for primary and recurrent tumors were included 

limiting the enthusiasm on presented results. Fig. 6A shows differences in global CNV scores, but it is 

unclear whether hot spot regions of copy number gain or losses exist, which might explain some 

differences in gene expression (Fig. 6B). Are molecular differences shown in Fig. 6, such as cell cycle 

and immune checkpoint genes, oxidative phosphorylation or amplification levels of selected candidate 

genes also evident in bulk DNA- or RNA-seq data of published studies with primary and recurrent 

HNSCC from larger cohorts? 

11. Under the present guidelines of transparency authors should upload the scRNA-seq data at a 

publicly available database and provide all relevant data matrices for figures as source data. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In this manuscript by Liu et al, the team from a high volume centre specialising in oral cancer 

treatment profile a series of pre-cancerous and cancerous SCC from the oral cavity using scRNAseq 

and attempt to build a genetic/transcriptomic framework of progression from normal tissue/pre-

cancer, early, advanced and recurrent cancers, but placing tumours collected from different patients 

into that specific continuum. they also perform a similar analyses using normal, early (no ECE) and 

late (ECE+) nodes. Their findings are either validated using TCGA data for outcome or with mIHC 

using tissue that is available in their high volume centre. The scRNAseq data generated good quality 

RNAseq data for about 120K cells derived from 13 patients (26 samples), and translates to about 4K 

cell per sample with about 1.6K gene per cell, which is a good dataset and QC measure, and will 

undoubtedly be an excellent resource for future analyses as well. 

 



However, in reviewing the manuscript I have a number of concerns that need to be addressed some of 

which challenges the questionable assumptions and are therefore outright unacceptable (but 

correctable) and others are more about the lack of orthogonal validations, which I will address in turn. 

 

1. One of my major concerns relate to Figure 2 and Figure 6 and the analyses therein. In all previous 

scRNAseq and bulk RNAseq datasets, it is clear that tumors are distinct in individual tumours and 

hence the fact that they have been analysed together and put into the same continuum/trajectory is 

extremely worrying, unorthodox and scientifically incorrect. These are distinct genetic entities and the 

assumption that they can be analysed together is highly erroneous. It would have made more sense to 

focus on the few patients that had multiple samples form the same patient (eg NT-E or NT-E-A, A/E 

and LN+ etc). It makes no sense to run the cluster analyses the way it has been done and then 

declare that bunch of cancer related genes (mostly comparing normal with tumor) is prognostic!!! 

That to me is an unacceptable notion. Instead I would have preferred a much tighter longitudinal 

analyses, and then identify similarities between patient sets! 

2. Similarly, comparing 4 distinct recurrent patients (Figure 6) with a number of de novo cancer 

merely tells us the difference between thes distinct individuals and says nothing about progression 

from early to late cancers, since the recurrences are NOT from the same patient (and I notice have an 

overrepresentation of female patients, which in itself could skew the data!). There are many 

statements made about the gene difference being attributed to invasion and metastasis, even though 

it is clear that these very patients were operated on BECAUSE they didn't have distant diseases, which 

totally blows the assumptions out of the water. At the very least, the authors should have attempted 

some bulk analysis on the original tumors that these recurrences originated from. These could have 

been mitigated if the authors had tried to run some orthogonal validation from existing single cell or 

even bulk datasets, but none of these were done. 

3. The non tumor samples are a bit problematic in that there is no mention on how and where these 

were derived from and the fact that a significant proportion of these were aneuploid (or had CNVs). 

These need to be re-analyused: are the patient specific? do these influence the clusters which are 

malignant but have NT cells? perhaps it even gives you an opportunity to have 2 different NT- 

genetically normal epithelium and those with CNVs which are truly pre-cancerous? and these can be 

analysis separately in a spectrum. 

4. it makes more sense to analyse the data in this fashion for the fibroblasts and macrophages as in 

figures 3 and 4, and these represent some intriguing findings that certainly need further validation. 

Even in these, it doesn't make sense to add the LN samples representing progression across the 

malignancy scale for fibroblasts and macrophage subpopulations. Furthermore the latter needs more 

statistical tests to be believed and orthogonal validation. The authors should pull out published data 

from the original Puram or Kurten datasets they refer to, or can find more resources in the following 

publications: Quah et al (PMID: 36973261), Puram and colleagues (PMID: 37012457), and Zhang et al 

(PMID: 36928331), some or all of which could lend strong support to their conclusions, especially with 

regards to the cell chat and nechemet analyses of interactomes. I would also suggest that they 

authors contextualise their fibroblast and macrophage subpopulations to currently known subtypes (eg 

iCAF, myCAF, ApCAF, M1 or M2 macrophages etc). The dataset of 68 patients used to validate their 

findings has also not been well described- who are these patients, how were they treated? are they a 

consecutive or highly selected dataset? 

5. all the cellular networks data remain circumstantial without validations, and the authors are 

referred to the many excellent single cell papers described above that they can access and re-analyze 

to their specific condition and question. I also suggest that when analysing the ineractome with tumor 

cells, these should be individual patient specific analyses rather than trying to combine malignant cells 

(see point 1). There was some attempt at looking at proximity between POSTN fibrioblasts and SPP1 

macrophages, but I have no idea where this dataset comes from, what was done and how the analysis 

was conducted. Validation experiment such as these are the cornerstone to accept the circumstantial 

discovery data provided by expensing scRNAseq, and I do advise the authors to pay attention to these 

and expand on them, including re-analyses of exiting bulk and scRNAseq data as mentioned before. 

6. The analysis of the ENE data has many of the same issues described before, but if these are 

matched to ENE negative nodes from the same patient, it supports the data even better and these 



need to be described...there is NO MENTION at all at how many or who the ENE+ and ENE- patients 

are, and again no attempt at orthogonal validation. The data concerning high CXCL13 Tex is 

interesting, but I would also like to know if these are present in advanced or recurrent tumors as 

these can also represent exhaustion over time. 

7. sweeping statements on therapeutics such as targeting interactions or CXCL13 are pointless, 

inaccurate and even their own data suggest is wrong- these will only target a specific subpopulation in 

your own dataset, so why target them?! 

 

All in all, this is a landscape paper that would be a valuable resource but has a number of erroneous 

assumptions and almost zero attempt at validation, which make these findings circumstantial at best. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Liu et al perform scRNA-seq on 26 tumor specimens to delineate expression heterogeneity within the 

tumor progression model, including analysis of adjacent normal, precancerous, early stage cancer, 

advanced stage cancer, ENE- lymph node, ENE+ lymph node, and recurrent cancer samples. 

 

A fundamental problem with the present work is that it generally fails to put findings in the context of 

previously published work. Without this contextualization, the novelty of the present work is unclear. 

In particular: 

1. The authors should relate malignant and stromal cell subpopulations they uncover to previously 

described subpopulations in Puram et al, Cell, 2017 acknowledging of course that differences in 

scRNA-seq technique may create differences in subpopulations defined. 

2. The authors should better relate malignant and stromal cell pseudotime subpopulation analysis to 

recently published similar data from Choi et al, Nature Communications, 2023. While the authors do 

reference Choi et al in the introduction, there needs to be a more specific discussion of why the 

present study aims to provide novel information and how the results relate to those previously 

published. 

3. The authors identify POSTN+ fibroblasts and SPP1+ macrophages as key stromal cell types involved 

in tumor progression, and a primary claim related to poor outcomes is from analysis of TCGA RNA-seq 

data. These findings should be contextualized with prior research. For example, Luo et al., Nature 

Communications, 2022 describe an interaction between CAFs and SPP1+ macrophages using scRNA-

seq data. Wenhua et al., Cancer Medicine, 2023 report that overall POSTN expression in the TCGA 

cohort is not associated with survival. In addition, Bie & Zhang, J Immunol Res, 2021 find a similar 

association between SPP1 and survival in TCGA. 

 

Other comments: 

1. The authors should provide histologic evidence to validate the identity of each sample analyzed – 

this is particularly important for pre-cancer samples to validate this designation histopathologically. 

2. It is unclear how the authors designate early (E) vs. advanced (A) tumors. From Table S1, it 

appears that a T2N1 sample (P13) was listed as early, while a T3N1 sample (P8) was listed as 

advanced. Based on AJCC staging of oral cancers, both of these patients would be classified as overall 

stage III, making it unclear what differentiates the two. The analysis should be redone with a more 

consistent classification. 

3. How was fibroblast and myeloid cell clustering conducted? Can the authors validate fibroblast and 

myeloid clusters in the context of published work? For example, Galbo et al., Clinical Cancer Research, 

2021 identify 6 pan-cancer CAF subtypes – can the authors validate their own clustering in the context 

of these subtypes? 

4. The immunofluorescence images provided all need to be brighter and clearer in order to enable 

independent interpretation of their utility in validating the findings of the sequencing analysis. 

5. Please clarify what CD8-Tex cells are and how these are identified. 

6. The authors provide a variety of ligand-receptor pairs across CD8 Tex and tumor cells suggesting 



bidirectional signaling that is upregulated during extranodal extension. However, they do not provide 

any validation of these findings, making it unclear whether these are just an artifact of multiple 

hypothesis testing that results from analysis of large scale sequencing data or true biologically 

meaningful results. In the absence of additional validation, the authors should tone down their claims, 

particularly related to tumor cell reprogramming. 

7. The authors provide an analysis of differentially expressed genes in recurrent vs. advanced stage 

cancers and relate their analyses to potential therapeutic targets. However, given the small number of 

samples, these results should be validated using previously published data or functional experiments. 



                           Response Letter 

 

Reviewer1 

The manuscript by Liu et al. addressed possible evolutionary trajectories and transition 

fates  of  cells  in  HNSCC  at  different  clinical  stages,  including  tumor  initiation, 

progression, recurrence and metastasis. Through integrated analyses of scRNA-seq data, 

authors  provide  a  comprehensive  landscape  of  the  TME  in  stepwise  HNSCC 

progression at single-cell resolution and report the critical subpopulation of malignant 

cells and its role in tumor progression. The manuscript is well-written, the study design 

is  original  with  innovative  potential  and  presented  data  are  interesting  and  of  high 

clinical relevance for the field of interest. However, though some presented data are 

supported  by  analysis  of  publicly  accessible  bulk  RNA-seq  datasets  and 

immunostaining analysis, several final conclusions are not supported by experimental 

evidence and remain speculative as outlined in more detail below. 

Response: We are very pleased that the reviewer considers our study is interesting. We 

greatly appreciated constructive suggestions from the reviewer. We have addressed all 

comments with point-to-point responses as follows. 

 

1.  Worth  noting  that  all  patients  (n=13)  had  tumors  in  the  oral  cavity  and  other 

anatomical subsites for HNSCC were not represented in this study. Obviously, samples 

from recurrent tumors were not from treatment-naïve patients as stated at page 4, which 

needs to be corrected and information on therapy should be added to Supplemental 

Table S1. In addition, authors should also include information on epidemiological risk 

factors (e.g. tobacco, alcohol, viruses) in Supplemental Table S1. 

Response: Thank the reviewer for pointing out the limitation about sample collection. 

Actually,  oral  squamous  cell  carcinoma  (OSCC)  is  epidemiologically  prominent  in 

HNSCC [1], which could be a good starting point for us to study HNSCC.   

As for the clinical information, we are sorry to make the reviewer confused and we 

have updated clinical information of our cohort in Supplementary Table 1. We have 

included tobacco use, alcohol use, perineural invasion (PNI), lymphovascular invasion 

(LVI), extranodal extension (ENE), and previous treatment in the updated table. In the 

meantime,  related  description  has  been  corrected  in  the  manuscript,  page  4 

(highlighted). 

 

2. To demonstrate clinical relevance of their findings by scRNA-seq profiling, authors 

analyzed molecular and clinical data from TCGA-HNSC and explored differences in 

overall survival by KM plots (Fig. 2D, Fig. 3D, Fig. 4D, Supplemental Fig. 2F & J). 

However, statistically significant differences are modest and should be confirmed by 

multivariate  Cox  regression  hazard  models  adjusted  for  all  relevant  prognostic  risk 



factors. Did the authors observe differences for subgroups related to anatomical subsites? 

Finally, the number of cases at risk for most KM plots is n=500 except for Fig. 4D 

(n=501) and Supplemental Fig. 2J (n=546) – why? 

Response: Thank the reviewer’s suggestion. To assess whether the factors mentioned 

by the reviewer are independent predictors in the corresponding plots above, we 

performed a multiple Cox regression analysis that newly included age, gender, and 

stage as variables. The results showed cluster 1 of epithelial cells, POSTN+ fibroblasts, 

SPP1+ macrophages, TFDP1, the interaction signature score of POSTN+ fibroblasts and 

SPP1+ macrophages are independent predictors (Figure for Reviewer [Fig.R]1a-e). 

The Supplementary Fig. 2h shows the association of other epithelial cells and OS, 

which indicates no significant related to OS. To compare the liability of all epithelial 

cell clusters as prognostic factors, we performed multivariate Cox regression analysis 

considering all clusters as variables, and we found the cluster 1 of epithelial cells was 

the only predictor that was significantly associated with poorer prognosis (Fig. R1f). 

We added these results in the revised manuscript, and added Fig. R1a as 

Supplementary Fig. 2i, Fig. R1b-c as Supplementary Fig. 3c-d, Fig. R1d as 

Supplementary Fig. 2t, Fig. R1e as Supplementary Fig. 4d, and Fig. R1f as 

Supplementary Fig. 2j. 



 

Fig. R1. C1 of malignant epithelial cells, POSTN+ fibroblasts, SPP1+ macrophages, 

TFDP1, and the interaction signature score of POSTN+ fibroblasts and SPP1+ 

macrophages are independent predictors. Multivariate Cox regression model 

analysis, which included the factors of patient age, gender, TNM status, and the 

deconvoluted score of C1 of malignant epithelial cells (a), the top 50 signature score of 

POSTN+ fibroblasts (b), the top 50 signature score of SPP1+ macrophages (c), TFDP1 

(d) and the interaction signature score of POSTN+ fibroblasts and SPP1+ macrophages 

(e) in the TCGA-HNSCC data. (f) The hazard ratios for OS between the high- and low-

proportion groups for each malignant cell cluster in the deconvoluted TCGA-HNSCC 

data. 

 

As for the anatomic subsites concern, however, the anatomical subsites in TCGA refer 

to oral cavity, oropharynx and hypopharynx. When it comes to oral cavity, there was no 

information for specific subsites, such as tongue, buccal, mouth floor, et.al. Therefore, 

we didn’t include this confounding factor. 



As for the sample number issue, we checked the sample information to confirm how 

many cases can be involved in survival analysis. The total number of TCGA-HNSCC 

cohort is 546, including 44 adjacent normal tissues, 500 primary tumors, and 2 

metastatic tumors. While 5 out of 500 primary samples were paraffin-embedded tissues, 

and one case without overall survival (OS) information, so the above survival analysis 

was regenerated using 494 samples of and we have replaced related figures with new 

ones (Fig. 2D and K, Fig. 3D and H, Fig. 4D, and Supplementary Fig. 2h). 

 

3. MYBL2 and TFDP1 are activated in cancer cells of cluster 1 and top ranked among 

TF regulons (Fig. 2H-I). Furthermore, TFDP1 is associated with worth OS in TCGA-

HNSC (Fig. 2J), but no data on clinical relevance is given for MYBL2. Authors should 

consider a survival analysis for subgroups of tumors from TCGA-HNSC in which both 

transcription factors are co-expressed, absent or only one is highly expressed. The 

manuscript would benefit from experimental evidence substantiating the conclusion 

that TFDP1 and MYBL2 regulation promote cancer development and classify an 

aggressive subgroup of malignant epithelial cells in HNSCC progression. As examples: 

Are cancer cells with co-expression of both transcription factors as assessed by co-IF 

staining on tumor sections or spatial transcriptomics enriched at specific regions such 

as the invasive front?  Does gain of function of one or both transcription factors 

promote malignant transformation of normal mucosal cells in 2D and 3D cultures or 

their loss of function impair tumor-relevant traits in cancer cell lines? 

Response: As suggested by the reviewer, we performed MYBL2 regulon and survival 

analysis and we found that patients with higher expression of MYBL2 regulon had 

significantly worse OS (Fig. R2a). To further assess regulatory roles of TFDP1 and 

MYBL2, we performed a multiple Cox regression analysis that newly included TFDP1, 

MYBL2, age, gender, and stage as variables. The results showed that TFDP1 is an 

independent predictor (Fig. R2b). Combined with experimental validation results, we 

ultimately decided to emphasize only the regulatory role of TFDP1 and we also 

modified related description in the revised manuscript. 

 

Fig. R2. TFDP1 plays a more important role in promoting tumor progression than 

MYBL2. (a) Kaplan-Meier curves show overall survival in MYBL2-high (red) and -low 

(blue) in TCGA-HNSCC cohort. P < 0.05 in the two-sided log-rank test was considered 



statistically significant. (b) Multivariate Cox regression model analysis, which included 

the factors of TFDP1, MYBL2, age, gender, stages, and patient outcomes in TCGA-

HNSCC cohort. 

  

For experimental validation, we also focused on TFDP1. First, we evaluated expression 

level of TFDP1 in epithelial cells in different stages. Consistent with the analysis results, 

though there was no significant difference between NAT and E group, we in deed found 

that TFDP1+ epithelial ratio was higher in the A stage than that in the E stage, which 

indicated that TFDP1 was associated with HNSCC progression (Fig. R3a-b). 

Furthermore, outcome analysis of our validation cohort showed that patients with 

higher TFDP1 expression met shorter survival (Fig. R3c). According to current studies, 

TFDP1 is associated with aggressive phenotypes of cells [2,3]. Therefore, we utilized 

the 2D cell culture model with TFDP1 overexpression or knockdown to evaluate the 

relevance between TFDP1 and invasion phenotype. By overexpressing TFDP1 in 

SCC9 cell lines and knocking down TFDP1 in Cal27 cell lines (both are HNSCC cell 

lines), we observed that HNSCC cells with higher TFDP1 expression exhibited higher 

migration and invasion capability (Fig. R4). We have added these results in the revised 

manuscript, and added Fig. R3 as Fig. 2J, and Fig. R4 as Fig. 2L. 

 

Fig. R3. Validation of TFDP1 function in HNSCC. (a) Representative images of 

multiplex immunohistochemistry (mIHC) staining of TFDP1+ epithelial cells (TFDP1+ 

CK5+ double positive) in HNSCC tumor and nonmalignant samples. Scale bar, 100 μm 

and 50 μm as indicated. (b) The quantitative results showed TFDP1+ epithelial cell ratio 

in different stages. (c) The Kaplan-Meier overall survival curves of validation cohort 

patients stratified by TFDP1 expression level. P values were calculated by Student’s t-

test in (b). Two-sided log-rank test was used in (c). *p<0.05, ***p<0.001. 

 



 

Fig. R4. Validation of TFDP1 function in HNSCC in vitro. (a) Images of Transwell 

assays for migration and invasion in different cell lines with TFDP1 overexpression or 

knockdown. Scale bar = 100 μm. (b) The quantitative analysis of migration and 

invasion capability. P values were calculated by Student’s t-test. *p<0.05, **p<0.01, 

***p<0.001 

 

4. Data presented in Fig. 3 suggest that POSTN+ fibroblasts shape an aggressive 

phenotype of HNSCC through ECM remodeling and immune regulation. However, 

does the analysis of TCGA-HNSC confirm differences in the immunophenotype, 

quantity or quality of immune cell subsets between HNSCC (in particular OSCC) with 

high versus low POSTN transcript levels (Fig. 3D) Any association between POSTN 

transcript values and abundance of cluster 1 cancer cells for TCGA-HNSC?  

Response: Since CD8+ T cells are the most important immune cells in the TME and the 

classification for immunophenotype, we compared the CD8+ T cell infiltration between 

POSTN expression low and high group which stratified by the median expression in 

TCGA-HNSCC cohort. We found POSTNhigh group showed significantly lower CD8+ 

T cell infiltration compared to POSTNlow group (Fig. R5a), suggesting POSTN+ 

fibroblasts were associated with a desert immune microenvironment. In addition, we 

performed Pearson correlation analysis to reveal the mean expression of POSTN in 

POSTN+ fibroblasts significantly correlated with abundance of cluster 1 cancer cells in 

our cohort (Fig. R5b). We have added these results in the revised manuscript, and added 

Fig. R5a as Supplementary Fig. 4i, and Fig. R5b as Supplementary Fig. 4t. 



 

Fig. R5. The POSTNhigh group is associated with low-CD8+ T infiltrated 

microenvironment and the abundance of cluster 1 cancer cells. (a) Differences in 

the infiltrated CD8+ T cells between POSTNhigh and POSTNlow group in TCGA-HNSCC 

cohorts. The Wilcoxon test was used to determine the statistical significance of the 

difference, and P <0.05 was considered statistically significant. (b) The correlation 

between and the mean expression of POSTN in POSTN+ fibroblasts and abundance of 

cluster 1 cancer cells in our cohort. 

 

5. In a cohort of 68 HNSCC samples, authors confirmed the prevalence of POSTN+ 

fibroblasts and SPP1+ macrophages in the tumor stroma and representative images as 

well as quantitative data are presented in Fig. 3K. Are these tumor sections derived 

from the n=13 patients, from which samples were used for scRNA-seq or from an 

independent cohort. If latter, please provide clinical information in a Supplemental 

Table and include relevant information in the section Materials and Methods. By 

multiplex IF staining with tissue sections of this cohort authors could investigate the 

potential association between the prevalence of POSTN+ fibroblasts and abundance of 

distinct immune cell subsets in the TME.  

Response: Thank the reviewer for these questions. The 68 HNSCC samples are 

collected from our independent validation cohort, whose clinical information has been 

included in Supplementary Table 2. We have also updated Materials and Methods 

section (highlighted). 

As for the validation of the association between POSTN+ fibroblasts and immune 

infiltration, we found CD8+ T cell infiltration was significantly different between 

fibroblasts with POSTN low expression and high expression group, so we chose this 

immune cell type for further experiments (Fig. R5a).  

Again, we used our validation cohort samples and by mIHC assay, we found that when 

POSTN+ fibroblasts widely distributed in the TME, forming desmoplastic barrier, CD8+ 

T cell infiltration was significantly decreased whereas SPP1+ macrophages infiltration 

increased (Fig. R6). We have added these results in the revised manuscript, and added 



Fig. R6 as Supplementary Fig. 4m. 

 

Fig. R6. The association between POSTN+
 fibroblasts, SPP1+ macrophages and 

CD8+ T cells. (a) Representative mIHC staining of tumor sections. Dapi (blue), α-SMA 

(green), POSTN (red), CD68 (orange), SPP1 (grey), and CD8 (purple), in individual 

and merged channels are shown. Scale bar = 50 μm. (b) Correlation between POSTN+ 

fibroblasts ratio and CD8+ T cell ratio (n= 40). (c) Correlation between POSTN+ 

fibroblasts ratio and SPP1+ macrophages ratio (n= 40). 

 

6. Data presented in Fig. 4 indicate that the mutual interaction between POSTN+ 

fibroblasts and SPP1+ macrophages promotes desmoplastic structure formation in the 

TME of more advanced HNSCC. Though Fig. 4B shows representative images of a co-

IF staining for POSTN and SPP1, experimental evidence to substantiate the final 

conclusion that this combination promotes formation of immune-excluded 

desmoplastic structures and exclusion of T-cell infiltration is missing. Authors should 

consider a multiplex co-IF staining including antibodies for relevant T cell subsets and 

desmoplastic structure or alternatively conduct a histopathological staining to visualize 

desmoplastic structure on serial tissue sections. 

Response: According to the reviewer’s suggestion, by mIHC assay (shown above), we 

observed that CD8+ T cell infiltration was negatively correlated with POSTN+
 

fibroblasts while SPP1+ macrophages infiltration was positively correlated with 

POSTN+ fibroblasts ratio. These results indicated that POSTN+ fibroblasts interacted 

with SPP1+ macrophages and formed a desmoplastic TME, excluding CD8+ T cell from 

infiltration (Fig. R6).  

 

7. In the discussion at page 21, authors state that the interaction between POSTN+ 

fibroblasts and SPP1+ macrophages contributes to ECM remodeling and coordinates to 



form a desmoplastic microenvironment by enhancing tumor cell ECM-receptor 

interactions, cell-substrate junction organization and the PI3K−Akt signaling pathway. 

Authors should present data on differences in phosphorylation of AKT and downstream 

targets in cancer cells on tumor sections with varying amounts of POSTN+ fibroblasts 

and SPP1+ macrophages or even better their spatial distribution within larger tumor 

areas. Authors claim that their study highlights the potential value of identifying and 

establishing therapeutic strategies targeting POSTN+ fibroblasts, SPP1+ macrophages, 

or the molecules involved in their crosstalk to inhibit HNSCC progression. Therapeutic 

strategies targeting HNSCC progression are rather unlikely as most patients are 

diagnosed at advanced stages and fundamental goal of the therapy of primary tumors is 

a treatment with curative intend. Pharmacological prevention of progression might be 

relevant for premalignant lesions in the oral cavity, but this was not the focus of this 

study. 

Response: For PI3K-Akt signaling pathway in tumor cells, we are sorry that we cannot 

obtained sufficient validation results. Therefore, we deleted related description about 

PI3K-Akt signaling pathway in the revised manuscript. 

As for the discussion about therapeutic significance, we have revised inappropriate 

description in the revised manuscript. 

 

8. Differences in the infiltrative frequency of CD4+ Tregs between the LN-out and LN-

in groups are modest (Supplementary Fig. 5A-B) and should be confirmed by 

quantitative assessment (IF staining or FACS) in samples from a larger HNSCC cohort.  

Response: According to reviewer’s advice, we performed IHC on our lymph node 

validation cohort. We found that Foxp3+ cell ratio was significantly higher in ENE+ 

samples, which was consistent with in silico results (Fig. R7). We have added these 

results in the revised manuscript, and added Fig. R7 as Supplementary Fig. 5c. 

 

Fig. R7. Difference of Treg infiltration between ENE- and ENE+ lymph nodes. (a) 

Representative IHC staining of Foxp3 in lymph nodes. Scale bar, 200 μm and 50 μm as 



indicated. (b) Proportion of Foxp3+ cell is compared between ENE- and ENE+ samples 

(n=8 and 7 for each group). The two-sided Wilcoxon test was used to determine the 

statistical significance of the difference. *p <0.05. 

 

9. Are differences in expression of representative ligand-receptor pairs (Supplemental 

Fig. S5 F, violin plots) between CD8 Tex cells and tumor cells among LN-in versus 

LN-out samples statistically significant – please provide p values? Do LN-out samples 

show a higher relative frequency of cancer cells with phospho-ERK1/2 and phospho-

STAT1/3 staining (by either IF or IHC staining) as compared to LN-in samples and is 

the staining intensity positively associated with the abundance of CXCL13+ Tex cells? 

In Fig. 5J, authors show the proportion of CXCL13+ Tex in LN-in and LN-out samples 

(n=10 for each group), but again information on the source of samples is missing.  

Response: We have added the p value calculated by two-sided Wilcox test to assess 

statistical difference between LN-in and LN-out CD8 Tex cells in Supplementary Fig. 

5g.  

We turned to our validation cohort 3 to analyze pERK expression level between ENE- 

and ENE+ samples (Fig. R8). We found that pERK+ epithelial ratio is higher in ENE+ 

samples, which indicated that tumor cells in ENE+ lymph nodes showed higher ERK 

signaling activation level. What’s more, correlation analysis showed pERK+
 epithelial 

ratio is positively correlated with CXCL13+ Tex ratio, which suggested that CXCL13+ 

Tex may induce ERK pathway activation during lymph node metastasis process. We 

have added these results in the revised manuscript, and added Fig. R8 as 

Supplementary Fig. 5j. As for the clinical information of our validation cohort, we 

have updated it in Supplementary Table 2-3. 

 

Fig. R8. Difference of pERK expression level between ENE- and ENE+ lymph 

nodes. (a) Representative mIHC staining of lymph node samples. Dapi (blue), CK5 

(green), and pERK (red), in individual and merged channels are shown. Scale bar= 50 

μm. (b) Proportion of pERK+ Epi is compared between LN-in and LN-out samples (n=8 

and 9). (c) Correlation of CXCL13+ Tex ratio with pERK+ epi ratio. **p <0.01. 

 

10. The last section of the study addressed distinct phenotypes of malignant epithelial 



cells favoring HNSCC recurrence. Authors probed the tumor niche atlas in recurrent 

stage and primary stage tumors from different patient, but no matched samples for 

primary and recurrent tumors were included limiting the enthusiasm on presented 

results. Fig. 6A shows differences in global CNV scores, but it is unclear whether hot 

spot regions of copy number gain or losses exist, which might explain some differences 

in gene expression (Fig. 6B). Are molecular differences shown in Fig. 6, such as cell 

cycle and immune checkpoint genes, oxidative phosphorylation or amplification levels 

of selected candidate genes also evident in bulk DNA- or RNA-seq data of published 

studies with primary and recurrent HNSCC from larger cohorts?  

Response: Clinically, it is difficult to acquire paired primary and subsequent relapse 

fresh samples of HNSCC for scRNA analysis, because relapse may occur on several 

years after the treatment of the primary tumor or even never occur. We also realized this 

limitation and interpreted in the discussion section.  

For the CNV issue, we draw the heatmap by R package infercnv correspond to Fig. 6A 

and found that compared to cells in A stage samples, cells in R stage samples exhibited 

more gain and loss events of copy number (Fig. R9a). In the meantime, the Venn plot 

showed these genes with copy number variation significantly intersected with 

differential expression genes from R stage versus A stage (Fig. R9b). There are 347 

overlapping genes with copy number gain in up-regulated genes of R stage and 178 

overlapping genes with copy number loss in down-regulated genes of R stage. These 

results indicated that copy number variation genes in R stage were associated with 

differential expression genes in R-stage based on the scRNA-seq results. 

For external validation of our key conclusions, we turned to one scRNA-seq data 

(GSE234933, Science, 2023) [4] and one bulk RNA-sea data (GSE173855, Clinical 

Cancer Research, 2022) [5] for further analysis. GSE234933 includes primary and 

relapse tumor samples (unpaired) while no staging information was available for 

primary tumors, which means that primary samples could also include early-stage 

tumors and interfere analysis results. However, given this dataset is the only accessible 

scRNA-seq dataset with recurrent HNSCC samples, it was still chosen for our 

validation work. GSE173855 includes 34 patients with paired primary and recurrent 

samples, we finally obtained 18 paired samples with an advanced stage and an 

anatomical site of oral cavity. 

We calculated proliferation scores for GSE234933 based on the proliferation signature 

genes as previous study [6] (maker genes listed in Supplementary Table 4) and found 

cell proliferation score was also higher in primary tumors as compared to relapse 

samples in GSE234933 (Fig. R9c). Oxidative phosphorylation pathway expression 

both up-regulated in relapse tumors in GSE234933 (Fig. R9d) and GSE173855 (Fig. 

R9e). These results are consistant with our in-house cohort, indicating a lower 

proliferation but higher metabolic phenotype of malignant cells in the relapse cancer. 

As for the cell-cell interaction between malignant cells and immune components in 

GSE234933, we observed a significantly stronger interaction of CD47-SIRPG pair 

between tumor cells-myeloid cells, tumor cells-CD8+ T cells, and tumor cells-CD4+ T 



cells (Fig. R9f), highlighting that CD47 could be an immune checkpoint on relapse 

HNSCC tumor cells. Finally, for specific molecules on malignant cells, we found 

CDKN2A, EGFR, VEGFA, and TGF-β1 were also significantly higher expressed in 

malignant cells in R stage for GSE234933 (Fig. R9g), suggesting that they could be 

potential therapeutic targets for recurrent HNSCC. We have added these results in the 

revised manuscript, and added Fig. R9a-b as Supplementary Fig. 6a-b, and Fig. R9c-

g as Supplementary Fig. 6d-g. 

 

Fig. R9 InferCNV profiles and validation analysis in public datasets between cells 

in A and R stage samples. (a) Inferred large-scale CNVs between cells in A and R 

stages. Rows correspond to individual cells between stage R and A samples (colorbars 

on the left) and columns correspond to genes ordered by chromosomal location (black 

and grey bars at the top indicate different chromosomes). (b) Venn plots show the 347 

overlapping genes between inferred copy number gain genes and up-regulated genes 

from scRNA DEGs (the left panel), the 178 overlapping genes between inferred copy 

number loss genes and down-regulated genes from scRNA DEGs (the right panel). The 

Fisher's exact test p-values of the overlaps are reported. (c) Violin plots show the cell 

proliferation of malignant cells in P and R stage. (d) Violin plots show the cell 

proliferation and oxidative phosphorylation scores of malignant cells in P and R stage. 



(e) KEGG enrichment analysis in oxidative phosphorylation pathway of P and R 

samples. (f) Bubble plots show the interaction between malignant cells and myeloid 

cells, CD4+, and CD8+ T cells, based on selected ligand and receptor pairs. These scores 

are normalized expression level, and the sizes of the bubbles indicate the significance 

of the interactions, calculated by CellPhoneDB. (g) Violin plots show the expression of 

selected genes in malignant cells in P and R stage. Data from GSE234933 is analyzed 

for (c, d, f, and g) and data from GSE173855 is analyzed for (e). 

 

11. Under the present guidelines of transparency authors should upload the scRNA-seq 

data at a publicly available database and provide all relevant data matrices for figures 

as source data. 

Response: We have deposited raw sequencing reads of all single-cell experiments in 

the Genome Sequence Archive (GSA, https://ngdc.cncb.ac.cn/gsa-human/) and with 

data accession no. HRA004648 under project PRJCA014927. We also provided all 

relevant data matrices for figures as Source Data, we have claimed this in Data 

Availability section in the revised manuscript. 

  



Reviewer2 

1. One of my major concerns relate to Figure 2 and Figure 6 and the analyses therein. 

In all previous scRNAseq and bulk RNAseq datasets, it is clear that tumors are distinct 

in individual tumours and hence the fact that they have been analysed together and put 

into the same continuum/trajectory is extremely worrying, unorthodox and 

scientifically incorrect. These are distinct genetic entities and the assumption that they 

can be analysed together is highly erroneous. It would have made more sense to focus 

on the few patients that had multiple samples form the same patient (eg NT-E or NT-E-

A, A/E and LN+ etc). It makes no sense to run the cluster analyses the way it has been 

done and then declare that bunch of cancer related genes (mostly comparing normal 

with tumor) is prognostic!!! That to me is an unacceptable notion. Instead I would have 

preferred a much tighter longitudinal analyses, and then identify similarities between 

patient sets!  

Response: Thanks for the reviewer's valuable comment. Indeed, the tumors are distinct 

in individual tumors. Thanks to single-cell technology, more and more studies have 

combined tumor cells from different patients to help researchers study the different 

states and potential trajectory characteristics of tumor cells [7-19]. 

As suggested by the reviewer, related to Fig. 2, we performed the trajectory analysis of 

epithelial cells obtained from same patients, including P2, P10, and P13 with NT, Pre 

and E samples (Fig. R10). Here, we found consistent development trajectories of these 

three patients with results of total malignant epithelial cells in Fig. 2G. These results 

support the reliability of our conclusion on cancer cell development during HNSCC 

progression. We have added these results in the revised manuscript, and added Fig. 

R10a-c as Supplementary Fig. 2p-r. 

 

Fig. R10. Potential trajectory of epithelial cells of single patient. Potential trajectory 

of epithelial cells by single patients from P2 (a), P10 (b), and P13 (c) inferred by 



Monocle2. The trajectory was divided into three states indicated as S1, S2, and S3. The 

cluster components of each state were shown in the bar plot.  

 

2. Similarly, comparing 4 distinct recurrent patients (Figure 6) with a number of de 

novo cancer merely tells us the difference between thes distinct individuals and says 

nothing about progression from early to late cancers, since the recurrences are NOT 

from the same patient (and I notice have an overrepresentation of female patients, which 

in itself could skew the data!). There are many statements made about the gene 

difference being attributed to invasion and metastasis, even though it is clear that these 

very patients were operated on BECAUSE they didn't have distant diseases, which 

totally blows the assumptions out of the water. At the very least, the authors should 

have attempted some bulk analysis on the original tumors that these recurrences 

originated from. These could have been mitigated if the authors had tried to run some 

orthogonal validation from existing single cell or even bulk datasets, but none of these 

were done. 

Response: Thanks the reviewer’s suggestion. We have validated the results of Fig. 6 in 

two public datasets in scRNA-seq (GSE234933) and bulk RNA-seq (GSE173855) to 

obtain the consistent results (Please refer to the response of the Reviewer #1’s 

comment 10). 

As for the gender composition concern, we performed principal components analysis 

(PCA) on in-house data and validation data (GSE234933) through pseudo bulk methods 

(Fig. R11). We found A/P and R samples separated well, while male and female samples 

still distributed scattered, indicating that gender factor was not the predominant 

difference among these samples. Thanks for the reviewer’s careful consideration and 

we will pay more attention to the gender issue during sample screening process in our 

future studies. 

 

Fig. R11. Principal component analysis of samples from in-house data scRNA-seq 

(a) and public scRNA-seq GSE234933 (b). 

 



3. The non tumor samples are a bit problematic in that there is no mention on how and 

where these were derived from and the fact that a significant proportion of these were 

aneuploid (or had CNVs). These need to be re-analyused: are the patient specific? do 

these influence the clusters which are malignant but have NT cells? perhaps it even 

gives you an opportunity to have 2 different NT- genetically normal epithelium and 

those with CNVs which are truly pre-cancerous? and these can be analysis separately 

in a spectrum. 

Response: For the non-tumor samples (NT), we collected them from patients’ oral 

epithelial tissues distant from tumor sites (paired with pre and E samples). We have 

added representative H&E image of samples in different stages in the revised 

manuscript (Supplementary Fig. 1a). 

Then, we re-analyzed the epithelial cells in NT, Pre, and E samples from the 

representative patient P13 by Copykat algorithm and found through some epithelial 

cells in NT samples were annotated as aneuploid cells, their predicted copy numbers 

were actually smaller than those in pre and E samples (Fig. R12a). We further compared 

CNV scores of aneuploid cells from NT, Pre, and E samples, we found aneuploid cells 

from NT samples had the lowest CNV scores than cells from Pre and E samples (Fig. 

R12b). In the meantime, the density plot showed that there are significant differences 

in the distribution of absolute value of CNV of aneuploid epithelial cells at different 

stages. E and Pre groups have significantly higher density in high CNV compared to 

NT group (Fig. R12c).  

Since our NT group is adjacent normal tissues, as suggested by the reviewer, we further 

calculated differentially expressed genes from aneuploid cells compared to diploid cells 

in NT samples from the representative patient P13 (Fig. R12d-e) and found that up-

regulated genes related to oncogenesis process such as ‘cell growth’, ‘epithelial cell 

proliferation’, and ‘Wnt signaling pathways’ while down-regulated genes related to 

physiologic functions such as ‘complement activation’ and ‘intestinal immune network 

for IgA production’. These results suggested that aneuploid epithelial cells in our NT 

samples may in the transitional status from bona fide normal cells to pre-cancerous cells. 

We have added these results in the revised manuscript, and added Fig. R12b, d, and e 

as Supplementary Fig.2c, d, and e, respectively. 



 

Fig. R12. CNV of aneuploid epithelial cells in NT samples from a representative 

patient, P13. (a) Inferred large-scale CNVs of epithelial cells from NT, Pre, and E 

samples. Rows correspond to individual cells from NT, Pre, and E samples (colorbars 

on the left) and columns correspond to genes ordered by chromosomal location (black 

and grey bars at the top indicate different chromosomes). (b) Violin and box plots show 

CNV scores of aneuploid epithelial cells from NT samples calculated by R package 

copycat at different stages. (c) The density plot shows the absolute value of CNV 

distribution of aneuploid epithelial cells from NT samples. (d-e) Bubble plots of GO (d) 

and KEGG (e) pathways for differentially expressed genes in aneuploid epithelial cells 

compared to diploid epithelial cells from NT samples. 

 

4.1 it makes more sense to analyse the data in this fashion for the fibroblasts and 

macrophages as in figures 3 and 4, and these represent some intriguing findings that 

certainly need further validation. Even in these, it doesn't make sense to add the LN 

samples representing progression across the malignancy scale for fibroblasts and 

macrophage subpopulations. Furthermore the latter needs more statistical tests to be 

believed and orthogonal validation. The authors should pull out published data from the 

original Puram or Kurten datasets they refer to, or can find more resources in the 

following publications: Quah et al (PMID: 36973261), Puram and colleagues (PMID: 

37012457), and Zhang et al (PMID: 36928331), some or all of which could lend strong 

support to their conclusions, especially with regards to the cell chat and nechemet 

analyses of interactomes.  

Response: Thank the reviewer’s constructive comments. We have removed the samples 



from lymph node in Fig. 3C and G. Other panels in Fig. 3 and 4 didn’t include LN 

samples. 

As suggested by the reviewer, to validate the interaction of POSTN+ fibroblasts and 

SPP1+ macrophages during the progression, we downloaded the scRNA-seq datasets 

mentioned by the reviewer and other publicly available datasets (Table for the 

reviewer 1 [Table R1]). Dataset GSE103322 [20] based on SMART-seq2 only included 

98 single cells of macrophages, dataset GSE139324 [11] based on 3’ end of 10X 

genomic platform only include CD45+ cells, dataset GSE225331 [21] based on 

Fluidigm C1 obtain cells from patient derived cultures only included epithelial cells, 

dataset HRA003383 [22] is inaccessible. We included dataset GSE188737 [21], 

GSE182227 [23], and GSE234933 [4] based on 5’ end of 10X genomic platform. These 

three datasets all included fibroblasts and macrophages. After downloading the 

expression matrix data and quality control, we performed graph-based clustering and 

annotated clusters with their respective markers. We compared cell subtypes in three 

public datasets with our cell types and found the most important macrophages (SPP1+ 

macrophages) and fibroblasts (POSTN+ fibroblasts) were also annotated in public 

datasets (Fig. R13a-b). We obtained 2801, 3423 and 1589 cells of POSTN+ fibroblasts 

and 274, 615 and 1987 cells of SPP1+ macrophages in GSE188737, GSE182227, and 

GSE234933 dataset, respectively.  

 

Table. R1. Information of validation datasets 

 PMID Dataset Platform Note 

1 29198524[20] GSE103322 SMART-Seq2 Exclude  

2 31924475[11] GSE139324 10x 3' Exclude 

3 36973261[21] GSE188737 10x 5’  

4 36973261[21] GSE225331 Fluidigm C1 Exclude 

5 37012457[23] GSE182227 10x 5’  

6 36928331[22] HRA003383 10x Exclude 

7 37535729[4] GSE234933 10x 5’  

 

Then, we performed the interaction analysis of POSTN+ fibroblasts and SPP1+ 

macrophages by R package CellChat based on above three accessibly public datasets 

to validate our conclusion (Fig. R13c-e). We found that among all fibroblast subtypes, 

the interaction from POSTN+ fibroblasts to SPP1+ macrophages was strongest. 

Similarly, the interaction from SPP1+ macrophages to POSTN+ fibroblasts was superior 

to other macrophage subtypes. These results in validation datasets are consistent with 

those in our in-house cohort, which strongly supported our conclusion on POSTN+ 

fibroblasts-SPP1+ macrophages interaction in HNSCC tumor microenvironment.  



Further, we also performed the interaction analysis of POSTN+ fibroblasts and SPP1+ 

macrophages by R package NicheNet based on three accessible public validation 

datasets. We found there were significant intersections between validation datasets and 

our in-house data for receptors, target genes, and target genes GO and KEGG 

enrichment pathways (Fig. R14a-d). For instance, the overlapping ligands, receptors 

and target genes of GSE182227 and our in-house data was taken as a representative 

result for NicheNet analysis, we found top regulatory ligands in POSTN+ fibroblasts 

included HAS2, CCL2, and IL15, which bounded to receptors on SPP1+ macrophages 

including CD44, CCR1, CCR5, and IL2RG, triggering downstream pathways such as 

NF-κB signaling pathways and TNF signaling pathways (Fig. R14e-h). These 

regulatory patterns are indeed consistant with findings in our study. We have added 

these results in the revised manuscript, and added Fig. R13c-e as Supplementary Fig. 

4c, and Fig. R14 as Supplementary Fig. 4h-k. 

 

Fig. R13. Validation of POSTN+ fibroblasts-SPP1+ macrophages interaction by R 

package CellChat based on public datasets. (a-b) Summary of cell types annotated 

in public validation datasets and in-house cohort. Macrophage subtypes are shown in 

(a) and fibroblast subtypes are shown in (b). (c-e) Lollipop plots show interaction 

strength by R package CellChat between different macrophage subtypes and fibroblast 



subtypes. Results of GSE188737, GSE182227, and GSE234933 are shown in (c), (d), 

and (e), respectively. The upper panel represents interaction from different fibroblast 

subtypes to SPP1+ macrophages and the lower panel represents interaction from 

different macrophage subtypes to POSTN+ fibroblasts. 

 

 

Fig. R14. Validation of POSTN+ fibroblasts-SPP1+ macrophages interaction by R 

package NicheNet based on public datasets. (a-d) Venn plots show overlapping target 

genes (a), receptors (b), target genes GO enrichment pathways (c), and target genes 

KEGG enrichment pathways (d) among GSE188737, GSE182227, GSE234933, and 

in-house data inferred by NicheNet algorithm. Overlapping ligands (e), target genes (e), 

receptors (f), target genes GO enrichment pathways (g), and target genes KEGG 

enrichment pathways (h) between GSE182227 and in-house data from R package 

NicheNet. 

 

4.2 I would also suggest that they authors contextualise their fibroblast and macrophage 

subpopulations to currently known subtypes (eg iCAF, myCAF, ApCAF, M1 or M2 

macrophages etc).  



Response: As suggested by the reviewer, based on the marker genes of currently known 

subtypes as previous study [24] (maker genes listed in Supplementary Table 4), we 

calculated the signature score of iCAF, myCAF, and apCAF for each fibroblast subtypes. 

As shown in Fig. R15a-c, we found that POSTN+ fibroblasts had highest myCAF score 

(p < 2.2e-16), CCL19+ fibroblasts had highest iCAF score followed by RSPO1+ 

fibroblasts and SFRP1+ fibroblasts (p < 2.2e-16). However, SEMA4A+ fibroblasts and 

DES+ myofibroblasts are both low-scored in these three signatures, which may be 

attributed to data heterogeneity.  

Then, we calculated M1 and M2 signature score of each macrophage subtype [25] 

(maker genes of M1 and M2 signature were listed in Supplementary Table 4). The 

results showed that CXCL10+ macrophages, SPP1+ macrophages, and FOLR2+ 

macrophages were all scored higher in M2 signature than M1 signature while C1QC+ 

macrophages got low score in both M1 and M2 signature (Fig. R15d-e). We have added 

these results in the revised manuscript, and added Fig. R15b as Supplementary Fig. 

3e, and Fig. R15e as Supplementary Fig. 3h. 

 

Fig. R15. Comparison of our fibroblast and macrophage subpopulations to 

currently known subtypes. Violin and box plots show the scores of iCAF signature 

(a), myCAF signature (b), apCAF signature (c), M1 signature (d), and M2 signature (e) 

of our fibroblast and macrophage subpopulations. 

 

4.3 The dataset of 68 patients used to validate their findings has also not been well 

described- who are these patients, how were they treated? are they a consecutive or 

highly selected dataset? 

Response: As for the clinical information of our validation cohort, it has been disclosed 

in Supplementary Table 2. 

 

5. All the cellular networks data remain circumstantial without validations, and the 

authors are referred to the many excellent single cell papers described above that they 

can access and re-analyze to their specific condition and question. I also suggest that 

when analysing the ineractome with tumor cells, these should be individual patient 

specific analyses rather than trying to combine malignant cells (see point 1). There was 

some attempt at looking at proximity between POSTN fibrioblasts and SPP1 



macrophages, but I have no idea where this dataset comes from, what was done and 

how the analysis was conducted. Validation experiment such as these are the 

cornerstone to accept the circumstantial discovery data provided by expensing 

scRNAseq, and I do advise the authors to pay attention to these and expand on them, 

including re-analyses of exiting bulk and scRNAseq data as mentioned before. 

Response: Thanks for the reviewer’s comments. Since P2, P10, and P13 provided their 

NT, pre, and E stage samples representing tumor progression process, we chose these 

three patients and analyzed cell-cell interaction based on individual patient respectively 

by R package CellChat (Fig. R16a-d). Apparently, interaction strengths of POSTN+ 

fibroblasts to SPP1+ macrophages, SPP1+ macrophages to POSTN+ fibroblasts, 

POSTN+ fibroblasts to tumor cells, and SPP1+ macrophages to tumor cells all increased 

from NT, to pre and E stages in three patients. Moreover, A-stage individuals were 

chosen for analyzing interaction between fibroblast subtypes and macrophage subtypes 

(Fig. R16e-h). Results showed that in A-stage individuals, interaction between 

POSTN+ fibroblasts and SPP1+ macrophages were strongest among all fibroblast 

subtypes and macrophage subtypes, which is consistent with results in Fig. 4A. We 

have added these results in the revised manuscript, and added Fig. R16a-d as 

Supplementary Fig. 4a, and Fig. R16e-h as Supplementary Fig. 4b. 

As for our validation cohort, the 68 HNSCC samples are collected from our 

independent validation cohort, whose clinical information has been included in 

Supplementary Table 2. We have conducted validation experiments and updated these 

results in Fig. 2, Supplementary Fig. 4, and Supplementary Fig. 5. We hope the 

revised manuscript would meet the reviewer’s standard. 



 

Fig. R16. Validation of cell-cell interaction in individual patients. (a-d) Lollipop 

plots show interaction strength from POSTN+ fibroblasts to SPP1+ macrophages (a), 

SPP1+ macrophages to POSTN+ fibroblasts (b), POSTN+ fibroblasts to tumor cells (c), 

and SPP1+ macrophages to tumor cells (d) in NT, pre, and E stages from P2, P10, and 

P13. (e-h) Lollipop plots show interaction strength of fibroblast subtypes and 

macrophage subtypes in A-OSCC1 (e), A-OSCC3 (f), A-OSCC5 (g), and A-OSCC6 (h) 

samples. 

 

6.1 The analysis of the ENE data has many of the same issues described before, but if 

these are matched to ENE negative nodes from the same patient, it supports the data 

even better and these need to be described...there is NO MENTION at all at how many 

or who the ENE+ and ENE- patients are, and again no attempt at orthogonal validation.  

Response: Thanks for the reviewer’s comments, we agree with that if ENE- and ENE+ 

samples were matched, the analytic conclusion could have been more significant. 

However, most of our ENE- and ENE+ lymph node samples were not matched except 

for LN1 and LN2 (from P6). Here, we analyzed LN1 and LN2 samples to validate our 

conclusions on CD8+
 T cells. As shown in Figure 5, we observed higher CD8 Tex 

proportion in LN-out samples than LN-in samples (Fig. 5E) and higher CXCL13 



expression level in CD8 Tex in LN-out samples (Fig. 5I). Here, in the paired LN-in and 

LN-out samples, we found consistently up-regulated CD8 Tex proportion as well as 

CXCL13 expression level in the LN-out sample (Fig. R17). 

The clinical information of our cohort has been supplemented in Supplementary Table 

1, including ENE- and ENE+ information. 

 

Fig. R17 Comparison of CD8+ T cell between paired lymph node samples. (a) Bar 

chart shows the proportion differences of CD8+ T cell subclusters between LN-out and 

LN-in samples of P6. (b) Violin plot shows difference of CXCL13 expression in CD8 

Tex between LN-out and LN-in samples of P6. 

 

6.2 The data concerning high CXCL13 Tex is interesting, but I would also like to know 

if these are present in advanced or recurrent tumors as these can also represent 

exhaustion over time. 

Response: First, we compared Tex proportion between A and R samples and found an 

increase in CD8 Tex proportion in R samples (Fig. R18a). Then, we found that in the 

A and R samples, CXCL13 was specifically expressed by CD8 Tex subpopulation (Fig. 

R18b). In the meantime, CXCL13 expression level was significantly higher in R stage 

sample (Fig. R18c). In summary, these results were consistant with Figure 5 and 

showed CD8+ T cell exhaustion over time. 

 



Fig. R18. Analysis of CD8+ T cell subtypes between A and R samples. (a) Bar chart 

shows the proportion differences of CD8+ T cell subtypes between A and R samples. (b) 

Feature plot shows CXCL13 expression level in CD8+ T cells in A and R samples. CD8 

Tex was circled by the dashed line. (c) Violin plot shows CXCL13 in CD8 Tex in A and 

R samples. ****p < 0.001. 

 

7. sweeping statements on therapeutics such as targeting interactions or CXCL13 are 

pointless, inaccurate and even their own data suggest is wrong- these will only target a 

specific subpopulation in your own dataset, so why target them?!  

Response: Actually, CXCL13+ CD8+ T cells are a novel subpopulation of T cells which 

have been proved to play an important role during immune checkpoint inhibitor therapy 

and could be a biomarker for therapy response [26-28]. Here, for the first time, we 

identified a significant increase of CXCL13+ CD8+ T cells during extracapsular lymph 

node metastasis and their interaction with tumor cells. Based on current studies of 

CXCL13+ CD8+ T cells, we supposed that it might be important in HNSCC lymph node 

metastasis and could even be a therapy target. However, in the present, we have no 

further conclusive evidence to support our assumption. Therefore, according to the 

reviewer’s advice, we have modified related inappropriate description in the revised 

manuscript. 

 

All in all, this is a landscape paper that would be a valuable resource but has a number 

of erroneous assumptions and almost zero attempt at validation, which make these 

findings circumstantial at best. 

Response: Thanks for the reviewer’s patience and valuable comments. We have made 

point-to-point response to the reviewer’s concerns above and we also supplemented 

experimental validations of key conclusions. We hope that our revised manuscript could 

meet the reviewer’s standard. 

 

  



Reviewer3 

1. The authors should relate malignant and stromal cell subpopulations they uncover to 

previously described subpopulations in Puram et al, Cell, 2017 acknowledging of 

course that differences in scRNA-seq technique may create differences in 

subpopulations defined. 

Response: Thanks for the reviewer’s valuable suggestion. We have assessed the 

similarity of our malignant and stromal cell subpopulations and previously described 

subpopulations in Puram’s work [20] (Fig. R19). 

For malignant cell subpopulations (maker genes listed in Supplementary Table 4), C0 

showed high score in epithelial differentiation1 signature while C1, C2, and C3 tend to 

follow epithelial differentiation pattern 2 (p < 2.2e-16). Interestingly, C1 showed high 

expression in cell cycle signature, indicating its more malignant phenotype than other 

clusters (p < 2.2e-16), which was coincidence with our findings. C4 is mainly composed 

of epithelial cells from NT samples, so it has no matched malignant cell subtypes in 

Puram’s work. 

As for the fibroblast subtypes (maker genes listed in Supplementary Table 4) (Fig. 

R20), POSTN+ fibroblasts and proliferating fibroblasts are similar to CAF1 (p < 2.2e-

16), normal fibroblasts, RSPO1+ fibroblasts, SFRP1+ fibroblasts, and CCL19+ 

fibroblasts are tend to be CAF2 (p < 2.2e-16). However, SEMA4A+ fibroblasts and 

DES+ myofibroblasts in our data could not find particular counterparts in Puram’s 

subtypes, which may due to the dataset heterogeneity. We have added these results in 

the revised manuscript, and added Fig. R19a as Supplementary Fig. 2k, Fig. R20a as 

Supplementary Fig. 3f. 

 

Fig. R19. Comparison of our malignant cell subtypes to Puram malignant cell 

signatures. Violin and box plots show the scores of cell cycle signature (a), pEMT 

signature (b), epithelial cell differentiation1 signature (c), epithelial cell different2 

signature (d), stress signature (e), and hypoxia signature (f) of our malignant cell 



subpopulations. (g) Heatmap shows the relative malignant signature scores value of our 

malignant cell subpopulations. 

 

Fig. R20. Comparison of our fibroblast subtypes to Puram fibroblast sub 

populations. Violin and box plots showed the scores of CAF1 signature (a), CAF2 

signature (b), and myofib signature (c) of our fibroblast subpopulations. (d) Heatmap 

shows the relative CAF signature scores value of our fibroblast subpopulations. 

 

2. The authors should better relate malignant and stromal cell pseudotime 

subpopulation analysis to recently published similar data from Choi et al, Nature 

Communications, 2023. While the authors do reference Choi et al in the introduction, 

there needs to be a more specific discussion of why the present study aims to provide 

novel information and how the results relate to those previously published. 

Response: In Choi and his colleagues’ work [19], they pooled fibroblasts and epithelial 

cells together for trajectory analysis, studying the malignant cell-fibroblasts interaction 

and evolution during HNSCC progression and metastasis. However, in our study, we 

did not include fibroblast subtypes for pseudotime analysis, but we could still 

summarize developmental trends of malignant cells during lymph node metastasis (Fig. 

R21). When focusing on epithelial cells during lymph node metastasis (LN-in and LN-

out samples), we observed that epithelial cells from intracapsular metastatic lymph 

nodes (LN-in) located more in S2 and S3 than S1, while extracapsular metastatic 

epithelial cells (LN-out) located mainly in S3, indicating an increasing malignant 

characteristic during extracapsular metastasis, which is actually reported for the first 

time. 

 



 

Fig. R21. Pseudotime analysis of epithelial cells in NT, pre, E, A, LN-in, LN-out, 

LN-normal, and R samples. The merged result is showed in (a) and separate results 

are shown in (b). 

 

3. The authors identify POSTN+ fibroblasts and SPP1+ macrophages as key stromal 

cell types involved in tumor progression, and a primary claim related to poor outcomes 

is from analysis of TCGA RNA-seq data. These findings should be contextualized with 

prior research. For example, Luo et al., Nature Communications, 2022 describe an 

interaction between CAFs and SPP1+ macrophages using scRNA-seq data. Wenhua et 

al., Cancer Medicine, 2023 report that overall POSTN expression in the TCGA cohort 

is not associated with survival. In addition, Bie & Zhang, J Immunol Res, 2021 find a 

similar association between SPP1 and survival in TCGA. 

Response: Thank the reviewer’s valuable comments. We have contextualized our 

results with previous studies in discussion section in revised manuscript (highlighted). 

The Luo et al. [29] identified the interaction between CAFs and SPP1+ macrophages, 

however, they didn’t distinguish which subpopulation of CAFs has the stronger 

interaction with SPP1+ macrophages, and they only described their results in tumor but 

did not distinguish tumor stages. The studies of Wenhua et al. [30] and Bie & Zhang 

[31] only reported the correlation of individual gene expression and survival. In this 

study, we revealed the dynamic alteration and interaction POSTN+ fibroblasts and 

SPP1+ macrophages during the HNSCC development and progression, which provided 

an important insight to investigate the roles of dynamic stromal microenvironment in 

HNSCC development. 

 

Other comments: 

1. The authors should provide histologic evidence to validate the identity of each 

sample analyzed – this is particularly important for pre-cancer samples to validate this 

designation histopathologically. 



Response: Thanks for the reviewer’s advice. We have added H&E images to 

Supplementary Fig.1a. 

 

2. It is unclear how the authors designate early (E) vs. advanced (A) tumors. From Table 

S1, it appears that a T2N1 sample (P13) was listed as early, while a T3N1 sample (P8) 

was listed as advanced. Based on AJCC staging of oral cancers, both of these patients 

would be classified as overall stage III, making it unclear what differentiates the two. 

The analysis should be redone with a more consistent classification. 

Response: Thanks for the reviewer’s question. Actually we designated the clinical stage 

based on AJCC (ver.8) instruction. Briefly, clinical I-II stages were classified into early 

(E) stage and clinical III-IV stages were designated to advanced (A) stage. As for P13, 

we have made a mistake on his N stage assessment: his lymph node was swollen but 

showed pathologically negative in the end. We labeled the wrong information in the 

original table but we have revised clinical information in the latest manuscript. We are 

sorry for making you confused! 

 

3. How was fibroblast and myeloid cell clustering conducted? Can the authors validate 

fibroblast and myeloid clusters in the context of published work? For example, Galbo 

et al., Clinical Cancer Research, 2021 identify 6 pan-cancer CAF subtypes – can the 

authors validate their own clustering in the context of these subtypes? 

Response: According to the reviewer’s suggestion, we have calculated pan-cancer CAF 

signature expression level on our fibroblast subtypes [32] (maker genes listed in 

Supplementary Table 4) (Fig. R22). We found that RSPO1+ fibroblasts, SFRP1+ 

fibroblasts, and CCL19+ fibroblasts showed iCAF phenotypes, SEMA4A+ fibroblasts 

showed highest iCAF2 signature score. Proliferating fibroblasts are similar to pCAFs. 

Notably, POSTN+ fibroblasts tend to be dCAF (p < 2.2e-16), related to desmoplastic 

component production, which is consistent with results in our own research. We have 

added these results in the revised manuscript, and added Fig. R22b as Supplementary 

Fig. 3g. 

 

Fig. R22. Comparison of our fibroblast subtypes to pan-cancer CAF subtypes. 

Violin and box plots show the scores of pan_myCAF signature (a), pan_dCAF signature 

(b), pan_iCAF signature (c), pan_iCAF2 signature (d), and pan_pCAF signature (e) in 

our fibroblast subpopulations. 

 



4. The immunofluorescence images provided all need to be brighter and clearer in order 

to enable independent interpretation of their utility in validating the findings of the 

sequencing analysis. 

Response: Sorry for bringing the reviewer the bad experience in reviewing. We have 

adjusted the brightness and resolution of all immunofluorescence figures in the revised 

manuscript. 

 

5. Please clarify what CD8-Tex cells are and how these are identified. 

Response: The CD8_Tex means exhausted CD8+ T cells and their markers have been 

shown in the dot plot in Supplementary Fig. 3j. 

 

6. The authors provide a variety of ligand-receptor pairs across CD8 Tex and tumor 

cells suggesting bidirectional signaling that is upregulated during extranodal extension. 

However, they do not provide any validation of these findings, making it unclear 

whether these are just an artifact of multiple hypothesis testing that results from analysis 

of large scale sequencing data or true biologically meaningful results. In the absence of 

additional validation, the authors should tone down their claims, particularly related to 

tumor cell reprogramming.  

Response: Thank you for the reviewer’s comments, as for the validation of results in 

lymph node metastasis section, actually we turned to our validation cohort 3 to analyze 

pERK expression level between ENE- and ENE+ samples (Fig. R8, please refer to the 

response of the Reviewer #1’s comment 9). We found that pERK+ epithelial ratio is 

higher in ENE+ samples, which indicated that tumor cells in ENE+ lymph nodes showed 

higher ERK signaling activation level. What’s more, correlation analysis showed 

pERK+
 epithelial ratio is positively correlated with CXCL13+ Tex ratio, which 

suggested that CXCL13+ Tex may induce ERK pathway activation during lymph node 

metastasis process. 

 

7. The authors provide an analysis of differentially expressed genes in recurrent vs. 

advanced stage cancers and relate their analyses to potential therapeutic targets. 

However, given the small number of samples, these results should be validated using 

previously published data or functional experiments.  

Response: We have validated the results of Fig. 6 in two public datasets in scRNA-seq 

and bulk RNA-seq to obtain the consistent results (Please refer to the response of the 

Reviewer #1’s comment 10). 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have addressed most of my questions and concerns to improve the quality and impact of 

this manuscript. However, the analysis of survival data for TCGA-HNSC as a validation cohort remains 

a weakness of the study. Although the authors have included experimental data from immunostaining 

of tissue samples and in vitro cell culture, the main conclusions are primarily based on in silico 

bioinformatics analysis, and the lack of compelling experimental evidence for causality and underlying 

mechanism of key findings limits the enthusiasm for this manuscript. Before publishing this study, the 

following issues must be addressed: 

1. Clinical variables selected for multivariate Cox regression models, in particular age and sex, are not 

the most relevant prognostic risk factors for the TCGA-HNSC cohort. The authors need to include other 

variables with a significant impact on overall survival, such as HPV status or resection margin, for the 

analysis shown in Suppl. Fig. 2i and 2t, Suppl. Fig. 3c-d and Suppl. Fig. 4d. 

2. Suppl. Fig. 2h indicates a median selection for cluster 4, but the number of cases is different (high 

n=77 and low n=417) – please correct. 

3. Fig. 2L shows experimental data with TFDP1 overexpression in SCC9 cells and silencing in Cal27 

cells. Please provide adequate controls for overexpression and gene silencing by Western blot analysis. 

Did TFDP1 overexpression or silencing have any effect on the survival or proliferation of the 

transfected cells compared to mock controls, which could confound the migration and invasion data 

presented? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Thank you for the response and revisions. I am grateful to the authors attempt to orthogonally 

validate their findings in the numerous head and neck scRNAseq databases currently available. These 

would undoubtedly strengthen the findings of this manuscript. For the tumor samples, apart from 

showing the individual/patient level trajectory plots, I feel that the authors should admit to the 

limitations of the combined plots for tumor cells. Apart from these, I feel that the authors have 

satisfactorily responded to most of the reviewers queries. Can I also request that the authors not only 

deposit the scRNAseq data but also the metadata with the clinicopathologi/demographic details for 

each patient. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

While the authors address some of my concerns, there are others that are not adequately addressed. 

Please see below for my point-by-point response to the authors' responses. 

 

Overall, the biggest concern remains the novelty of the present work. The authors state, in the 

introduction, that "Choi et al explored..." Given the strong similarities in methodology between Choi et 

al and the present work, the authors should clearly define within the introduction what they aim to 

explore and how they expect their methodology to produce different or novel results. While the 

authors do acknowledge ENE and recurrence as two areas of interest, these are not the primary focus 

of the paper. 

 

In addition, there are grammatical errors throughout the manuscript that need to be corrected prior to 

consideration for publication. 

 

Major Comments: 



1. While the authors perform scoring for the malignant and fibroblast cell subpopulations in Puram et 

al, the interpretation provided is not adequate. 

a. Regarding C1, a high score for cell cycle markers does not necessarily indicate a “more malignant” 

phenotype and should not be described as such. The authors’ finding that CibersortX deconvolution of 

TCGA RNA-seq data suggests an association between C1 and survival should be discussed further – is 

it simply that more proliferative tumors have a worse prognosis? Has this been shown previously? This 

should either be contextualized or removed. 

b. C2 appears highest in p-EMT and may indicate this subset of cells, rather than an epithelial 

differentiation population. Puram et al showed an association between p-EMT and clinicopathologic 

outcomes in TCGA data – does the same association hold with subpopulation C2? 

c. Fibroblast subtypes do not appear to cluster cleanly with CAF1, CAF2, and myofib, which is not 

surprising given differences in sequencing techniques used. However, the authors should still attempt 

to better categorize the CAF subpopulations beyond just descriptions based on single highly expressed 

genes. 

 

2. While I appreciate the technical difference between including and excluding fibroblast subtypes from 

pseudotime analysis, this work still lacks a specific discussion of why it aims to utilize this subtle 

difference in methodology to investigate a novel question and why this difference in methodology is 

meaningful. 

a. The results should also more closely be related to those of Choi et al given the similarities in 

methodology. Without this explicit context, it is unclear whether this is merely a confirmatory paper, or 

one with a novel approach/findings. 

b. Figure R21 is not adequately labeled for the reviewer to draw independent conclusions. It appears 

to show that cells in the LN-in sample are primarily along S2 and S3, while cells in LN-out are 

primarily along S1 and S3 – how do the authors reconcile this with cells in the LN-normal sample also 

being along S1 and S3? 

 

3. Thank you. 

 

Other Comments: 

1. Thank you. 

 

2. Thank you. 

 

3. In this case, what do the authors view as key differences between the multiple fibroblast clusters 

that correspond to iCAF? Are these all subtypes of inflammatory CAFs? Do they all express markers 

that suggest an interaction with the immune system? Should they better be represented as a single 

cluster? In particular, it is unclear to the reviewer from Figure 3A that RSPO1+ and SFRP1+ fibroblasts 

should be considered 2 separate clusters. In addition, the authors do not address my question about 

myeloid cell clustering – how was the number of clusters decided, and what is the significance of the 

different macrophage and dendritic cell clusters? 

 

4. Despite some improvement, the images are still too dark and low power to independently interpret. 

For example, in Figure 3K, in the top right panel, there appear to be a lot more POSTN+ cells; 

however, it is unclear whether this is just a stromal rich area or whether there is actually epithelial 

tumor present within this section. An alternate, clearer representative section should be chosen, or 

corresponding H&E sections should be provided for confirmation that tumor is present. 

 

5. Thank you. 

 

6. Thank you. 

 

7. Thank you. 



                           Response Letter 

 

Reviewer1 

The authors have addressed most of my questions and concerns to improve the quality 

and impact of this manuscript. However, the analysis of survival data for TCGA-HNSC 

as  a  validation  cohort  remains  a  weakness  of  the  study. Although  the  authors  have 

included experimental data from immunostaining of tissue samples and in vitro cell 

culture, the main conclusions are primarily based on in silico bioinformatics analysis, 

and  the  lack  of  compelling  experimental  evidence  for  causality  and  underlying 

mechanism of key findings limits the enthusiasm for this manuscript. Before publishing 

this study, the following issues must be addressed. 

Response:  Thanks  the  reviewer  for  the  careful  evaluation  and  we  have  performed 

additional analysis to the reviewer’s concern. 

 

1. Clinical variables selected for multivariate Cox regression models, in particular age 

and sex, are not the most relevant prognostic risk factors for the TCGA-HNSC cohort. 

The authors need to include other variables with a significant impact on overall survival, 

such as HPV status or resection margin, for the analysis shown in Suppl. Fig. 2i and 2t, 

Suppl. Fig. 3c-d and Suppl. Fig. 4d. 

Response: Thank the reviewer for the suggestion. We have replaced gender and age 

factors with surgical margin status and HPV status in the multivariate Cox regression 

model analysis and found that C1 of malignant epithelial cells, POSTN+ fibroblasts, 

SPP1+ macrophages, TFDP1, and the interaction signature score of POSTN+ fibroblasts 

and SPP1+ macrophages are independent predictors for HNSCC patients (Figure for 

Reviewer [Fig. R] 1). Due to the fact that only 77 individuals in the TCGA-HNSCC 

cohort have concurrent information on HPV, margin status, and survival information, 

we have included individuals without HPV information into the multivariate regression 

analysis, designating them as the 'Other' group. We added these results in the revised 

manuscript,  and  added  Fig.  R1a  as  Supplementary  Fig.  2i,  Fig.  R1b  as 

Supplementary Fig. 2t, Fig. R1c-d as Supplementary Fig. 3c-d, and Fig. R1e as 

Supplementary Fig. 4d.   

 



 

Fig. R1. C1 of malignant epithelial cells, POSTN+ fibroblasts, SPP1+ macrophages, 

TFDP1, and the interaction signature score of POSTN+ fibroblasts and SPP1+ 

macrophages are independent predictors. Multivariate Cox regression model 

analysis, which included the factors of surgical margin status, TNM status, HPV status 

and the deconvoluted score of C1 of malignant epithelial cells (a), expression level of 

TFDP1 (b), the top 50 signature score of POSTN+ fibroblasts (c), the top 50 signature 

score of SPP1+ macrophages (d), and the interaction signature score of POSTN+ 

fibroblasts and SPP1+ macrophages (e) in the TCGA-HNSCC data. 

 

2. Suppl. Fig. 2h indicates a median selection for cluster 4, but the number of cases is 

different (high n=77 and low n=417) – please correct. 

Response: Based on the CIBERSORTx algorithm, we calculated the proportion of each 

single cell type within the TCGA-HNSCC samples. Among the 494 TCGA-HNSCC 

samples used for survival analysis, there are 417 samples where the proportion of 



cluster 4 is zero, and 77 samples where it is not zero. Therefore, there is an 

inconsistency in the number of samples for cluster 4 grouping. 

 

3. Fig. 2L shows experimental data with TFDP1 overexpression in SCC9 cells and 

silencing in Cal27 cells. Please provide adequate controls for overexpression and gene 

silencing by Western blot analysis. Did TFDP1 overexpression or silencing have any 

effect on the survival or proliferation of the transfected cells compared to mock controls, 

which could confound the migration and invasion data presented? 

Response: We have performed Western blot analysis to confirm the overexpression 

(OE) and gene knockdown (KD) efficiency of TFDP1 in SCC9 and Cal27 cell lines 

(Fig. R2). As for the proliferation capability, actually we have done CCK8 assays on 

cells with TFDP1 OE/KD and found no significant differences between OE/KD group 

and the control group (Fig. R3). 

 

 

Fig. R2. Western blot analysis of TFDP1 of Cal27 and SCC9 cell lines with 

TFDP1 overexpression and knockdown. 

 

 

Fig. R3. Relative viability evaluated by CCK8 assay of Cal27 (a) and SCC9 (b) 

cell lines with TFDP1 overexpression and knockdown. 

  



Reviewer2 

1. Thank you for the response and revisions. I am grateful to the authors attempt to 

orthogonally validate their findings in the numerous head and neck scRNA-seq 

databases currently available. These would undoubtedly strengthen the findings of this 

manuscript. For the tumor samples, apart from showing the individual/patient level 

trajectory plots, I feel that the authors should admit to the limitations of the combined 

plots for tumor cells. Apart from these, I feel that the authors have satisfactorily 

responded to most of the reviewers queries. Can I also request that the authors not only 

deposit the scRNAseq data but also the metadata with the 

clinicopathologi/demographic details for each patient. 

Response: Thank the reviewer for his patience and valuable suggestions. We have 

added limitation description to the discussion section (highlighted). In the meantime, 

we have uploaded matrix data on Mendeley database (https://data.mendeley.com/) with 

the metadata sheet. As long as the article is published, we will release the data with the 

accession ID. 

  



Reviewer3 

While the authors address some of my concerns, there are others that are not adequately 

addressed. Please see below for my point-by-point response to the authors' responses. 

 

Overall, the biggest concern remains the novelty of the present work. The authors state, 

in the introduction, that "Choi et al explored..." Given the strong similarities in 

methodology between Choi et al and the present work, the authors should clearly define 

within the introduction what they aim to explore and how they expect their 

methodology to produce different or novel results. While the authors do acknowledge 

ENE and recurrence as two areas of interest, these are not the primary focus of the paper. 

In addition, there are grammatical errors throughout the manuscript that need to be 

corrected prior to consideration for publication. 

Response: Thank the reviewer for his valuable comments. As for the novelty of the 

present work, we have added related discussion in the introduction and discussion 

section (highlighted). As for the grammatical errors, we have revised the manuscript 

thoroughly for additional English language editing. 

 

Major Comments: 

1. While the authors perform scoring for the malignant and fibroblast cell 

subpopulations in Puram et al, the interpretation provided is not adequate. 

1.1 Regarding C1, a high score for cell cycle markers does not necessarily indicate a 

“more malignant” phenotype and should not be described as such. The authors’ finding 

that CibersortX deconvolution of TCGA RNA-seq data suggests an association between 

C1 and survival should be discussed further – is it simply that more proliferative tumors 

have a worse prognosis? Has this been shown previously? This should either be 

contextualized or removed.  

Response: We admit that it is inappropriate to claim “C1 showed high expression in 

cell cycle signature, indicating its more malignant phenotype than other clusters” in the 

last response letter since a higher proliferation pattern does not necessarily mean a more 

malignant phenotype and lead to poorer outcomes. Here, we constructed the CellCycle 

signature based on the gene module in Puram’s work [1] and we found that patients 

with higher expression of CellCycle signature in the TCGA-HNSCC cohort showed 

poorer OS (Fig. R4a). This result indicated that although poor outcomes were not only 

caused by cell proliferation, high proliferation phenotype was indeed associated with 

poor outcomes. Moreover, we evaluated several malignant phenotype scores among the 

five clusters and observed that C1 owned highest scores, such as oxidative 

phosphorylation, E2F_targets, and MYC_targets (Fig. R4b), supporting our conclusion 

that C1 showed higher malignant phenotypes than other clusters. 



 

Fig. R4. Analysis of biological characteristics of C1. (a) Kaplan-Meier curves show 

overall survival in CellCycle-high and –low in TCGA-HNSCC cohort. P < 0.05 in the 

two-sided log-rank test was considered statistically significant. (b) Violin and box plots 

show the score of different signatures of malignant cell subpopulations. 

 

1.2 C2 appears highest in p-EMT and may indicate this subset of cells, rather than an 

epithelial differentiation population. Puram et al showed an association between p-EMT 

and clinicopathologic outcomes in TCGA data – does the same association hold with 

subpopulation C2? 

Response: In order to analyze the association between clinical outcomes and specific 

clusters, we revisited Puram’s work [1] and found that they used in-house data rather 

than public TCGA-HNSCC cohort when comparing the clinical characteristics between 

p-EMT -high and –low groups. However, there are only 9 patients with related clinical 

information (e.g. stage) in our cohort (Supplementary Table 1), which is not sufficient 

for statistical analysis. Moreover, although p-EMT subcluster could be an interesting 

topic, it was not our focus in the current study. 

 

1.3 Fibroblast subtypes do not appear to cluster cleanly with CAF1, CAF2, and myofib, 

which is not surprising given differences in sequencing techniques used. However, the 

authors should still attempt to better categorize the CAF subpopulations beyond just 

descriptions based on single highly expressed genes. 

Response: Firstly, we mapped the top 50 gene signature of our fibroblast 

subpopulations on Puram’s fibroblast UMAP plots [1] (Fig.R5a). We found that 

POSTN+ fibroblasts signature was correspondent to CAF1 specifically and SFRP1+ 

fibroblasts were almost coincident with CAF2. Regarding RSPO1+ fibroblasts, only a 

subset of cells within CAF2 display the features of this subpopulation. However, other 

subclusters could not been matched, which may due to the differences in sequencing 

techniques or patients heterogeneity. 

In order to better characterize CAF subpopulations in our data, we performed GO 

analysis on their marker genes and found these subpopulations exhibited different 

functions (Fig.R5b): fibroblasts were associated with cell matrix adhesion and fiber 

organization, which referred to physical functions of fibroblasts; RSPO1+ fibroblasts 

were associated with mesenchymal cell differentiation and bone mineralization, which 



may promote mesenchymal differentiation and bone formation in the oral cavity; 

POSTN+
 fibroblasts were associated with extracellular matrix organization and 

macrophage migration, which excluded T cell infiltration while recruited pro-tumor 

macrophages; SFRP1+ fibroblasts were associated with neutrophil activation and 

inflammatory response, showing an inflammatory-inducing function; SEMA4A+ 

fibroblasts were associated with hypoxia response, which could be a stressed cluster in 

the tumor microenvironment; CCL19+
 fibroblasts were associated with leukocyte 

migration, which may enhance lymphocyte infiltration in the TME; 

DES_myofibroblasts were associated with muscle cell differentiation and muscle fiber 

development, just as physical function of myofibroblasts; and proliferating fibroblasts 

were a proliferating cluster, enriching in cell cycle-related pathways. Consequently, 

rather than generally categorizing subpopulations as CAF1, CAF2, and myofibroblast, 

the identification of clusters by marker genes enables a more precise and targeted study 

of these distinct groups. 

 

Fig. R5. Analysis of fibroblast subpopulations. (a) Feature plots show expression of 

different fibroblast subpopulations Top 50 signatures of our data on fibroblasts in 

Puram’s work. (b) Bubble plot of GO analysis for differentially expressed genes in 

fibroblast subpopulations. 

 

2. While I appreciate the technical difference between including and excluding 

fibroblast subtypes from pseudotime analysis, this work still lacks a specific discussion 

of why it aims to utilize this subtle difference in methodology to investigate a novel 

question and why this difference in methodology is meaningful. 

Response: Choi's research focused on the relationship between epithelial cells and 

fibroblasts in the tumor progression process, hence he combined fibroblasts and 

epithelial cells for trajectory analysis. However, our study focused on epithelial cells 



and we primarily wanted to figure out the differentiation trajectory within tumor cells. 

Therefore, we did not include fibroblasts with epithelial cells in the pseudotime analysis. 

Our method for analyzing the impact of different cell types on each other in the entire 

tumor microenvironment to promote tumor progression is detailed cell-cell interaction 

analysis. Through this analysis, we have discovered the reprogramming role of cellular 

interaction between SPP1+ macrophages and POSTN+ fibroblasts and tumor cells, thus 

reshaping the desmoplastic tumor microenvironment. 

 

2.1 The results should also more closely be related to those of Choi et al given the 

similarities in methodology. Without this explicit context, it is unclear whether this is 

merely a confirmatory paper, or one with a novel approach/findings. 

Response: We have added comparison of Choi’s work with our study and related 

discussion about the novelty of our work in the introduction and discussion section 

(highlighted). 

 

2.2 Figure R21 is not adequately labeled for the reviewer to draw independent 

conclusions. It appears to show that cells in the LN-in sample are primarily along S2 

and S3, while cells in LN-out are primarily along S1 and S3 – how do the authors 

reconcile this with cells in the LN-normal sample also being along S1 and S3? 

Response: We generated density plots of pseudotime for cells from LN-out and LN-

normal groups. As shown in the Fig. R6, although cells from LN-normal and LN-out 

all distributed in S3, there are significant differences in the distribution of pseudotime 

of cells from the two groups. To be more specific, at the end of S3, cells from the LN-

out group showed significantly higher pseudotime density than cells from the LN-

normal group, which indicated that epithelial cells in LN-out exhibited a more 

malignant pattern than those in LN-normal samples. 

 



Fig. R6. The density plot of the pseudotime of cells from LN-out and LN-normal 

samples. 

 

Other Comments: 

3.1 In this case, what do the authors view as key differences between the multiple 

fibroblast clusters that correspond to iCAF?  

Response: According to Galbo’s study, the marker genes of iCAFs included CFD, C3, 

CXCL14, and CXCL12, who were enriched in inflammatory functions by GO analysis 

[2]. And in our study, we found that RSPO1+ fibroblasts, SFRP1+ fibroblasts, and 

CCL19+ fibroblasts showed high iCAF scores. However, these subpopulations are 

different from the following perspectives. First, as showed in Fig. 3C and 

Supplementary Fig. 3a, with the progression of HNSCC, the cell ratios of these 

clusters changed in different patterns. Specifically, the proportion of RSPO1+ 

fibroblasts gradually decreased during HNSCC progression, indicating that this 

subpopulation may occur more in the normal tissues. Second, we compared 

differentially expressed genes (DEGs) among these three subpopulations and found that 

the top 2 marker gene of SFRP1+ fibroblasts, PLA2G2A and CFD ranked top in the 

marker genes of iCAFs. In contrast, marker genes of RSPO1+ fibroblasts and CCL19+ 

fibroblasts did not showed in the top genes of iCAFs. Additionally, the functional 

annotation showed that RSPO1+ fibroblasts were associated with physical development 

(e.g. Regulation of lymphocyte proliferation, mesenchymal cell differentiation, and 

Bone mineralization), SFRP1+ fibroblasts were associated with inflammatory response, 

and CCL19+ fibroblasts were associated with leukocyte migration (Fig. R7).  

In summary, we claimed that although RSPO1+ fibroblasts, SFRP1+ fibroblasts, and 

CCL19+ fibroblasts all showed relatively high iCAFs scores, the biological functions 

of these clusters were not all related to the inflammatory response, which in turn 

supported the advantage of our method that to define subpopulations with marker genes. 



 

Fig. R7. Bubble plot of GO analysis for differentially expressed genes in RSPO1+ 

fibroblasts, SFRP1+ fibroblasts, and CCL19+ fibroblasts. 

3.2 Are these all subtypes of inflammatory CAFs?  

Response: They are not all subtypes of iCAFs. 

3.3 Do they all express markers that suggest an interaction with the immune system? 

Should they better be represented as a single cluster? 

Response: As shown in Fig. R7, RSPO1+
 fibroblasts were related to lymphocyte 

proliferation, SFRP1+ fibroblasts were related to neutrophil activation, and CCL19+ 

fibroblasts were related to leukocyte chemotaxis. Therefore, we hypothesize that they 

may have interactions with other immune cells. Then, we calculated interaction weight 

between RSPO1+/SFRP1+/CCL19+ fibroblasts and other immune cells and found that  

although they all interact with immune cells, the interaction strengths are diversified 

(Fig. R8). For example, the interaction strengths of CD8+ T cell to them rank as: 

CCL19+ fibroblasts > RSPO1+ fibroblasts > SFRP1+ fibroblasts, while the interaction 

strengths of B cells to them rank as: SFRP1+ fibroblasts > CCL19+ fibroblasts > 

RSPO1+ fibroblasts, showing differences between these subpopulations. 

 



 

Fig. R8. Lollipop plot shows the interaction strengths by R package CellChat 

between RSPO1+/SFRP1+ /CCL19+ fibroblasts and other immune cells. 

 

3.4 In particular, it is unclear to the reviewer from Figure 3A that RSPO1+ and SFRP1+ 

fibroblasts should be considered 2 separate clusters.  

Response: At the resolution of 0.5 used for our cluster identification, RSPO1+ 

fibroblasts and SFRP1+ fibroblasts emerged as two distinct groups: their interaction 

strengths with various immune cells differ significantly, as depicted in Fig. R8. 

Moreover, GO analysis of their marker genes revealed distinct functional profiles for 

each, further emphasizing their unique roles, as show in Fig. R9. To be more specific, 

RSPO1+ fibroblasts were associated with regulation of lymphocyte proliferation, 

mesenchymal cell differentiation, and bone mineralization while SFRP1+ fibroblasts 

were associated with inflammatory response. Therefore, these two subpopulations 

should not be identified as one single cluster. 



 

Fig. R9. Bubble plot of GO analysis for differentially expressed genes in RSPO1+ 

fibroblasts and SFRP1+ fibroblasts. 

 

3.5 In addition, the authors do not address my question about myeloid cell clustering – 

how was the number of clusters decided, and what is the significance of the different 

macrophage and dendritic cell clusters?  

Response: For fibroblasts, we initially identified the clusters as belonging to the general 

categories of fibroblasts using marker genes such as COL1A1, ACTA2, and PDGFRB. 

Then, by setting the resolution to 0.5, we further classified the subgroups based on each 

cluster's markers, such as POSTN in POSTN+ fibroblasts. 

As for myeloid cells, we first determined that a cluster belonged to the myeloid cell 

category using marker genes like CD68. After setting the resolution to 0.5, we further 

classified the subgroups based on each cluster's markers. For distinguishing 

macrophages and dendritic cells (DCs), we mainly used characteristic markers of DCs 

such as CDC1, CLEC9A, and LILRA4; while for macrophages, markers like SPP1, 

FOLR2 were used to define the specific subgroups. 

 

4. Despite some improvement, the images are still too dark and low power to 

independently interpret. For example, in Figure 3K, in the top right panel, there appear 

to be a lot more POSTN+ cells; however, it is unclear whether this is just a stromal rich 

area or whether there is actually epithelial tumor present within this section. An 

alternate, clearer representative section should be chosen, or corresponding H&E 

sections should be provided for confirmation that tumor is present. 

Response: We are sorry for the dark image in Fig. 3 and we have thoroughly 

upregulated the brightness and replaced the representative images of Fig. 3K (shown 



below as Fig. R10.). 

 

Fig. R10. Representative images of multiplex immunohistochemistry (mIHC) 

staining of POSTN+ fibroblasts (POSTN+ α-SMA+ double positive) and SPP1+ 

macrophages (SPP1+ CD68+ double positive) in HNSCC tumor and nonmalignant 

samples. Scale bar = 50 μm. The quantitative results are shown on the right. Data 

represent mean ± SD. p values were calculated by Kruskal-Wallis test. 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors responded satisfactorily to points 2 and 3 of my concerns. However, regarding point 1, the 

number of HPV-positive tumors (n=17) for TCGA-HNSC is underestimated in the multivariate Cox 

regression model analysis. In the past, several studies have used viral transcript reads from RNA-seq 

data to infer a more appropriate number of HPV-positive tumors for this cohort (e.g., PMID: 

27339696, PMID: 36774364). 

Authors must also check the reference list and proper citation in the main text. For example, on page 

3 lines 91-94 and pages 12-13 lines 502-507, Choi et al. does not match the reference [8]. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

I thank the authors for their revisions and clarifications. The authors have sufficiently addressed my 

concerns regarding the comparison between Choi et al and the present work through the added text in 

the introduction and discussion. This text significantly strengthens the work by placing it in context of 

published literature. I appreciate the additional clarifications regarding methodology and interpretation 

of results. 

 

Minor comments: 

1) There is a grammatical error in line 513: “…were stratifies…” 

2) In line 522, the authors state, “…uncovered the underlying mechanism of malignant cell-mediated 

tumor relapse, and contributed to precise therapeutics for patients with primary and recurrent tumors 

according to the distinct treatment target selections. This conclusion is overstated and should be toned 

down. 



                          Response Letter 

Re: NCOMMS-23-19404C 

Reviewer1 

1. The authors responded satisfactorily to points 2 and 3 of my concerns. However, 

regarding point 1, the number of HPV-positive tumors (n=17) for TCGA-HNSC is 

underestimated in the multivariate Cox regression model analysis. In the past, several 

studies have used viral transcript reads from RNA-seq data to infer a more appropriate 

number of HPV-positive tumors for this cohort (e.g., PMID: 27339696, PMID: 

36774364). 

Response: Thank the reviewer for the comments and we have performed additional 

analysis to the reviewer’s concern. We used HPV positive samples in TCGA-HNSC 

cohort identified by Song Cao et al. [1] and by Abdurrahman Elbasir et al. [2] for 

multivariate Cox regression analysis (Figure for Reviewer [Fig. R] 1). We have 

replaced previous figures with new ones and used Fig. R1a as Supplementary Fig. 2i, 

Fig. R1b as Supplementary Fig. 2t, Fig. R1c-d as Supplementary Fig. 3c-d, and Fig. 

R1e as Supplementary Fig. 4d. 



 

Fig. R1. C1 of malignant epithelial cells, TFDP1, POSTN+ fibroblasts, SPP1+ 

macrophages, and the interaction signature score of POSTN+ fibroblasts and 

SPP1+ macrophages are independent predictors. Multivariate Cox regression model 

analysis, which included the factors of surgical margin status, TNM status, HPV status 

and the deconvoluted score of C1 of malignant epithelial cells (a), expression level of 

TFDP1 (b), the top 50 signature score of POSTN+ fibroblasts (c), the top 50 signature 

score of SPP1+ macrophages (d), and the interaction signature score of POSTN+ 

fibroblasts and SPP1+ macrophages (e) in the TCGA-HNSCC data. 

 

2. Authors must also check the reference list and proper citation in the main text. For 

example, on page 3 lines 91-94 and pages 12-13 lines 502-507, Choi et al. does not 

match the reference [8]. 

Response: Thank the reviewer for the careful evaluation and we have modified citation 

in the text. 

 



Reviewer3 

I thank the authors for their revisions and clarifications. The authors have sufficiently 

addressed my concerns regarding the comparison between Choi et al and the present 

work through the added text in the introduction and discussion. This text significantly 

strengthens the work by placing it in context of published literature. I appreciate the 

additional clarifications regarding methodology and interpretation of results. 

 

Minor comments: 

1) There is a grammatical error in line 513: “…were stratifies…” 

Response: We have corrected this error in the text. 

 

2) In line 522, the authors state, “…uncovered the underlying mechanism of malignant 

cell-mediated tumor relapse, and contributed to precise therapeutics for patients with 

primary and recurrent tumors according to the distinct treatment target selections. This 

conclusion is overstated and should be toned down. 

Response: We have modified inappropriate descriptions in the discussion section 

(highlighted).  

 

 

Reference: 

1. Cao S, Wendl MC, Wyczalkowski MA, Wylie K, Ye K, Jayasinghe R, et al. 

Divergent viral presentation among human tumors and adjacent normal tissues. Sci Rep. 

2016;6:28294. 

2. Elbasir A, Ye Y, Schäffer DE, Hao X, Wickramasinghe J, Tsingas K, et al. A deep 

learning approach reveals unexplored landscape of viral expression in cancer. Nat 

Commun. 2023;14(1):785. 
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