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Supplementary method 1: Image quality check for MUSE 58 

T1-weighted MRIs were first quality checked (QC) for motion, image artifacts, or restricted 59 

field-of-view. Additional QC was performed as follows: First, the images were examined by 60 

manually evaluating for pipeline failures (e.g., poor brain extraction, tissue segmentation, and 61 

registration errors). Furthermore, a second step automatically flagged images based on outlying 62 

values of quantified metrics; those images were re-evaluated. 63 

  64 
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Supplementary method 2: The definition of genomic loci, independent significant SNP, lead 65 

SNP, candidate SNP   66 

FUMA defined the significant independent SNPs, lead SNPs, candidate SNPs, and genomic risk 67 

loci as follows (https://fuma.ctglab.nl/tutorial#snp2gene): 68 

Independent significant SNPs 69 

They are defined as SNPs with P≤5×10-8 independent of each other at the user-defined r2 (set to 70 

0.6 in the current study). We further describe candidate SNPs as those in linkage disequilibrium 71 

(LD) with independent significant SNPs. FUMA then queries each candidate SNP in the GWAS 72 

Catalog to check whether any clinical traits have been reported to be associated with previous 73 

GWAS studies. 74 

Lead SNPs 75 

Lead SNPs are defined as independent significant SNPs that are also independent of each other at 76 

r2<0.1. If multiple independent significant SNPs are correlated at r2≥0.1, then the one with the 77 

lowest individual P-value becomes the lead SNP. If the r2 threshold is set to 0.1 for the independent 78 

significant SNPs, then they will constitute the identical set as the lead SNPs by definition. FUMA 79 

thus advises setting r2 to be 0.6 or higher. 80 

Genomic risk loci 81 

FUMA defines genomic risk loci to include all independent signals physically close or overlapping 82 

in a single locus. First, independent significant SNPs dependent on each other at r2≥0.1 are 83 

assigned to the same genomic risk locus. Then, independent significant SNPs with less than the 84 

user-defined distance (250 kilobases by default) away from one another are merged into the same 85 

genomic risk locus - the distance between two LD blocks of two independent significant SNPs is 86 

the distance between the closest points from each LD block. Each locus is represented by the SNP 87 

within the locus with the lowest P-value. 88 

  89 

https://fuma.ctglab.nl/tutorial%23snp2gene
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Supplementary note1: Seven sensitivity check analyses for the three primary GWASs on 90 

European ancestry populations 91 

We performed seven sensitivity check analyses to scrutinize the robustness of our primary 92 

GWASs on European ancestry populations. 93 

Split-sample GWAS 94 

P-value: 95 

We noted high concordance rates between the split1 (as discovery, 15,778<N<16,008) and split2 96 

(as replication, 15,778<N<16,008) GWASs. Specifically, for GM-BAG, we observed a 97 

concordance rate of 99% (3090 out of 3092 SNPs; P-value<0.05/3092), and for WM-BAG, the 98 

concordance rate reached 100% (116/116). FC-BAG did not achieve significant genome-wide 99 

results in the split-sample GWASs  100 

β value: 101 

We assessed the concordance of the β values between split1 and split2 GWASs. For GM-BAG, 102 

all the 3092 significantly replicated SNP (P-valure<0.05) showed the same sign of β values from 103 

the linear regression models (Pearson’s r=0.67; P-value<1x10-10). For WM-BAG, all the 116 104 

significantly replicated SNP (P-valure<0.05) showed the same sign (Pearson’s r=0.98; P-105 

value<1x10-10) (Supplementary Figure 1 and eFile 1).  106 

 107 

Sex-stratified GWAS 108 

P-value: 109 

In sex-stratified GWASs, the concordance rates were 100% (3072/3072, P-value<0.05/3072) for 110 

GM-BAG and 88.6% (116/131, P-value<0.05/131) for WM-BAG when comparing the male-111 

GWAS (as replication, 14,969<N<15,127) to female-GWAS (as discovery, 16,588<N<16,890). 112 

FC-BAG did not achieve significant genome-wide results.  113 
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β value: 114 

For GM-BAG, the 3072 significantly replicated SNP (P-valure<0.05) showed the same sign of β 115 

values from the linear regression models (Pearson’s r=0.36; P-value<1x10-10). For WM-BAG, 116 

the 116 significantly replicated SNP (P-valure<0.05) showed the same sign (Pearson’s r=0.99; P-117 

value<1x10-10) (Supplementary Figure 2 and eFile 2). 118 

 119 

Non-European GWAS 120 

P-value: 121 

The concordance rates of the GWASs using non-European ancestry populations (as replication, 122 

4646<N<5091) were low compared to the main GWASs using the European population: only 123 

13.78% for GM-BAG (277/2009; P-value<0.05) and 41.94% for WM-BAG (198/472; P-124 

value<0.05).  125 

β value: 126 

For GM-BAG, the 277 significantly replicated SNP (P-valure<0.05) showed the same sign of β 127 

values from the linear regression models (Pearson’s r=0.97; P-value<1x10-10). For WM-BAG, 128 

the 198 significantly replicated SNP (P-valure<0.05) showed the same sign (Pearson’s r=0.99; P-129 

value<1x10-10) (Supplementary Figure 3 and eFile 3) 130 

 131 

Mixed linear model GWAS 132 

P-value: 133 

A mixed linear model employed via fastGWA1 (as replication, 31,557<N<32,017) obtained 134 

100% concordance rates for GM (3382/3382), WM (521/521), and FC-BAG (2/2) compared to 135 

GWAS using PLINK linear regression. The genetic loci, genomic inflation factor (), and the 136 
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LDSC intercepts for GM, WM, and FC-BAG were similar between the PLINK and fastGWA 137 

analyses.  138 

β value: 139 

For GM-BAG, the 3382 significantly replicated SNP (P-valure<0.05) showed the same sign of β 140 

values from the linear regression models (Pearson’s r=1; P-value<1x10-10). For WM-BAG, the 141 

521significantly replicated SNP (P-valure<0.05) showed the same sign (Pearson’s r=1; P-142 

value<1x10-10). For FC-BAG, the 2 significantly replicated SNP (P-valure<0.05) showed the 143 

same sign.  (Supplementary Figure 4 and eFile 4).  144 

 145 

Machine learning model-specific GWAS 146 

We used GM-BAG to demonstrate this sensitivity check by comparing i) SVR using MUSE 147 

ROIs and ii) CNN using voxel images2 (GWAS summary statistics shared by the authors) to our 148 

main results obtained from Lasso using MUSE ROIs.   149 

P-value: 150 

When comparing the SVR using MUSE ROIs (as replication, MAE=4.43 years) to Lasso using 151 

MUSE ROIs (as discovery, MAE=4.39 years), we found a 100% concordance rate of the SNPs 152 

identified for the GM-BAG GWAS. The BAGs derived from the two machine learning models 153 

were highly correlated (r=0.99; P-value<1x10-10).  154 

When comparing the CNN using voxel-wise images (MAE~2.5 years2) to Lasso using 155 

MUSE ROIs (as discovery), we found an 82.70% concordance rate (2533; 319 missing SNPs) 156 

after Bonferroni correction (P-value<0.05/3063).   157 

β value: 158 



8 

 

 

 

When comparing the SVR using MUSE ROIs to Lasso using MUSE ROIs (as discovery), we 159 

found that the 3382 significantly replicated SNP (P-value<0.05) showed the same sign of β 160 

values from the linear regression models (Pearson’s r=1; P-value<1x10-10).  161 

When comparing the CNN using voxel-wise images (MAE~2.5 years2) to Lasso using 162 

MUSE ROIs (as discovery), we found that all 2762 significantly replicated SNP (P-valure<0.05) 163 

showed the same sign of β values from the linear regression models (Pearson’s r=1; P-164 

value<1x10-10). (Supplementary Figure 5 and eFile 5). 165 

 166 

Feature type-specific GWAS 167 

P-value: 168 

We finally found a 92.43% concordance rate of the SNPs identified in the GM-BAG GWAS 169 

using the 119 MUSE ROIs3 (as discovery, MAE=4.39 years) and voxel-wide RAVENS4 maps 170 

(as replication, P-value < 0.05/3382, MAE=5.12 years). The BAGs derived from the two types of 171 

features were significantly correlated (r=0.74; P-value<1x10-10). The brain age prediction 172 

performance using RAVENS showed marginal overfitting, with an MAE of 4.31 years in the 173 

training/validation/test dataset and an MAE of 5.12 years in the independent test dataset. 174 

β value: 175 

3183 significantly replicated SNP (P-valure<0.05) showed the same sign of β values from the 176 

linear regression models (Pearson’s r=0.99; P-value<1x10-10) (Supplementary Figure 6 and 177 

eFile 6) 178 

 179 

ADNI WGS GWAS 180 

P-value: 181 
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We evaluated the generalizability of the GM-BAG GWAS findings from the UKBB dataset to 182 

the ADNI whole-genome sequencing (WGS) data. When considering the concordance rate based 183 

on P-values, we observed a high concordance rate (83.57 %) for the GWASs performed using 184 

the ADNI WGS data (N=1104) as a replication dataset (N=2583 out of 3091; 291 SNPs missing 185 

from the ADNI data) using a nominal P-value threshold. No SNPs survived the Bonferroni 186 

correction.   187 

β value: 188 

However, it's noteworthy that the β values of these significant SNPs exhibited a significant 189 

correlation (r=0.83; P-value<1x10-10) between the two datasets. This observation underscores the 190 

importance of collecting genetic data within specific disease populations and throughout the 191 

entire lifespan (Supplementary Figure 7 and eFile 7).   192 
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Supplementary note2: Exemplary genomic locus linked to GM, WM, and FC-BAG 193 

The genomic locus (top lead SNP: rs534115641, Fig. 2C) linked to GM-BAG was mapped to 194 

multiple protein-encoding genes by position, eQTL, and chromatin interaction. The NSF gene, 195 

which encodes N-ethylmaleimide-sensitive fusion proteins, plays a key role in transferring 196 

membrane vesicles between cellular compartments. This gene has been linked to several 197 

conditions, including Parkinson's disease (PD)5, epithelial ovarian cancer6, cognitive traits7, and 198 

fibromuscular dysplasia8. The CRHR1 gene encodes a G protein-coupled receptor, which 199 

specifically binds to neuropeptides of the corticotropin-releasing hormone family. These 200 

neuropeptides are recognized as key regulators of the hypothalamic-pituitary-adrenal pathway. A 201 

prior GWAS9 corroborated the association of this gene with the response to environmental stress, 202 

providing substantive support for the engagement of the hypothalamic-pituitary-adrenal axis, the 203 

central nervous system, and the endocrine system in regulating stress response10. We also 204 

identified a highly polygenic genomic locus (top lead SNP: rs564819152, Fig. 2D) for WM-205 

BAG. This locus mapped to the SKIDA1, CASC10, MLLT10, and DNAJC1 genes – all implicated 206 

in various types of cancer. In contrast, the FC-BAG locus was novel and did not map to any 207 

genes. All mapped genes for GM and WM-BAG are presented in Supplementary Table 2.  208 

  209 
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Supplementary figure 1: Split-sample genome-wide association results  210 

 211 
Genome-wide associations are presented for split-sample analyses (split1 vs. split2 vs. all). 212 

Genomic loci were identified using a genome-wide P-value threshold [–log10(P-value) > 7.30]. 213 

The sample sizes for GM-European, GM-split1, and GM-split2 are 31557, 15778, and 15778, 214 

respectively. The sample sizes for WM-European, WM-split1, and WM-split2 are 31674, 15837, 215 

and 15837, respectively. The sample sizes for FC-European, FC-split1, and FC-split2 are 32017, 216 

16008, and 16008, respectively. 217 

  218 



12 

 

 

 

Supplementary figure 2: Sex-stratified genome-wide association results  219 

 220 
Genome-wide associations are presented for sex-stratified analyses (females vs. males). Genomic 221 

loci were identified using a genome-wide P-value threshold [–log10(P-value) > 7.30]. The sample 222 

sizes for GM-European, GM-female, and GM-male are 31557, 16558, and 14969, respectively. 223 

The sample sizes for WM-European, WM-female, and WM-male are 31674, 16693, and 14981, 224 

respectively. The sample sizes for FC-European, FC-female, and FC-male are 32017, 16890, and 225 

15127, respectively. 226 

  227 
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Supplementary figure 3: Non-European genome-wide association results  228 

 229 
Genome-wide associations are presented for non-European populations in the UKBB study. 230 

Genomic loci associated were identified using a genome-wide P-value threshold [–log10(P-231 

value) > 7.30]. The sample sizes for GM-non-European, WM-non-European, and FC-non-232 

European are 4646, 5091, and 4728, respectively.  233 

  234 
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Supplementary figure 4: fastGWA for mixed linear models  235 

 236 
Genome-wide associations are presented for European populations in the UKBB study using 237 

fastGWA vs. PLINK. Genomic loci associated were identified using a genome-wide P-value 238 

threshold [–log10(P-value) > 7.30]. The sample sizes for GM-all, WM-all, and FC-all are 31557, 239 

31674, and 32017 for PLINK, respectively. The sample sizes for GM-all, WM-all, and FC-all are 240 

31557, 31674, and 32017 for fastGWA, respectively. 241 

  242 
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Supplementary figure 5: Machine learning-specific GWAS  243 

 244 
Genome-wide associations are presented for GM-BAG derived from Lasso regression (shown in 245 

the main text) and SVR, and CNN using voxel-wise images (GWAS summary statistics shared 246 

by a previous study which achieved an MAE ~ 2.5 years). Refer to Fig. 1a in the reference 247 

paper2 for the Manhattan plot. Genomic loci associated were identified using a genome-wide P-248 

value threshold [–log10(P-value) > 7.30]. The sample sizes for GM-European-Lasso and GM-249 

European-SVR are 31557. 250 

  251 
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Supplementary figure 6: Feature type-specific GWAS  252 

 253 
Genome-wide associations are presented for GM-BAG derived from MUSE ROIs (shown in the 254 

main text) and RAVENS voxel maps. Genomic loci associated were identified using a genome-255 

wide P-value threshold [–log10(P-value) > 7.30]. The sample sizes for GM-European-SVR-256 

MUSE and GM-European-SVR-RAVENS are 31557. 257 

  258 
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Supplementary figure 7: Independent WGS dataset for GM-BAG GWAS  259 

 260 
Genome-wide associations are presented for GM-BAG derived from MUSE ROIs (shown in the 261 

main text) using UKBB imputed genotyping data vs. ADNI WGS data. Genomic loci associated 262 

were identified using a genome-wide P-value threshold [–log10(P-value) > 7.30]. The genetic 263 

quality check steps for the ADNI GWAS are detailed elsewhwere11. The GM-BAG was 264 

generated by training a Lasso regression model from the ground up, utilizing ADNI healthy 265 

control participants, and achieving a similar Mean Absolute Error (MAE) of 4.24 years. 266 

However, when we directly applied the trained model to the ADNI population using UKBB data, 267 

we observed a higher MAE, ranging from 4.39 to 9.16 years. This discrepancy could potentially 268 

be attributed to the fact that ADNI participants tend to be older than those in the UKBB dataset. 269 

For ADNI WGS data, we first convert the VCF files into plink binary format. We excluded 270 

related individuals (up to 2nd-degree) using the KING software for family relationship 271 

inference.10 Further QC steps are: excluding criteria were: i) individuals with more than 2% of 272 

missing genotypes; ii) variants with minor allele frequency (MAF) of less than 0.1%; iii) variants 273 

with larger than 5% missing genotyping rate; iv) variants that failed the Hardy-Weinberg test at 274 

1x10-5. We then removed duplicated variants from all 22 autosomal chromosomes. We also 275 

excluded individuals for whom either imaging or genetic data were not available. To adjust for 276 

population stratification,11 we derived the first 40 genetic principal components (PC) using the 277 

SmartPCA software12. The sample sizes for UKBB-GM-European-Lasso-MUSE and ADNI-278 

GM-European-Lasso-MUSE are 31557 and 1104, respectively. 279 

 280 

  281 
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Supplementary figure 8: Genetic correlation (gc) between the GM, WM, and FC-BAG 282 

using the LDSC software in the split-sample analyses 283 

 284 
A) Genetic correlation using the full samples. B) Genetic correlation using the split1 sample. C) 285 

Genetic correlation using the split2 sample. 286 

  287 



19 

 

 

 

Supplementary figure 9: Incremental R2 of the PRS derived by the PLINK C+T approach 288 

 289 
Incremental R2 of the PRS derived by the PLINK C+T approach to predict the GM, WM, and 290 

FC-BAG in the target/test data (i.e., the split2 GWAS population in the split-sample analyses). 291 

The y-axis indicates the proportions of phenotypic variation (GM, WM, and FC-BAG) that the 292 

PRS can significantly and additionally explain. The x-axis lists the seven P-value thresholds 293 

considered.   294 
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Supplementary figure 10: Results for the inverse Mendelian randomization for the seven 295 

clinical traits   296 

 297 
The inverse causal inference was performed using a two-sample Mendelian Randomization 298 

approach for seven selected clinical traits as outcome variables and GM, WM, and FC-BAG as 299 

exposure variables. Shapes (circle and rectangle) represent the Odds Ratio (OR), and its 95% 300 

confidence interval (CI) is also presented. The symbol # indicates that the tests pass the nominal 301 

P-value threshold (two-sided) of 0.05 but do not survive the FDR correction. Abbreviation: AD: 302 

Alzheimer's Disease; AST: Aspartate Aminotransferase; BMI: Body Mass Index; VLDL: Very 303 

Low-Density Lipoprotein. The exact statistics (e.g., P-value) are shown in Supplementary Data 304 

12. 305 

 306 

  307 
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Supplementary figure 11: Sensitivity check for all other significant exposure variables in 308 

the forward MR analyses for 1) breast cancer on GM-BAG, 2) diabetes on GM-BAG, and 309 

3) AD on WM-BAG. 310 

1) Sensitivity checks of causal effects of breast cancer on GM-BAG. A) Scatter plot indicates 311 

one potential outlier. B) Funnel plot shows no obvious asymmetry and points out two outliers. C) 312 

Single-SNP MR results. D) Leave-one-out analyses. Each dot represents the mean value of the 313 

estimated parameters, and the error bar displays its 95% confidence interval (C, D) or standard 314 

errors of the parameters (A). 315 

 316 
  317 
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2) Sensitivity checks of causal effects of type 2 diabetes on GM-BAG. A) Scatter plot for the 318 

heterogeneity of the causal effects. B) Funnel plot shows the asymmetry of the causal effects. C) 319 

Single-SNP MR results. D) Leave-one-out analyses. Each dot represents the mean value of the 320 

estimated parameters, and the error bar displays its 95% confidence interval (C, D) or standard 321 

errors of the parameters (A). 322 

 323 
  324 
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3) Sensitivity checks of causal effects of AD on WM-BAG. A) Scatter plot for the heterogeneity 325 

of the causal effects. B) Funnel plot shows no apparent asymmetry of the causal effects. C) 326 

Single-SNP MR results. D) Leave-one-out analyses. Each dot represents the mean value of the 327 

estimated parameters, and the error bar displays its 95% confidence interval (C, D) or standard 328 

errors of the parameters (A). 329 

 330 
  331 
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Supplementary figure 12: RNA expression overview of the DNAJC1 gene in various cancer 332 

types.   333 

 334 
RNA expression overview shows RNA-seq data from The Cancer Genome Atlas (TCGA) 335 

project. FPKM represents fragments per kilobase of transcript per million mapped reads. The 336 

estimated gene expression values of the DNAGC1 gene are displayed for 17 types of 337 

cancer/tumors. 338 

  339 
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Supplementary figure 13: The five-layer neural network used for age prediction and its 340 

performance using WM-IDP 341 

 342 
A) We illustrate the neural network architecture utilized in this study to predict brain age using 343 

GM, WM, and FC-IDP. The dimensionality of neurons in each linear layer is indicated in the 344 

diagram. B) We present the results of the cross-validation (CV) training, CV testing, and 345 

independent testing loss for the WM-IDP using FA, MD, ODI, and NDI from the TBSS-based 346 

approach. Notably, the network overfits the 108 WM-IDP since the number of network 347 

parameters (38,364) is significantly greater than the number of features (108). In addition, 348 

features from FA, MD, ODI, and NDI are highly correlated. 349 

    350 
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Supplementary table 1: Brain age prediction performance using GM, WM, and FC-IDP. 351 

We reported each machine learning model's mean absolute errors (MAE, year) and Pearson's 352 

correlation coefficient (r). The cross-validated (CV Test) and independent (Ind. Test) testing 353 

results were shown. Table A shows the results from the CV Test and the independent (Ind.) Test 354 

performance. Table B contains the results of the sex-stratified experiments. 355 

A: Brain age prediction results from the CV and independent test dataset. The bolded text 356 

represents the lowest MAE for IDPs from each MRI modality. For WM-IDP, we fit the models 357 

with different combinations of features: i) 108 weighted mean TBSS WM-IDP from FA, MD, 358 

OD, and NDI; ii) 192 skeleton mean values of WM-IDP from FA, MD, OD, and NDI; iii) 48 FA 359 

WM-IDP. 360 

IDP Dataset 

Linear SVR Lasso regression MLP NN 

MAE r MAE r MAE r MAE r 

GM-IDP 

CV Test 
4.86±0.1

1 
0.77 

4.92±0.1
1 

0.77 
4.88±0.1

3 
0.77 

4.42±0.1
1 

0.79 

Ind. Test 4.43 0.66 4.39 0.66 5.35 0.64 4.83 0.65 

WM-
IDP 

108 

TBSS 

CV Test 
4.88±0.1

1 
0.77 

4.94±0.1

1 
0.78 

5.29±0.1

3 
0.75 

4.54±0.1

1 
0.79 

Ind. Test 5.27 0.53 6.29 0.53 7.41 0.59 10.12 0.31 

192 

FA/M
D/OD

I/NDI 

CV Test 
4.07±0.1

0 
0.84 

4.142±0.
11 

0.84 
4.34±0.1

2 
0.83 

3.50±0.1
0 

0.87 

Ind. Test 21.90 0.71 21.66 0.73 6.12 0.71 15.77 0.30 

48 FA 

CV Test 
5.12±0.1

2 
0.75 

5.15±0.1

1 
0.75 

5.32±0.1

3 
0.73 

6.85±0.1

5 
0.56 

Ind. Test 5.02 0.65 4.92 0.65 7.95 0.60 6.84 0.42 

FC-IDP 

CV Test 
6.28±0.1

6 
0.58 

6.51±0.1

6 
0.59 

6.07±0.1

7 
0.66 

5.88±0.1

5 
0.63 

Ind. Test 5.97 0.43 5.48 0.44 6.02 0.46 6.05 0.43 

 361 

 362 

 363 

 364 

 365 
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 366 

B: Brain age prediction results from the sex-stratified experiments. 367 

 368 

  369 

 
IDP 

Gender 
 

Set 

Linear SVR Lasso regression MLP NN 

MAE r MAE r MAE r MAE r 

 

 
GM-IDP 

Female 

CV  Test 
4.77±0.1

8 
0.77 

4.89±0.1

7 
0.77 

4.93±0.2

3 
0.76 

4.25±0.1

6 
0.80 

Ind. Test 4.46 0.64 4.44 0.64 6.94 0.60 5.02 0.62 

Male 

CV  Test 
4.69±0.1

6 
0.78 

4.77±0.1
6 

0.79 
4.70±0.2

2 
0.79 

4.08±0.1
7 

0.82 

Ind. Test 4.58 0.65 4.49 0.66 5.03 0.65 4.85 0.64 

WM-IDP 

Female 

CV  Test 
4.81±0.1

6 
0.78 

4.77±0.1

7 
0.79 

4.73±0.1

7 
0.78 

5.61±0.1

7 
0.66 

Ind. Test 25.97 0.61 26.39 0.62 31.68 0.56 19.21 0.55 

Male 

CV  Test 

 

4.83±0.2

1 
0.77 

4.86±0.2

5 
0.79 

5.24±0.2

6 
0.75 

5.80±0.1

9 
0.68 

Ind. Test 7.88 0.63 5.67 0.62 10.24 0.62 14.96 0.56 

FC-IDP 

Female 

CV  Test 
5.85±0.2

1 
0.62 

6.01±0.2

0 
0.64 

6.41±0.2

3 
0.61 

5.07±0.2

0 
0.69 

Ind. Test 5.93 0.42 5.58 0.42 5.36 0.42 6.28 0.41 

Male 

CV  Test 
6.03±0.2

3 
0.60 

6.32±0.2

2 
0.62 

6.83±0.2

3 
0.59 

6.11±0.2

2 
0.62 

Ind. Test 6.01 0.40 5.64 0.41 6.79 0.42 5.78 0.41 
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Supplementary table 2: Identified genomic loci and mapped genes.  370 

Two-siede P-values were derived from our linear regression GWAS.  371 

GM-BAG: 372 

 373 

WM-BAG: 374 

 375 

FC-BAG: 376 

377 

Locus Top lead SNP P-value Chromosome Mapped genes 

1 rs61732315 1.63x10-8 1 MYOG, PPFIA4, ADORA1 

2 rs1452628 3.04x10-14 1 KCNK2, KCTD3 

3 rs186399184 1.05x10-8 2 
CYP20A1, CARF, FAM117B, 

WDR12, ABI2, NBEAL1, ICA1L 

4 rs10933668 9.41x10-9 3 NA 

5 rs34051980 2.02x10-8 8 TNFRSF11B, COLEC10 

6 rs534115641 8.44x10-23 17 

NSF, WNT3, KANSL1, CRHR1, 

NMT1, ARHGAP27, LRRC37A, 

EFCAB13, C17orf104, FMNL1, 

SPPL2C, ARL17A, MAPT, 

PLEKHM1, ARL17B, LRRC37A2, 

STH 

Locus Top lead SNP P-value Chromosome Mapped genes 

1 rs11118475 3.69x10-09 1 CD46, CR1L 

2 rs61067594 6.01x10-19 3 GMNC 

3 rs967140 7.26 x10-12 4 PPARGC1A 

4 rs2533872 9.95 x10-10 7 GNA12, AMZ1 

5 rs564819152 9.39 x10-13 10 

SPAG6, MLLT10, DNAJC1, 

COMMD3, BMI1, SKIDA1, 

CASC10, COMMD3-BMI1 

6 rs12146713 7.67 x10-14 12 NUAK1 

7 rs654276 1.96 x10-08 15 

TP53BP1, WDR76, ELL3, 

TUBGCP4, MFAP1, SERF2, 

ZSCAN29, TGM7, CASC4, 

CATSPER2, MAP1A, PDIA3, 

PPIP5K1, ADAL, LCMT2, FRMD5, 

SERINC4, CKMT1A, CKMT1B, 

HYPK, STRC, RP11-296A16.1, 

AC018512.1 

8 rs4843550 2.84 x10-09 16 C16orf95 

9 rs1894525 2.71x10-09 22 

NOL12, TRIOBP, GCAT, 

ANKRD54, EIF3L, MICALL1, 

PICK1, GALR3, H1F0 

Locus Top lead SNP P-value Chromosome Mapped genes 

1 rs5877290 2.31x10-8 6 NA 
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Supplementary table 3: Selected clinical traits for genetic correlation analyses. We selected 378 

the candidate studies from the GWAS Catalog for specific traits, including neurodegenerative 379 

diseases, psychiatric disorders, education, and intelligence. The inclusion criteria are i) GWAS 380 

summary statistics are publicly available; ii) the study population is European ancestry in the 381 

majority; iii) the heritability estimates (h2) via LDSC are not spuriously low (h2>0.05). This 382 

resulted in six clinical traits. We present the clinical trait, the dataset used, the URL link, the 383 

Pubmed ID, and the sample size. Abbreviations: PGC: psychiatric genomics consortium; ADHD: 384 

attention deficit hyperactivity disorder; ASD: autism spectrum disorder; MDD: major depressive 385 

disorder; OCD: obsessive-compulsive disorder; SCZ: schizophrenia; BPD: bipolar disorder; 386 

SSGAC: Social Science Genetic Association Consortium; UKBB: UK Biobank. 387 

Trait Dataset URL 

PubMed 

ID/GWAS 

Catalog ID 

Sample 

size 

AD Meta http://ftp.ebi.ac.uk/pub/databases/gwas 30820047 63,926 

AD 

subtypes 
UKBB https://labs.loni.usc.edu/medicine/organ_systems/brain NA 33,540 

ADHD PGC https://figshare.com/articles/dataset/adhd2019/14671965 30478444 53,293 

ASD PGC https://figshare.com/articles/dataset/asd2019/14671989 30804558 46,350 

ASD 

subtypes 
UKBB https://labs.loni.usc.edu/medicine/organ_systems/brain 37017948 14,786 

BPD PGC https://figshare.com/articles/dataset/bip2019/14671998 31043756 51,710 

MDD Meta https://figshare.com/articles/dataset/mdd2013/14672082 22472876 18,759 

Education SSGAC http://ftp.ebi.ac.uk/pub/databases/gwas 23722424 126,559 

Intelligence CTGlab http://ftp.ebi.ac.uk/pub/databases/gwas 28530673 78,308 

SCZ PGC https://figshare.com/articles/dataset/scz2013sweden/14672154 23974872 11,244 
SCZ 

subtypes 
UKBB https://www.cbica.upenn.edu/bridgeport 32103250 14,786 

OCD Meta https://figshare.com/articles/dataset/ocd2018/14672103 28761083 9,725 

 388 

 389 

  390 

https://figshare.com/articles/dataset/adhd2019/14671965
https://figshare.com/articles/dataset/asd2019/14671989
https://figshare.com/articles/dataset/bip2019/14671998
https://figshare.com/articles/dataset/mdd2013/14672082
http://ftp.ebi.ac.uk/pub/databases/gwas
http://ftp.ebi.ac.uk/pub/databases/gwas
https://figshare.com/articles/dataset/scz2013sweden/14672154
https://www.cbica.upenn.edu/bridgeport
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Supplementary table 4: Selected exposure variables for the forward Mendelian 391 

randomization. We present here the traits, searching keywords, PubMed ID of the study, and the 392 

IEU ID. MR mimics randomized clinical trials using genetic variants (SNP) randomly allocated at 393 

conception as instrumental variables (IV) to estimate the causal effect of an exposure (e.g., alcohol 394 

consumption) on an outcome (e.g., GM-BAG). In essence, MR is less prone to confounding and 395 

reverse causation bias. Genetic variants, however, must be associated with the exposure variable 396 

(relevance assumption), not associated with the outcome biased by confounders (exchangeability 397 

assumption), and only associated with the outcome through the exposure (exclusivity assumption). 398 

In particular, we automatically queried these traits in the IEU GWAS database12 – curated GWAS 399 

summary statistics for MR – to extract the IVs from i) European ancestry, ii) non-UKBB studies 400 

(our GWAS were derived from UKBB data), iii) and large sample sizes. Another rationale for 401 

performing this hypothesis-driven MR analysis was the extensive coverage of UK Biobank 402 

(UKBB) in the IEU GWAS database, necessitating the exclusion of UKBB-based GWAS from 403 

our analysis to mitigate potential biases associated with sample overlap. AD: Alzheimer’s disease.  404 

 405 
Trait Searching keyword PubMed ID IEU ID N 

AD Alzheimer 24162737 ebi-a-GCST002245 
17008 AD and 

37154 controls 

Breast cancer cancer 29059683 ieu-a-1126 

122,977 cases 

and 105,974 

controls 

Type 2 diabetes diabetes 22885922 ieu-a-26 

34,840 cases 

and 114,981 

controls 

Renin level Renin 33067605 ebi-a-GCST90012038 30,931 

Triglyceride-to-lipid 

ratio 
Triglyceride 32114887 

met-d-

XL_VLDL_TG_pct 
16,126 

AST 
Aspartate 

aminotransferase 
29875488 prot-a-1241 3301 

BMI Body mass index 23563607 ieu-a-85 263,407 

  406 
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Supplementary table 5: Study characteristics. 407 

The current table presents participants of all ancestries for the age prediction task. We 408 

constrained participants with only European ancestry for downstream genetic analyses. * For age 409 

and sex, we reported statistics for the overlapping population of the three modalities: 35,261 410 

participants for the entire population, 4000 participants for the training/validation/test dataset, 411 

and 31,261 participants for the independent test dataset. We also showed the number of 412 

participants for the GM, WM, and FC-BAG GWAS. In total, our analyses included 42,089 413 

unique participants who had at least one image scan. Abbreviation: dMRI: diffusion MRI; 414 

rsfMRI: resting-state functional MRI; T1w MRI: T1-weighted MRI. 415 

 416 

Population (overlap) T1w MRI dMRI rsfMRI 
Age 

(year)* 
Sex /female* 

Total (35,261) 36,304 39,661 36,858 

63.64 

(45.00, 

81.00) 

18,700/53% 

Training/validation/test 

(4000) 
4000 4000 4000 

63.47 

(46.00, 

81.00) 

2000/50% 

Independent test 

(31,261) 
32,304 35,661 32,858 

63.66 

(45.00, 

81.00) 

16,700/53% 

GWAS 31,557 31,749 32,017 NA NA 

  417 
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