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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The contribufions summarize the creafion of gelafion machine learning (ML) models for a 71 nucleoside 

gelators from the literature. The aim was to predict gel/no gel behaviours of the materials. The 

distribufion of gel-forming versus non gel-forming was good (38 vs 33)

The topic is of considerable interest as relafively few models claim to predict the gelafion behaviour of 

molecules.

However, there are considerable methodological issues with the models, their interpretafion, and their 

use to find new gelators. My review is largely concerned with the ML models as I have limited experfise 

in the physical analysis of gels.

The manuscript is not wriften parficularly clearly, and grammar is an issue. It is difficult to understand 

the sequence of events, going from thousands of descriptors down to a much smaller number. It is not 

clear from the text and figures whether the 4175 descriptors were calculated by a package, then the 4 

types of fingerprint descriptors added, or whether the fingerprints were part of the 4175.

Addifionally, the authors state that because the number of data points available for the models was 

small (71) they 'copied' the data set to generate 5 copies, 4 of which were used to train the model and 

one was the 'test set'. If this is true then such an approach is invalid, there is no independent test set to 

assess model predicfivity for new data. The model is only predicfing its training data. If overfifting occurs, 

then the model could look very good but be incapable of generalizing to new data. Perhaps the authors 

meant that the 71 compounds were split into 80% (57) for the training set and 20% (14) for the test set. 

This must be clarified.

Inspecfion of Table S1 suggests that almost all models have similar predicfivity when the uncertainfies in 

their accuracies, expressed by mulfiple metrics) are compared. There is no obvious reason why LR should 

be 'much' befter than the other nonlinear ML methods. XGBoost roufinely provides a superior model 

predicfion (often by a small margin)

The descriptors chosen are quite arcane, making interpretafion difficult. It is not clear why modern 

sparse feature selecfion method like LASSO or MLREM was not used to reduce the dimensionality of the 

descriptor space. It is not clear how the ranked sum test was used to reduce the number of descriptors.

In Figure S5 it is not clear why mulfiple versions of logP and PSA were used, surely these would have 

been highly intercorrelated and removed by the correlafion filter?

Why does Table S1 have two entries for each of the 4 ML methods with 144 descriptors (''descriptors' is 

misspelt)

Even assuming the ML model was valid, using it to screen 7257 new nucleoside analogues is very unwise 

unless these new materials fall within or near the domain of applicability of the model. There is no 

discussion of what the domain is and whether the new nucleoside analogues are within it. It seems very 

unlikely that a model with limited accuracy could reliably predict the properfies of >7000 new materials 

when trained on only 71 (or 57) nucleosides.

It was not explained why visual detecfion of Ag+ or cysteine was important

Care should be taken with copy edifing e.g., careless use of RFE vs REF, glue-forming vs gel-forming etc.



Reviewer #2 (Remarks to the Author):

COMMENTS

Weiqi Li et al. present a sort of machine learning model for hydrogels predicfion. This an interesfing MS 

with important concepts in the field of hydrogels.

However, despite interesfing elements this MS fails the technical screening so this version should be 

rejected.

Comments are the following:

-Figures quality is insufficient

- Page 6: "The 3D PCA with 40 descriptors can befter disfinguish the two groups (Fig. 1e)." and legend to 

Figure 1e: "PCA results for 40 descriptors, and the two groups tend to separate."

By looking at Figure 1, it is not obvious that the gelator/non-gelator groups are befter separated in plot 

1e than in plot 1b.

- Page 8: "LR based on 24 descriptors after RFE (red color) considered to be the opfimal model (test 

accuracy, 0.71)"

What probability threshold was used for the training and tesfing of the ML models?

As discussed later on page 10 and shown in Figure 3b, the ML model predicts a compound as gelator or 

non-gelator with a given probability. When the models make good or bad predicfions, it would be 

interesfing to know the associated probabilifies.

- Page 8: "Beside the 5 descriptors menfioned above, some other descriptors are likely to be related to 

hydrogel-forming ability. Including hydrophilic factor (Hy) 63 , topological polar surface area (TPSA), 

octanol-water parfifion coefficient (LogP), and solubility (ESOL), while no significant difference was found 

(Fig. 3a and S5)." and legend to Figure 3a: "grouped box plot of 4 descriptors with potenfial relevance to 

glue-forming ability for 71 nucleoside derivafives"

Why would these 4 compounds be relevant since they cannot disfinghish gelator/non-gelator groups? I 

don't see the perfinence of this.

- Page 10: "Based on previous experience and knowledge of the hydrogel-forming ability of nucleoside 

derivafives, we selected three guanosine derivafives for validafion among the top 10% ranked 

structures." and "The specific structures and gelator probabilifies of the three nucleoside derivafives are 

in the forefront (Fig. 3c-e, probabilifies of gelator: 1, 0.590; 2, 0.590; 3, 0.587)."

In Figure 3b the vast majority of the compounds have a gelator probability between 0.4 and 0.6. That 

does not seem to be very strong.



Also, the authors selected 3 compounds out of the top 10%, however, 10% of 7257 compounds tested is 

726, which is quite a large subset. What about the compounds that are at the very top of the 

distribufion? Selecfion was made based on "previous experience and knowledge": how were these 3 

compounds precisely selected?

Also in Figure 3b, I assume that the blue dots (labelled as "alternafive") correspond to the 3 selected 

molecules? Note also that they are just above the 10% cut-off and not at the very top of distribufion.

-p10 and Fig 3. Why lifefime hydrogels where tested in H3BO3 with Tris solufion for 8-AG and 8-OHG or 

AgNO3 solufion for 8-AzaG

-p10 and Fig 3. Why H3BO3 with Tris solufion and AgNO3 solufion was used as the solvent to form 

hydrogel?

-p11 "This is the first-fime cafion-independent guanosine-derived hydrogels have been discovered." Not 

correct see for example: i) ACS Omega 2018, 3, 2, 2230–2241, 

hftps://doi.org/10.1021/acsomega.7b02039, ii) soft mater DOI hftps://doi.org/10.1039/C8SM00299A, 

iii) Organic & Biomolecular Chemistry

2018, DOI: 10.1039/C8OB01023D, iv) Coordinafion Chemistry Reviews

Volume 488, 1 August 2023, 215170 hftps://doi.org/10.1016/j.ccr.2023.215170, etc

-p11 Results very similar to Org. Biomol. Chem (DOI: 10.1039/C8OB01023D)

-Fig. 4c. G' is not >> G''

-Fig. 4a. capfion no menfion of terms "Pre" or "Sol" in the Fig. 4a.

-Fig. 4d, e capfion seems do not match the figure ?

-Fig. 4j. Figure is missing

-p15 "borate diester" was not introduced before. Give context.

-Fig 5c inset illegible

-Fig 6d. Completely wrong. Abs at 3 = no photon. Inset fit is inappropriately drawn and (voluntary) 

misleading

- Pages 23 and 24 (Mat & Meth): "Due to the limited size of the training dataset (n=71), we divided all 

the data into five copies. One copy of the data was selected as the test set, and the remaining four 

copies were selected as the training set. A 5-fold cross-validafion was randomly performed 20 fimes to 

improve the accuracy of the fifting results"

I guess the authors mean "subsets" instead of "copies"? For cross-validafion the training and test sets 

must be independent. Using mulfiple copies of the same data and using some of them as training and 

the others as tests would be an invalid procedure because the same data would be used in both sets.

Also, cross-validafion is not done to improve accuracy, but to calculate or esfimate it.

Note that these sentences (and the next 3, unfil "...(the difference between the predicted and actual 

values)" are exactly repeated on pages 23 and 24.

Other minor details:

_Fix the language. There are sentences with unclear grammar at several places in the manuscript. For 

ex.:

Page 5: ... and four kinds of molecular fingerprints were used to present above nucleoside derivafives 

derived by SMILES

Page 8: _Compared to the new important features concluded by ML model, the descriptors summarized 



by exisfing experience are not befter predictors for the hydrogel-forming ability of nucleoside 

derivafives.

Page 4: "Firstly, a dataset of 71 nucleoside derivafives with hydrogel-forming ability": rephrase because 

some are gelators and some are not (page 5: "These nucleoside derivafives were then divided into two 

groups, namely, gelator (n=38) and nongelator (n=33)").

Page 5: "Pearson correlafion coefficients (r < 0.8)", whereas on page 24 (Mat & Meth) it says "We 

performed a Spearman's rank correlafion test on the remaining descriptors to exclude one of the pairs of 

descriptors with correlafions higher than 0.8"

"Descripters" instead of "Descriptors" on Figures 1 and 2

"descriptor-last" on Figure 2a: I guess it refers to the final descriptor with 24 parameters. Maybe write 

"descriptor-24"? Also, "descriptor-40" not shown.

Figure 2b: the "Recall" and "Precision" metrics are not menfioned anywhere else in the manuscript. 

Maybe useful to remind what Recall/Precision/F1 score/AUC represent for non-ML expert readers?

Figure 4i: what are PDDF profiles?

Page 23: the reference to Scikit-learn is missing:

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Page 24: "We first filtered descriptors with a Wilcoxon rank-sum test less than 0.05": rank-sum test p-

value less than 0.05

Page 25: "Specific selecfion of nucleoside derivafive structures" should be a fitle in bold. "The nucleoside 

derivafive structures were selected from PubChem ()": missing reference.

"Data availability" secfion: "Source data are provided with this paper and 

hftps://github.com/leescu/NHGPM": remove as it is redundant with the previous sentence.

Page 31, Ref 30: Huang, J. et al. Idenfificafion of potent anfimicrobial pepfides via a machine-learning 

pipeline that mines the enfire space of pepfide sequences. Nature Biomedical Engineering,n/a, NA , 

(2023). Maybe include the doi: 10.1038/s41551-022-00991-2

Reviewer #3 (Remarks to the Author):

This manuscript may be of interest to Nature Comm. Potenfially the results are quite good but in the 

current incarnafion this manuscript does not meet the standards required for publicafion.

After the introducfion, which is quite well-wriften, the results and discussion is liftered with 

abbreviafions and acronyms that do not make much sense to the reader... For example, the opening 

sentences of this secfion read: "To construct the predicfion model, all the published nucleoside 

derivafives and their hydrogel-forming ability were collected by literature review, and 71 molecules were

included 5,7,40-55. To unify the molecular structure, the Chemdraw software (Version 20.0) was ufilized 

to reproduce the 71 molecular structures."

What does this mean? How many is "all published"? What does it mean to collect the hydrogel forming 

ability by literature review? Does this mean that every published nucleoside derivafive has a 

documented ability to form, or not, a hydrogel? What does it mean that 71 molecules were included? 

How does one unify the molecular structure? And what does ChemDraw have to do with reproducing 

the molecular structures?



I could go on, but these two sentences are sufficient to illustrate the point that the results, methods and 

discussion of this work is not sufficiently clearly arficulated to allow a realisfic judgement on the quality 

of the work.

There are other significant issues with the manuscript hat raises some real concerns for this reviewer:

1. There are a lot of references but a number of these are not really related to the thing being 

referenced. For example, reference 57 is a Nature paper on the development of an ML model for 

planning chemical syntheses. But the authors use it to reference a molecular fingerprint method (ECFP4) 

which is indeed used in the arficle but is not defined there. Equally, the literature on the predicfion and 

discovery of hydrogels is not representafive of the major steps in this field.

2. The authors make some claims that are not evidenced in their results - e.g., "Under the appropriate 

condifions, three hydrogels display a long lifefime stability of 6 months (1

and 2 in H3BO3 and Tris solufions, and 3 in AgNO3 solufion, Fig. 3c-e)". But Figure 3c-e only show photos 

of the hydrogels at a single fime point? How is this 6 months fimepoint to be evidenced?

3. The results shown in Figure 4d-e, are idenfical to the results in Figure 5a-b. This is probably a simple 

mistake as the figure capfions indicate that the Figure 4 panels should so something else. But this 

carelessness is concerning and make it very difficult to judge the veracity of the results.

In short, I like the idea, the work could be publishable but this manuscript needs a lot of work.



Response letter 

Reviewer #1 (Remarks to the Author): 

Comment #1: The manuscript is not written particularly clearly, and 

grammar is an issue. It is difficult to understand the sequence of events, 

going from thousands of descriptors down to a much smaller number. It 

is not clear from the text and figures whether the 4175 descriptors were 

calculated by a package, then the 4 types of fingerprint descriptors added, 

or whether the fingerprints were part of the 4175. 

Response: We thank the referee for this good comment. We are sorry for the 

confusing description in our manuscript, and we have modified these parts in 

the revised manuscript. We would like to reply to this comment from the 

following two aspects. 

1). It is not clear from the text and figures whether the 4175 descriptors 

were calculated by a package, then the 4 types of fingerprint descriptors 

added, or whether the fingerprints were part of the 4175. 

The 4175 molecular descriptors and four kinds of molecular fingerprints are five 

different mathematical representations for describing molecules, the five 

mathematical representations were used separately to build prediction models 

for the hydrogel-forming ability of nucleoside derivatives in this work. Herein, 

we provide the detailed calculation processes of molecular descriptors and 

fingerprints as follows: 

Firstly, molecular descriptors are defined as mathematical representations of 

molecules’ properties that are generated by algorithms and can be calculated 

by the alvaDesc software (Version 2.0.12). The alvaDescCLIWrapper package 

(Version 1.1.1) was used to access alvaDesc functionalities from Python 

(Version 3.9.12) in this study. This package can compute up to 5666 descriptors 

for 33 domains, such as molecular properties, topological indices, and 

pharmacophore (Mauri, A., Ecotoxicological QSARs, Humana Press, 2020)1. A 



total of 5666 molecular descriptors were calculated for 71 nucleoside 

derivatives using alvaDesc software, and 4175 molecular descriptors were left 

for subsequent analysis by removing 1491 descriptors with missing values.  

Secondly, Molecular fingerprints can convert the molecules into a series of 

binary representations, which are also called bit strings. The commonly used 

bit strings include four kinds of fingerprints (2048-bit ECFP42, ECFP62, Atom 

Pair3 and Topological Torsion4), which were all involved in this study. The four 

kinds of molecular fingerprints all include 2048-bits calculated by the RDKit 

package (Version 2022.3.4), which is an open-source toolkit for 

cheminformatics and is often used to perform molecular fingerprint generation5. 

Unlike the molecular descriptors, the individual bit string of fingerprints doesn’t 

have specific chemical meanings, so we didn’t perform the feature selection for 

the fingerprints. 

Finally, the selected descriptors from each step of the feature selection and four 

kinds of molecular fingerprints were used to build the prediction models to 

predict the hydrogel-forming ability respectively. The molecular fingerprints are 

not involved in the construction of descriptors prediction models, and they 

constructed fingerprint prediction models, separately.  

2). It is difficult to understand the sequence of events, going from 

thousands of descriptors down to a much smaller number. 

The molecular descriptors which include 5666 descriptors for 71 nucleoside 

derivatives were obtained by using alvaDesc, and after removing 1491 

descriptors with missing values, we obtained a preliminary set of 4175 

descriptors. To improve the prediction model performance, we conducted 

feature selection to reduce the 4175 descriptors down to a much smaller 

number. The feature selection consisted of the following three steps. 

Firstly, the rank-sum test was used as a univariate difference analysis. The 

results demonstrate that there are significant differences (P<0.05) between the 

gelator (n=38) and non-gelator (n=33) groups (defined based on their hydrogel-



forming ability), which means it may have a potential association with the 

hydrogel-forming ability. In this study, 144 descriptors were obtained by 

removing the 4031 of 4175 descriptors that have no significant association with 

the hydrogel-forming ability (rank-sum test, P>0.05). 

Secondly, the Spearman correlation coefficient was calculated between the 144 

descriptors in pairs. Then, the pair of descriptors whose correlation coefficient 

is higher than 0.8 (Rho > 0.8) was selected, and one of the pair is excluded to 

avoid collinearity. After this step, 40 descriptors were kept for subsequent model 

training.  

Finally, we used machine learning (ML) algorithm-based recursive feature 

elimination (RFE) to obtain the optimal combination of descriptors and 

maximize model performance Four ML algorithms including logistic regression 

(LR)6, decision tree (DT)7, random forest (RF)8 and extreme gradient boosting 

(XGBoost)9 were utilized in this work. The results indicated that the optimal 

number of descriptors for each ML algorithm is different (XGBoost, n=16; LR, n 

=24; DT, n=30; RF, n=37). After RFE, we obtained an LR model constructed 

with 24 descriptors with the best performance as the final prediction model 

(Fig.R1): 

 

Fig.R1 Flow Chart of feature selection 

Taken together, the molecular descriptors and four kinds of molecular 

fingerprints were used separately to build prediction models for the hydrogel-

forming ability. The descriptors calculated by alvaDesc were further selected 

from each step of feature selection, and then used to build the descriptors 

prediction models. The four kinds of molecular fingerprints calculated by RDKit 

package were used to build the fingerprint prediction models, which were used 



to predict the hydrogel-forming ability respectively. The prediction models built 

were shown in Table R1 (The table is assigned to be Supplementary Table 1 

in revised Supporting Information). 

Table R1. Characteristics of the prediction models 

Features Algorithms Rows Columns 

Molecular Descriptors    

Descriptors-4175 LR, DT, RF, XGBoost# 71* 4175 

Descriptors-144 LR, DT, RF, XGBoost 71 144 

Descriptors-40 LR, DT, RF, XGBoost 71 40 

Descriptors-REF& LR, DT, RF, XGBoost 71 16-37& 

Molecular Fingerprints    

ECFP4 LR, DT, RF, XGBoost 71 2048 

ECFP6 LR, DT, RF, XGBoost 71 2048 

AtomPair LR, DT, RF, XGBoost 71 2048 

Topological Torsion LR, DT, RF, XGBoost 71 2048 

Notes: * Rows: Whether the nucleoside derivatives have the hydrogel-forming 

ability; #Algorithms: Logistic regression (LR), decision tree (DT), random forest 

(RF), and extreme gradient boosting (XGBoost); &Descriptors-REF: Recursive 

feature elimination (REF) has different optimal descriptors for different 

Algorithms: LR, n=24; XGBoost, n=16; DT, n= 30; RF, n=37.  

Reference: 

1. Mauri, A. AlvaDesc: A Tool to Calculate and Analyze Molecular Descriptors 

and Fingerprints. Ecotoxicological QSARs. (Humana, New York, 2020). 

2. Rogers, D. & Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. 

Model. 50, 742-754 (2010). 

3. Carhart, R. E., Smith, D. H. & Venkataraghavan, R. Atom pairs as molecular 

features in structure-activity studies: definition and applications. J. Chem. 

Inf. Comput. Sci. 25, 64-73 (1985). 

4. Nilakantan, R., Bauman, N., Dixon, J. S. & Venkataraghavan, R. 

Topological torsion: a new molecular descriptor for SAR applications. 

Comparison with other descriptors. J. Chem. Inf. Comput. Sci. 27, 82-85 

(1987). 

5. RDKit: Open-source cheminformatics. https://www.rdkit.org. (2016).  

6. Yu, H.-F., Huang, F.-L. & Lin, C.-J. Dual coordinate descent methods for 

logistic regression and maximum entropy models. Mach. Learn. 85, 41-75 

(2011). 

7. Quinlan JR. Induction of decision trees. Mach. Learn. 1, 81-106 (1986). 

8. Breiman, L. Random Forests. Mach. Learn. 45, 5-32 (2001). 

9. Chen, T. & Guestrin, C. Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining 

(Association for Computing Machinery, San Francisco, 2016). 



Comment #2: Additionally, the authors state that because the number of 

data points available for the models was small (71) they ‘copied’ the data 

set to generate 5 copies, 4 of which were used to train the model and one 

was the ‘test set’. If this is true then such an approach is invalid, there is 

no independent test set to assess model predictivity for new data. The 

model is only predicting its training data. If overfitting occurs, then the 

model could look very good but be incapable of generalizing to new data. 

Perhaps the authors meant that the 71 compounds were split into 80% (57) 

for the training set and 20% (14) for the test set. This must be clarified. 

Response: Thank you very much for the professional comments and we fully 

agree with this matter. What we want to express in the manuscript is that the 

71 compounds were split into 80% (57) for the training set and 20% (14) for the 

test set. Fivefold stratified cross-validation was used to estimate the intervals 

of the parameters1, which was widely used in the prediction model building 

(Enot, D. P. et al. Nat. Protoc., 2008; Kohoutová, L. et al., Nat. Protoc., 2020.)2-

3. The 71 nucleoside derivatives were divided into five equal parts by 

maintaining the ratio of gelators to non-gelators and four of them were used as 

the training set to train the model and the other one as the test set. The model 

was trained five times without repetition. On top of this, 10 times random fivefold 

stratified cross-validations were performed to obtain more reliable information. 

In other words, 50 times of model training were performed.  

In the revised manuscript we have corrected this misleading. "copied" was not 

supposed to be used here and we have corrected it as "subsets".  

Reference: 

1. Kohavi, R. Proceedings of the 14th international joint conference on Artificial 

intelligence (Morgan Kaufmann Publishers Inc., Montreal, 1995). 

2. Enot, D. P. et al. Preprocessing, classification modeling and feature 

selection using flow injection electrospray mass spectrometry metabolite 

fingerprint data. Nat. Protoc. 3, 446-470 (2008). 

3. Kohoutová, L. et al. Toward a unified framework for interpreting machine-

learning models in neuroimaging. Nat. Protoc. 15, 1399-1435 (2020). 

 



Comment #3: Inspection of Table S1 suggests that almost all models have 

similar predictivity when the uncertainties in their accuracies, expressed 

by multiple metrics) are compared. There is no obvious reason why LR 

should be ‘much’ better than the other nonlinear ML methods. XGBoost 

routinely provides a superior model prediction (often by a small margin) 

Response：Thank you very much for this comment. We chose LR as the 

optimal model after comprehensively considering various parameters. The 

reason why we chose LR but not XGBoost is as follows: 

i). The reason why LR was chosen as the optimal model: 

Firstly, to test accuracy, AUC, precision, recall and F1 score are commonly used 

to determine the optimal model in related research (Theodoris, C. V. et al., 

Nature, 2023, AUC and F1 score; Jablonka, K. M. et al., Nat. Chem., 2021, 

accuracy, precision, and recall; Han, T. et al., Nat. Mach. Intell., 2022, AUC, 

precision and recall)2-4, the five parameters were used to evaluate the 

performance of models comprehensively here. To select the optimal model, we 

mainly focused on test accuracy and AUC, and the results of precision, recall 

and F1 score were also used as auxiliary references. In this study, LR not only 

provided better results of test accuracy (0.71 ± 0.01) and AUC (0.84 ± 0.02), 

but also had higher recall (0.95 ± 0.01) and F1 score (0.78 ± 0.01) (Table R2; 

Fig. R2, the figure is assigned to be Fig. 2b in revised manuscript). So, we 

finally chose LR as the optimal model.  

ii). The reason why XGBoost was not the optimal model in our study: 

Generally, LR is a classification model and is often used for binary classification. 

It is popular in the industry for its simplicity, parallelizability, and interpretability. 

The essence of LR is that the data is assumed to obey this distribution, and 

then the parameters are estimated using the maximum likelihood estimation. 

XGBoost is the abbreviation of "Extreme Gradient Boosting", which is a high-

performance ML algorithm that benefits from great interpretability potential. It is 

fast and effective in processing large-scale data sets and does not require high 



hardware resources such as memory.  

As your said, XGBoost routinely provides a superior model prediction. However, 

as an ensemble learning algorithms based on tree boosting, XGBoost may not 

have a good performance in small dataset. In this study, there are only 71 

nucleoside derivatives included, and just 38 of them own the hydrogel-forming 

ability, which is also one of the biggest bottlenecks affecting the development 

of the nucleoside hydrogel field. We suspect this may be one reason why 

XGBoost did not stand out in our results. In addition, LR was also found to be 

the optimal model in previous studies of prediction models building (Pavlović, 

M. et al., Nat. Mach. Intell., 2021)5, and XGBoost was not always the optimal 

choice of a predictive model algorithm in some circumstances (Theodoris, C. V. 

et al., Nature, 2023)6. 

Taken together, LR was choose as the optimal prediction model in this study 

and this point was also discussed in the revised manuscript.  

 
Fig. R2. Parameters of 4 models using descriptors after recursive feature 

elimination. 



Table R2. Parameters of 4 models using descriptors after recursive feature 
elimination. 
 

Accuracy AUC# F1 Score Precision Recall 

Mean Se Mean Se Mean Se Mean Se Mean Se 

LR* 0.71 0.01 0.78 0.01 0.66 0.01 0.95 0.01 0.84 0.02 

RF 0.67 0.01 0.70 0.01 0.68 0.02 0.75 0.02 0.74 0.02 

DT 0.59 0.02 0.63 0.02 0.60 0.01 0.69 0.03 0.63 0.02 

XGBoost 0.70 0.02 0.73 0.01 0.72 0.02 0.76 0.02 0.79 0.02 

Notes: *: Logistic regression (LR), decision tree (DT), random forest (RF), and extreme 

gradient boosting (XGBoost) 

#: AUC: Area Under Curve 

Reference: 

1. Lipton, Z. C., Elkan, C. & Naryanaswamy, B. Optimal thresholding of 

classifiers to maximize F1 measure. Mach. Learn. Knowl. Discov. 

Databases. 8725, 225–239 (2014). 

2. Theodoris, C. V. et al. Transfer learning enables predictions in network 

biology. Nature 618, 616–624 (2023). 

3. Jablonka, K. M., Ongari, D., Moosavi, S. M. & Smit, B. Using collective 

knowledge to assign oxidation states of metal cations in metal–organic 

frameworks. Nat. Chem. 13, 771-777 (2021). 

4. Han, T. et al. Image prediction of disease progression for osteoarthritis by 

style-based manifold extrapolation. Nat. Mach. Intell. 4, 1029-1039 (2022). 

5. Pavlović, M. et al. The immuneML ecosystem for machine learning analysis 

of adaptive immune receptor repertoires. Nat. Mach. Intell. 3, 936-944 

(2021). 

6. Theodoris, C. V. et al. Transfer learning enables predictions in network 

biology. Nature 618, 616-624 (2023). 

 

 

Comment #4: The descriptors chosen are quite arcane, making 

interpretation difficult. It is not clear why modern sparse feature selection 

method like LASSO or MLREM was not used to reduce the dimensionality 

of the descriptor space. It is not clear how the ranked sum test was used 

to reduce the number of descriptors. 

Response: Thank you very much for the professional comments and 

suggestions. Feature selection is an important part of this study, we would like 

to response to these comments from the following aspects. 



1). The descriptors chosen are quite arcane, making interpretation 

difficult. 

Firstly, molecular descriptors are the mathematical representation of chemicals, 

and they serve as the input for the data analysis methods to build quantitative 

structure-activity relationships (QSAR) models. It is now widely used to 

construct prediction models of the physical, chemical, and biological properties 

of molecules. For instance, Tiihonen, A. et al. developed an input model that 

predicted antimicrobial activity of conjugated oligoelectrolyte molecules on the 

assumption of 21 descriptors (J. Am. Chem. Soc., 2021)1; Lyu, R. et al. reported 

a supervised ML workflow for the dimensionality prediction of low dimensional 

Pb−I perovskites on the basis of 21 descriptors (J. Am. Chem. Soc., 2021)2; Ye, 

S. et al. developed a full-color-tunable polymer platform guided by ML 

algorithms based on 9 descriptors for Multiple linear regression with expectation 

maximization (MLREM) and 19 descriptors for Bayesian regularized artificial 

neural network with a Laplacian prior (BRANNLP) (Chem, 2022)3.  

Secondly, we performed a comprehensive calculation of molecular descriptors 

to discover potential information that may be relevant to the formation of 

nucleoside hydrogel. And the descriptors in the final prediction model were 

chosen by the three-step feature selection mentioned above (Comment #1). 

Important features for the optimal model were mainly clustered in 2D matrix-

based descriptors, edge adjacency indices, P_VSA-like descriptors, 2D atom 

pairs, 2D autocorrelations, atom-centered fragments, functional group counts, 

and pharmacophore descriptors. As these molecular descriptors express the 

underlying properties of molecules, there is no easy-to-understand explanation 

for the chosen descriptors. However, they have specific meanings, which are 

given in the Supplementary Data S5. 

Thirdly, the conversion of molecular structures to molecular descriptors is 

currently a classical approach to building ML models in chemistry. Although the 

collective meaning of these molecular descriptors is difficult to understand, this 

does not affect the predictive performance of our optimal model based on 24 



molecular descriptors (test accuracy, 0.71 ± 0.01; AUC, 0.84 ± 0.02; recall,0.95 

± 0.01; F1 score, 0.78 ± 0.01). The tube-inversion tests were utilized for the 

selected nucleoside derivatives with high gelling probability, and the success 

rate of form hydrogel is 83.33% (10/12). Given the lack of prediction models for 

the hydrogel-forming ability of nucleoside derivatives, this study is an initial 

attempt and the molecular descriptors obtained are not mentioned in previous 

studies. However, further study of exploring understandable and effective 

descriptors to express nucleoside derivatives and improving the interpretability 

of these chosen descriptors, is an interesting topic and is what we are doing. 

We hope to provide a better interpretation of these molecular descriptors in the 

future.  

According to your suggestion, we added the discussion about this issue in the 

revised manuscript. 

2). It is not clear why modern sparse feature selection method like LASSO 

or MLREM was not used to reduce the dimensionality of the descriptor 

space. 

Firstly, we agree with the matter that LASSO (Least Absolute Shrinkage and 

Selection Operator) and MLREM (Multiple Linear Regression with Expectation 

Maximization) are indeed commonly used methods for the selection of features 

using molecular descriptors. Secondly, we previously tried LASSO regression 

as a method of feature selection, and we implemented the feature selection 

method of LASSO through the scikit-learn package (Version 1.1.1) in Python 

(Version 3.9.12). After optimizing the hyperparameters of LASSO via cross-

validation, feature selection was performed using LASSO and 70 molecular 

descriptors were obtained. Considering the parameters of the models based on 

70 molecular descriptors were not as good as the results of the optimal model 

based on the three-step, we did not put these results in the manuscript. Thirdly, 

this is our neglect, and we are deeply sorry about that we did not pay attention 

to MLREM before. Thank you very much for your suggestion. According to your 

suggestion, we also used the MLREM for feature selection. We used the R 



software (Version 4.2.2) to code the feature selection method of MLREM, and 

finally obtained 28 descriptors. The parameters of the model constructed on 

this basis were also not as good as the results of the optimal model based on 

the three-step. Detailed results of prediction models built based on LASSO and 

MLREM were presented in Table R3 (The table is assigned to be 

Supplementary Table 8 in revised Supporting Information). Now we have 

added them as a supplement in our revised manuscript. The codes were also 

added in the github (https://github.com/leescu/NHGPM). 

Table R3. Characteristics of the models constructed by LASSO and MLREM 
for feature selection. 

 LR* RF DT XGBoost 

 Mean SE Mean SE Mean SE Mean SE 

LASSO#         

Accuracy 0.70 0.01 0.64 0.01 0.68 0.01 0.67 0.02 

F1 score 0.73 0.02 0.68 0.02 0.72 0.01 0.71 0.01 

Precision 0.72 0.02 0.66 0.01 0.69 0.02 0.68 0.02 

Recall 0.77 0.02 0.72 0.02 0.78 0.02 0.75 0.02 

AUC 0.74 0.02 0.73 0.02 0.69 0.02 0.74 0.02 

MLREM         

Accuracy 0.63 0.01 0.67 0.01 0.68 0.01 0.68 0.02 

F1 score 0.69 0.01 0.70 0.00 0.71 0.01 0.71 0.02 

Precision 0.63 0.01 0.68 0.01 0.70 0.01 0.69 0.01 

Recall 0.79 0.02 0.75 0.02 0.74 0.02 0.75 0.02 

AUC 0.67 0.02 0.75 0.02 0.69 0.02 0.75 0.02 

Notes: *: Logistic regression (LR), decision tree (DT), random forest (RF), and extreme 

gradient boosting (XGBoost) 

#: LASSO: Least Absolute Shrinkage and Selection Operator, AUC: Area Under Curve, 

MLREM: Multiple linear regression with expectation maximization. 

3). It is not clear how the ranked sum test was used to reduce the number 

of descriptors.  

The rank sum test was used to feature selection and the specific steps are as 

follows: Firstly, the Wilcoxon rank test was used to test whether there is a 

significant difference of each molecular descriptor between gelator and non-

gelator groups. Secondly, the descriptors without significant difference were 

excluded. Thirdly, the descriptors with significant difference (P<0.05) were 

https://github.com/leescu/NHGPM


retained and subjected to the next step of feature selection. 

The reason why we used the rank sum test is that the univariate difference test 

including the rank sum test is a classical feature selection method and is one 

of the most used feature screening methods for ML (Liang, W. et al., Clin. 

Cancer. Res., 2019; Errington, N. et al., eBioMedicine, 2021)4,5. Considering 

the characteristics of the molecular descriptors involved in this study, we chose 

the rank sum test as a method of univariate feature selection to select the 

descriptors. We used the Wilcoxon test to independently test whether there is 

a significant difference between gelator and non-gelator groups and screened 

out features without significant relation with the hydrogel-forming ability 

(P>0.05). After selection, we obtained 144 molecular descriptors that were 

significantly related to the hydrogel-forming ability. We have added the 

corresponding description in the revised manuscript. 

Reference: 

1. Tiihonen, A. et al. Predicting Antimicrobial Activity of Conjugated 

Oligoelectrolyte Molecules via Machine Learning. J. Am. Chem. Soc. 143, 

18917-18931 (2021). 

2. Lyu, R., Moore, C. E., Liu, T., Yu, Y. & Wu, Y. Predictive Design Model for 

Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by 

Machine Learning. J. Am. Chem. Soc. 143, 12766-12776 (2021). 

3. Ye, S. et al. Machine learning-assisted exploration of a versatile polymer 

platform with charge transfer-dependent full-color emission. Chem 9, 924-

947 (2023). 

4. Liang, W. et al. A Combined Nomogram Model to Preoperatively Predict 

Histologic Grade in Pancreatic Neuroendocrine Tumors. Clin. Cancer. Res. 

25, 584-5945 (2019) 

5. Errington, N. et al. A diagnostic miRNA signature for pulmonary arterial 

hypertension using a consensus machine learning approach. eBioMedicine 

69, 103444 (2021). 

 

 

 

 

 

 



Comment #5: In Figure S5 it is not clear why multiple versions of logP and 

PSA were used, surely these would have been highly intercorrelated and 

removed by the correlation filter? 

Response: Many thanks for this comment. We apologize for the confusing 

description and now we have modified this part in the revised manuscript. 

These descriptors (logP and PSA) in original Figure S5 were not among the 40 

molecular descriptors obtained by the feature selection and did not participate 

in the construction of our prediction models. We just tried to explore the 

association between these molecular descriptors and the hydrogel-forming 

ability. The reason why multiple versions of logP and PSA is to explore their 

association from multiple perspectives. Detail descriptions are as follows: 

Firstly, as the descriptors chosen in the final model are not easily to understand, 

we also try to initially explore the other descriptors which express chemical 

properties that may be relevant to the hydrolgel-forming ability of nucleoside 

derivatives. According to previous studies (Van Lommel, R et al., Chem. Sci., 

2020; Li, F. et al., Proc. Natl Acad. Sci. USA., 2019; Gupta, J. K. et al., Chem. 

Sci., 2016)1-3, related descriptors to water solubility and lipophilicity 

(hydrophilicity, Hy4; topological polar surface area, TPSA5; octanol-water 

partition coefficient, LogP 6; and solubility, ESOL7) were selected. We used 

RDKit calculated all kinds of Hy, TPSA, LogP and ESOL to explore the 

association between these molecular descriptors and the hydrogel-forming 

ability from multiple perspectives. 

Then we tried to show the values’ distributions of the four descriptors between 

the gelator and non-gelator groups, and between the gelator group and the top 

10% of nucleoside derivatives with high probability of hydrogel-forming ability. 

The results demonstrated that there was no significant difference between 

groups (P > 0.05), suggesting that these molecular descriptors were not related 

to the hydrogel-forming ability of nucleoside derivatives.  

Therefore, although the molecular descriptors we chose based on the above 

three-step feature selection are not easy to understand, it is more effective to 



be used to predict the hydrogel-forming ability of nucleoside derivatives in this 

work. Since we did not find a link between these molecular descriptors and the 

hydrogel-forming ability of the nucleoside derivatives. To avoid confusing the 

reader, we replaced the original Fig.3a to Supplementary Fig. 5 and removed 

the original Figure S5. 

References: 

1. Van Lommel, R., Zhao, J., De Borggraeve, W. M., De Proft, F. & Alonso, M. 

Molecular dynamics-based descriptors for predicting supramolecular 

gelation. Chem. Sci. 11, 4226-4238 (2020). 

2.  Li, F. et al. Design of self-assembly dipeptide hydrogels and machine 

learning via their chemical features. Proc. Natl Acad. Sci. USA. 116, 11259-

11264 (2019). 

3.  Gupta, J. K., Adams, D. J. & Berry, N. G. Will it gel? Successful 

computational prediction of peptide gelators using physicochemical 

properties and molecular fingerprints. Chem. Sci. 7, 4713-4719 (2016). 

4.  Todeschini, R., Vighi, M., Finizio, A. & Gramatica, P. 3D-Modelling and 

Prediction by WHIM Descriptors. Part 8. Toxicity and Physico-Chemical 

Properties of Environmental Priority Chemicals by 2D-TI and 3D-WHIM 

Descriptors. SAR. QSAR. Environ. Res. 7, 173–193 (1997). 

5.  Ertl, P., Rohde, B. & Selzer, P. Fast calculation of molecular polar surface 

area as a sum of fragment-based contributions and its application to the 

prediction of drug transport properties. J. Med. Chem. 43, 3714–3717 

(2000). 

6.  Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. Prediction of 

Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using 

Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. J. Phys. 

Chem. A 102, 3762–3772 (1998). 

7.  Delaney, J. S. ESOL: estimating aqueous solubility directly from molecular 

structure. J. Chem. Inf. computer Sci. 44, 1000–1005 (2004). 

 

 

 

 

 

 

 

 

 

 



Comment #6: Why does Table S1 have two entries for each of the 4 ML 

methods with 144 descriptors (‘‘descriptors’ is misspelt) 

Response: We feel deeply sorry about our mistake, and we have corrected it 

in our revised manuscript (Table R4). 

Table R4. The corresponding updated part of Supplementary Table 2. 

Models Features 
Test Accuracy AUC 

Mean Se Mean Se 

DT* Descriptor_4175 0.65 0.01 0.65 0.02 

LR Descriptor_4175 0.65 0.02 0.67 0.02 

RF Descriptor_4175 0.63 0.01 0.72 0.02 

XGBoost Descriptor_4175 0.63 0.01 0.69 0.02 

DT Descriptor_144 0.64 0.01 0.64 0.01 

LR Descriptor_144 0.68 0.02 0.80 0.02 

RF Descriptor_144 0.67 0.01 0.75 0.02 

XGBoost Descriptor_144 0.64 0.02 0.72 0.02 

DT Descriptor_40 0.66 0.02 0.69 0.02 

LR Descriptor_40 0.70 0.01 0.81 0.02 

RF Descriptor_40 0.67 0.01 0.74 0.02 

XGBoost 

t 

Descriptor_40 0.65 0.01 0.75 0.02 

DT Descriptor_ REF# 0.59 0.02 0.63 0.02 

LR Descriptor_ REF# 0.71 0.01 0.84 0.02 

RF Descriptor_ REF# 0.67 0.01 0.75 0.02 

XGBoost Descriptor_ REF# 0.70 0.02 0.79 0.02 

Notes: *: Logistic regression (LR), decision tree (DT), random forest (RF), and extreme 

gradient boosting (XGBoost); 

#: Descriptors-REF: Recursive feature elimination (REF) has different optimal descriptors 

for different Algorithms: LR, n=24; XGBoost, n=16; DT, n= 30; RF, n=37.  

 

 

 

 

 

 

 

 

 



Comment #7: Even assuming the ML model was valid, using it to screen 

7257 new nucleoside analogues is very unwise unless these new 

materials fall within or near the domain of applicability of the model. There 

is no discussion of what the domain is and whether the new nucleoside 

analogues are within it. It seems very unlikely that a model with limited 

accuracy could reliably predict the properties of >7000 new materials 

when trained on only 71 (or 57) nucleosides. 

Response: Thank you very much for your comment. In fact, the 7257 

nucleoside derivatives were screened based on their three-dimensional (3D) 

similarity from PubChem (https://pubchem.ncbi.nlm.nih.gov), and we tried to 

get their structures as close as possible to the trained 71 nucleoside derivatives’ 

structures.  

PubChem is an open repository of small molecules and their experimental 

biological activities; it contains over 115 million compounds and hundreds of 

thousands of which are nucleoside derivatives 1. As you know, the nucleosides 

are composed of nucleobases and pentose. To ensure the structural similarity, 

we obtained 7257 structures from PubChem based on 3D similarity by using 

PubChem3D project. 

In our study, shape-Tanimoto (ST) and color-Tanimoto (CT) were used to 

estimate the 3D similarity. Only nucleoside derivatives owning the high 3D 

similarity with the five basic nucleosides (uridine, thymidine, adenosine, 

guanosine, and cytidine) were included, and the criteria are the ST ≥ 0.80 and 

CT ≥ 0.502. Therefore, we think the 7257 nucleoside derivatives, screened from 

PubChem based on the 3D similarity, may fall within or be close to the present 

model’s applicability domain.  

We applied our prediction model to the 7257 nucleoside derivatives which own 

the high 3D similarity with the nucleosides. And 12 nucleoside derivatives were 

selected with a high probability of hydrogel-forming ability for experimental 

validation (top 10% probability of gelator). The tube-inversion tests were utilized 

for these nucleoside derivatives, and the success rate of form hydrogel is 83.33% 

https://pubchem.ncbi.nlm.nih.gov/


(10/12, Table R5, this table is assigned to be Supplementary Data S7). This 

indicates that the prediction model is useable for these 7257 nucleoside 

derivatives based on 3D similarity. Therefore, we believe that the ML model was 

valid at this stage, and we have added related discussion in the revised 

manuscript to make it clearer according to your suggestions. Although this is 

just a starting point, better and more accurate models will be built as more 

nucleoside hydrogels are discovered in the future.  

Table R5. The validation for the hydrogel-forming ability of the 12 nucleoside 
derivatives 

No. Nucleoside derivatives PMID 
P for 

Gelability 

Rank for 

Gelability 

Test 

Result 

1 DTT 

 

21826754 0.680 2 (0.1%) Gel (+) 

2 XTS 

 

77518952 0.621 57 (0.7%) Gel (-) 

3 GMP 

 

135398631 0.610 118 (1.6%) Gel (+) 

4 IMP 

 

135398640 0.593 365 (5.0%) Gel (+) 

5 5-FUR 

 

9427 0.591 409 (5.6%) Gel (-) 



6 8-AG 

 

135518164 0.590 454 (6.3%) Gel (+) 

7 dGMP 

 

135596592 0.590 454 (6.3%) Gel (+) 

8 8-OHG 

 

135407175 0.590 454 (6.3%) Gel (+) 

9 8-AzaG 

 

135763231 0.587 553 (7.6%) Gel (+) 

10 I-5’-CA 

 

13542524 0.585 599 (8.3%) Gel (+) 

11 2’-NH2-dG 

 

135491415 0.585 599 (8.3%) Gel (+) 

12 2’-OMe-dG 

 

136441961 0.582 680 (9.4%) Gel (+) 

References: 

1. Wang, Y. L. et al. Pubchem’s bioassay database. Nucleic Acids Res. 40, 

D400–D412 (2012). 

2. Bolton, E. E., Kim, S. & Bryant, S. H. PubChem3D: Similar conformers. J. 

Cheminform. 3, 13, (2011). 

 

 



Comment #8: It was not explained why visual detection of Ag+ or cysteine 

was important. 

Response: Thank you for your constructive comments. According to your 

valuable suggestion, the importance of visual detection of Ag+ or cysteine has 

been added into the revised manuscript. Herein, we would like to explain why 

visual detection of Ag+ or cysteine was important as follows. 

Ag+ is a wide range of contaminants with serious toxicity, which is hardly 

degraded naturally in the environment and is easily accumulated in the human 

body through the food chain, causing increases of the risk of neurodegenerative, 

oncological, and cardiovascular diseases (Skvortsov, A. et al., J. Hazard. Mater., 

2023)1. Cysteine plays an important role in life activities, and its concentration 

fluctuation is closely related to many diseases, such as neurodegenerative 

diseases (Paul B.D. et al, Trends Pharmacol. Sci., 2018)2. The traditional 

detection methods of Ag+ are atomic absorption spectrometry, inductively 

coupled plasma mass spectrometry and electrochemical analysis (Rievaj, M. et 

al., Nanomaterials, 2023)3. The traditional detection methods of cysteine are 

high-performance liquid chromatography, electrochemical analysis and flow 

injection analysis (Zhang R. et al, Coordin. Chem. Rev., 2020)4. Although these 

methods have good selectivity and accuracy, they rely on expensive and large-

scale instruments as well as specially trained personnel. The visual detection 

method is simple to operate with rapid measurement and eliminates the 

reliance on professional personnel and large equipment, so it has potential 

application in portable detection equipment for better practical application 

scenarios. 

References 

1.  Skvortsov, A. N., Ilyechova, E. Y. & Puchkova, L. V. Chemical background 

of silver nanoparticles interfering with mammalian copper metabolism. J. 

Hazard. Mater. 451, 131093 (2023). 

2. Paul, B.D., Sbodio, J.I. & Snyder, S.H. Cysteine Metabolism in Neuronal 

Redox Homeostasis, Trends Pharmacol. Sci. 39, 513-524 (2018). 

3. Rievaj, M.,  Culková, E.,  Šandorová, D.,  Durdiak, J.,  Bellová, R. & 

Tomčík, P. A Review of Analytical Techniques for the Determination and 



Separation of Silver Ions and Its Nanoparticles. Nanomaterials 13, 1262 

(2023). 

4. Zhang, R., Yong, J., Yuan, J. & Xu, Z. P. Recent advances in the 

development of responsive probes for selective detection of cysteine. 

Coordin. Chem. Rev. 408, 213182 (2020). 

Comment #9: Care should be taken with copy editing e.g., careless use of 

RFE vs REF, glue-forming vs gel-forming etc. 

Response: Thank you for your valuable comments. We apologize for such 

mistakes, and we have carefully checked and corrected the relevant problems.  



Reviewer #2 (Remarks to the Author): 

Comment #1: -Figures quality is insufficient. 

Response: Thank you very much for your reminder. We have revised the 

insufficient figures to make them clearer.  

Comment #2: Page 6: "The 3D PCA with 40 descriptors can better 

distinguish the two groups (Fig. 1e)." and legend to Figure 1e: "PCA 

results for 40 descriptors, and the two groups tend to separate." By 

looking at Figure 1, it is not obvious that the gelator/non-gelator groups 

are better separated in plot 1e than in plot 1b. 

Response: Thanks for your comment and we fully agree with this matter. 

Initially, we used 3D PCA here to visually demonstrate whether the descriptors 

after feature selection could more representatively distinguish the gelator and 

non-gelator groups. Based on the results of the analysis of the subsequent 

models, the performance of the models constructed with 40 descriptors 

generally tended to outperform the models constructed with 4175 descriptors, 

and we believe that it played a positive role in the process of feature selection. 

However, considering that although there may be a potential trend in the 3D 

PCA (Fig.1e), it really does not distinguish gelator and non-gelator groups 

significantly, our terminology is not very appropriate. Therefore, we have 

changed the description of the 3D PCA in the revised manuscript according to 

your suggestion. 

 

 

 

 

 

 



Comment #3: What probability threshold was used for the training and 

testing of the ML models? As discussed later on page 10 and shown in 

Figure 3b, the ML model predicts a compound as gelator or non-gelator 

with a given probability. When the models make good or bad predictions, 

it would be interesting to know the associated probabilities. 

Response: Thanks for your professional comments. A probability threshold of 

50% was preset for the training and testing of the ML models. When the 

prediction probability of gel formation is greater than 50%, the nucleoside 

derivative is considered a possible gelator, and when it is less than 50%, the 

nucleoside derivative is considered a possible non-gelator. Given the small 

sample size of this work this ML model is only a preliminary exploration of the 

nucleoside hydrogel prediction. Therefore, we primarily set the 50% as the 

probability threshold in this study. In Fig. R3 (The Fig. R3 is original Fig. 3b, 

and it is now shown in Supplementary Fig. 6 in revised Supporting 

Information), the "Top 10%" is the range we chose to experimentally verify the 

hydrogel-forming ability of nucleoside derivatives, not the probability threshold 

of training and testing of the ML models, and the probability threshold of "Top 

10%" is 58.11%.  

According to your suggestion, the “probability threshold of ML models was 50%” 

and the “probability threshold of Top 10% was 58.11%” were also added in the 

revised manuscript and Fig. R4 (also shown in Fig. 3a in revised manuscript). 



 
Fig. R3. The 12 chosen alternative nucleoside derivatives based on 
gelator probabilities of top 10%. The x-axis representing the prediction 
hydrogel-forming probability and the y-axis representing the ranking of the 
prediction probabilities from smallest to largest. 

 

Fig. R4. Prediction and verification of untested nucleoside derivatives. 

The nucleoside derivatives with the top 10% prediction probability of hydrogel-

forming ability were selected and 12 nucleoside derivatives were selected in a 

relatively homogeneous manner based on our previous experience and the 

costs of obtaining and synthesizing nucleoside derivatives. 

 

 

 

 

 

 



Comment #4: Page 8: "Beside the 5 descriptors mentioned above, some 

other descriptors are likely to be related to hydrogel-forming ability. 

Including hydrophilic factor (Hy) 63, topological polar surface area (TPSA), 

octanol-water partition coefficient (LogP), and solubility (ESOL), while no 

significant difference was found (Fig. 3a and S5)." and legend to Figure 

3a: "grouped box plot of 4 descriptors with potential relevance to glue-

forming ability for 71 nucleoside derivatives". Why would these 4 

compounds be relevant since they cannot distinghish gelator/non-gelator 

groups? I don’t see the pertinence of this. 

Response: Many thanks for this comment. We apologize for the wrong 

description and now we have modified this part in the revised manuscript. 

These 4 descriptors in original Fig. 3a were not directly relevant to the hydrogel-

forming ability for 71 nucleoside derivatives. These descriptors expressed some 

other chemical properties that may be relevant to hydrogel-forming ability of 

nucleoside derivatives according to the previous studies. We just tried to 

explore the relationship between these molecular descriptors with the hydrogel-

forming ability, which is described in detail as follows: 

Firstly, as the descriptors chosen in the final model are not easy to understand, 

we also try to initially explore the other descriptors which express chemical 

properties that may be relevant to the hydrogel-forming ability of nucleoside 

derivatives. According to the previous studies (Van Lommel, R et al., Chem. 

Sci., 2020; Li, F. et al., Proc. Natl Acad. Sci. USA., 2019; Gupta, J. K. et al., 

Chem. Sci., 2016)1-3, related descriptors to water solubility and lipophilicity 

(hydrophilicity, Hy4; topological polar surface area, TPSA5; octanol-water 

partition coefficient, LogP 6; and solubility, ESOL7) were selected.  

Then we tried to show the values’ distributions of the four descriptors between 

the gelator and non-gelator groups, and between the gelator group and the top 

10% of nucleoside derivatives with high probability of hydrogel-forming ability. 

The results demonstrated that there was no significant difference between 

groups (P > 0.05), suggesting that these molecular descriptors were not related 



to the hydrogel-forming ability of nucleoside derivatives.  

Therefore, although the molecular descriptors we chose based on the above 

three-step feature selection are not easy to understand, it is more effective to 

be used to predict the hydrogel-forming ability of nucleoside derivatives in this 

work. Since we did not find a link between these molecular descriptors and the 

hydrogel-forming ability of the nucleoside derivatives. To avoid confusing the 

reader, we replaced the original Fig.3a with Supplementary Fig. 5 and 

removed the original Fig. S5. 

References: 

1. Van Lommel, R., Zhao, J., De Borggraeve, W. M., De Proft, F. & Alonso, M. 

Molecular dynamics-based descriptors for predicting supramolecular 

gelation. Chem. Sci. 11, 4226-4238 (2020). 

2.  Li, F. et al. Design of self-assembly dipeptide hydrogels and machine 

learning via their chemical features. Proc. Natl Acad. Sci. USA. 116, 11259-

11264 (2019). 

3.  Gupta, J. K., Adams, D. J. & Berry, N. G. Will it gel? Successful 

computational prediction of peptide gelators using physicochemical 

properties and molecular fingerprints. Chem. Sci. 7, 4713-4719 (2016). 

4.  Todeschini, R., Vighi, M., Finizio, A. & Gramatica, P. 3D-Modelling and 

Prediction by WHIM Descriptors. Part 8. Toxicity and Physico-Chemical 

Properties of Environmental Priority Chemicals by 2D-TI and 3D-WHIM 

Descriptors. SAR. QSAR. Environ. Res. 7, 173–193 (1997). 

5.  Ertl, P., Rohde, B. & Selzer, P. Fast calculation of molecular polar surface 

area as a sum of fragment-based contributions and its application to the 

prediction of drug transport properties. J. Med. Chem. 43, 3714–3717 

(2000). 

6.  Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. Prediction of 

Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using 

Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. J. Phys. 

Chem. A 102, 3762–3772 (1998). 

7.  Delaney, J. S. ESOL: estimating aqueous solubility directly from molecular 

structure. J. Chem. Inf. computer Sci. 44, 1000–1005 (2004). 

 

 

 

 

 

 



Comment #5: -Page 10: "Based on previous experience and knowledge of 

the hydrogel-forming ability of nucleoside derivatives, we selected three 

guanosine derivatives for validation among the top 10% ranked 

structures." and "The specific structures and gelator probabilities of the 

three nucleoside derivatives are in the forefront (Fig. 3c-e, probabilities of 

gelator: 1, 0.590; 2, 0.590; 3, 0.587)." 

In Figure 3b the vast majority of the compounds have a gelator probability 

between 0.4 and 0.6. That does not seem to be very strong. Also, the 

authors selected 3 compounds out of the top 10%, however, 10% of 7257 

compounds tested is 726, which is quite a large subset. What about the 

compounds that are at the very top of the distribution? Selection was 

made based on "previous experience and knowledge": how were these 3 

compounds precisely selected? 

Also in Figure 3b, I assume that the blue dots (labelled as "alternative") 

correspond to the 3 selected molecules? Note also that they are just 

above the 10% cut-off and not at the very top of distribution. 

Response: Thank you very much for the professional comments and 

suggestions. We would like to explain this comment in three parts. 

Firstly, as the formation of nucleoside hydrogels is a complex process, there 

were no prediction models available to predict the hydrogel-forming ability of 

nucleoside derivatives in the past. Inspired by these, we collated the structures 

of all published nucleoside hydrogels as a dataset through a systematic 

literature review. Then the dataset of 71 nucleoside derivatives with the 

information of whether they have the hydrogel-forming ability was converted 

into feature matrices using 4175 molecular descriptors and four kinds of 

fingerprints (2048-bit ECFP4, ECFP, AtomPair, and Topological Torsion). After 

three-step feature selection and hyperparameter optimization, four classifier 

algorithms (RF, DT, LR, XGBoost) were used for predicting hydrogel-forming 

ability. Then an optimal model with 71% accuracy was selected, and most 

distributions of gelling probabilities are in the range of 0.4-0.6. The present 

prediction model is our initial attempt, but we still hope that the present model 



can be applied to the prediction of nucleoside hydrogels.  

Secondly, although the predicted gelling probabilities were not strong, the tube-

inversion tests were utilized for the selected nucleoside derivatives with high 

gelling prediction probability, and the success rate of form hydrogel is 83.33%. 

Initially, to validate the model and consider possible subsequent applications, 

the nucleoside derivatives with the top 10% probability of gelators were 

screened and 12 nucleoside derivatives (1, 1-[3,4-Dihydroxy-5-

(hydroxymethyl)oxolan-2-yl]-1,3,5-triazinane-2,4,6-trione, DTT; 2, xanthosine, 

XTS; 3, guanine 5'-monophosphate, GMP; 4, inosine 5’-monophosphate, IMP; 

5, 5-fluorouridine, 5-FUR; 6, 8-aminoguanosine, 8-AG; 7, 2’-deoxyguanosine 

5’-monophosphate, dGMP; 8, 8-hydroxyguanosine, 8-OHG; 9, 8-azaguanosine, 

8-azaG, 10, inosine-5’-carboxylic acid; I-5’-CA; 11, 2’-amino-2’-

deoxyguanosine, 2’-NH2-dG, and 12, 2’-O-Methylguanosine, 2’-OMe-dG) were 

selected in a relatively homogeneous manner based on our previous 

experience and the costs of obtaining and synthesizing nucleoside derivatives. 

The experiment results indicated that 10 of the 12 nucleoside derivatives can 

form hydrogels (1, 3, 4, 6, 7, 8, 9, 10, 11, and 12, Table R5, this table is assigned 

to be Supplementary Data S7, Fig. R5-R7, these figures are assigned to be 

Supplementary Figure 7-9 in revised Supporting Information), which further 

demonstrates the value of our predictive model. Therefore, this study greatly 

accelerates the discovery of new nucleoside hydrogels compared to previous 

inadvertent discoveries or modifications of existing gelators. 

Thirdly, as our group mainly focused on developing guanosine-based hydrogels 

and studying their application in stomatology1-4, we paid more attention to 

guanosine-derived hydrogels during the process of verifying whether 

nucleoside derivatives can form hydrogels. Among the 12 nucleoside 

derivatives we selected to validate the model, five guanosine derivatives (6, 8, 

9, 11, and 12) could form hydrogels. Interestingly, 6, 8, and 9 formed rarely 

reported cation-independent guanosine hydrogels. Therefore, we chose the 

three compounds for further study in the manuscript before. Thanks for your 



valuable suggestion, we’ve added the detailed screening process of hydrogels 

in the revised manuscript. 

Table R5. The validation for the hydrogel-forming ability of the 12 nucleoside 
derivatives 

No. Nucleoside derivatives PMID 
P for 

Gelability 

Rank for 

Gelability 

Test 

Result 

1 DTT 

 

21826754 0.680 2 (0.1%) Gel (+) 

2 XTS 

 

77518952 0.621 57 (0.7%) Gel (-) 

3 GMP 

 

135398631 0.610 118 (1.6%) Gel (+) 

4 IMP 

 

135398640 0.593 365 (5.0%) Gel (+) 

5 5-FUR 

 

9427 0.591 409 (5.6%) Gel (-) 

6 8-AG 

 

135518164 0.590 454 (6.3%) Gel (+) 



7 dGMP 

 

135596592 0.590 454 (6.3%) Gel (+) 

8 8-OHG 

 

135407175 0.590 454 (6.3%) Gel (+) 

9 8-AzaG 

 

135763231 0.587 553 (7.6%) Gel (+) 

10 I-5’-CA 

 

13542524 0.585 599 (8.3%) Gel (+) 

11 2’-NH2-dG 

 

135491415 0.585 599 (8.3%) Gel (+) 

12 2’-OMe-dG 

 

136441961 0.582 680 (9.4%) Gel (+) 

Notes: *: 1, 1-[3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,3,5-triazinane-

2,4,6-trione, DTT; 2, xanthosine, XTS; 3, guanine 5'-monophosphate, GMP; 4, 

inosine 5’-monophosphate, IMP; 5, 5-fluorouridine, 5-FUR; 6, 8-

aminoguanosine, 8-AG; 7, 2’-deoxyguanosine 5’-monophosphate, dGMP; 8, 8-

hydroxyguanosine, 8-OHG; 9, 8-azaguanosine, 8-azaG, 10, inosine-5’-

carboxylic acid; I-5’-CA; 11, 2’-amino-2’-deoxyguanosine, 2’-NH2-dG, and 12, 

2’-O-Methylguanosine, 2’-OMe-dG. 

 

 



 

Fig. R5. Photographs of hydrogels or samples assembled from nucleoside 
derivatives in different solutions. Sol: solution. Pre: precipitate. 

 



Fig. R6. Photographs of hydrogels or samples assembled from nucleoside 
derivatives in different solutions. Sol: solution. Pre: precipitate. 



 

Fig. R7. Photographs of hydrogels or samples assembled from nucleoside 
derivatives in different solutions. Sol: solution. Pre: precipitate. 

Reference: 

1. Zhao, H., Guo, X., He, S. et al. Complex self-assembly of pyrimido[4,5-d] 

pyrimidine nucleoside supramolecular structures. Nat. Commun. 5, 3108 

(2014).  

2. Zhao, H., Feng, H., Liu, J., Tang, F., Du, Y., Ji, N., Xie, L., Zhao, X., Wang, 

Z. & Chen, Q. Dual-functional guanosine-based hydrogel integrating 

localized delivery and anticancer activities for cancer therapy. Biomaterials 

230, 119598 (2020). 

3. Wang, Z. et al. High-Strength and Injectable Supramolecular Hydrogel Self-

Assembled by Monomeric Nucleoside for Tooth-Extraction Wound Healing. 

Adv. Mater. 34, 2108300, (2022). 

4. Liu, T. et al. pH-responsive dual-functional hydrogel integrating localized 

delivery and anti-cancer activities for highly effective therapy in PDX of 

OSCC. Mater. Today 62, 71-97, (2023). 

 



Comment #6: p10 and Fig 3. Why lifetime hydrogels where tested in 

H3BO3 with Tris solution for 8-AG and 8-OHG or AgNO3 solution for 8-

AzaG. p10 and Fig 3. Why H3BO3 with Tris solution and AgNO3 solution 

was used as the solvent to form hydrogel? 

Response: We sincerely appreciate your valuable comments. To better explain 

the former comment, we try to respond to the latter comment first.  

1). p10 and Fig 3. Why H3BO3 with Tris solution and AgNO3 solution was 

used as the solvent to form hydrogel? 

A major challenge in the field of nucleoside hydrogels is how to anticipate 

whether a nucleoside derivative will form a hydrogel. Design suggestions are 

frequently made, but gelators are usually discovered unintentionally or through 

the synthetic modification of an existing gelator (Adams, D. J., J. Am. Chem. 

Soc., 2022) 1. Inspired by these, we developed a ML model to predict the 

hydrogel-forming ability of nucleoside derivatives. However, the ML model 

couldn’t predict the appropriate conditions for the formation of nucleoside 

hydrogels because the self-assembly process of nucleoside hydrogels is 

complex, and always affected by many factors. Based on our previous 

experience and related literature, the hydrogel-forming conditions of guanosine 

derivatives are summarized as the following four aspects:  

i). Alkali metal cations mostly Na+ and K+ in stabilizing the G-quartet were used 

to help form guanosine-derived hydrogels (Sreenivasachary N. et al. Proc. Natl. 

Acad. Sci. USA, 2005; Davis J.T., Angew. Chem. Int. Ed., 2004)2-3.  

ii). The borate anions in the alkaline solution connect with two ribose sugar 

units of guanosines via the formation of diesters bonds, thus increasing the 

stability of guanosine-derived hydrogels (Zhao, H. et al., Biomaterials, 2020; 

Peters, G. M. et al., J. Am. Chem. Soc., 2014)4-5.  

iii). Some metal ions such as Ag+ serve as bridges linking two base pair motifs 

of guanosines, leading to the formation of hydrogels (Li, T. et al., ACS Appl. 

Mater. Inter., 2023; Adhikari B. et al., J. Mater. Chem.B., 2014)6-7.  

iv). Introducing mixture gelators favors the formation of binary gels (Plank, T. 

N.et al., Chem. Commun., 2016; Das, R. N. et al., Chem. - A Eur. J., 2012)8-9.  



Therefore, we made attempts to verify the hydrogel-forming abilities of 8-AG, 

8-OHG, and 8-AzaG according to the above methods. The results of the tube-

inversion test show that 8-AG and 8-OHG couldn’t form hydrogels in water, 

NaCl, KCl, H3BO3, and AgNO3 solutions (Fig. R6), and self-assemble into 

hydrogels (8AG-T and 8OHG-T hydrogels) in the presence of H3BO3 and Tris. 

8-AzaG failed to form hydrogels in water, NaCl and KCl solutions, formed 

viscous solution in H3BO3 solution, and successfully self-assembled into 8Aza-

T and 8AzaG-Ag+ hydrogels in H3BO3 with Tris solution and AgNO3 solutions, 

respectively (Fig. R7). Therefore, H3BO3 with Tris solution and AgNO3 solution 

were used as the solvents to form hydrogels.  

2). p10 and Fig 3. Why lifetime hydrogels where tested in H3BO3 with Tris 

solution for 8-AG and 8-OHG or AgNO3 solution for 8-AzaG 

The reasons why we tested the lifetime hydrogels in H3BO3 with Tris solution 

for 8-AG and 8-OHG or AgNO3 solution for 8-AzaG are as follows: 

i). Interestingly, the 8AG-T, 8OHG-T, and 8AzaG-T hydrogels we developed are 

rarely reported cation-independent guanosine-derived supramolecular 

hydrogels. As 8-AG and 8-OHG exhibited the same gel-forming abilities, we 

made an in-depth study of 8AG-T together with 8OHG-T hydrogels. Therefore, 

we tested the lifetime hydrogels in H3BO3 with Tris solution for 8-AG and 8-

OHG.  

ii). For the 8AzaG-Ag+ hydrogel, the introduction of Ag+ might make it exhibit 

bactericidal properties and have potential biomedical applications, so we tested 

the lifetime hydrogels in AgNO3 for 8-AzaG. 

For the readers to better understand the screening processes of the solvents 

of hydrogels, we have added the results that show the processes of validating 

the hydrogel-forming abilities of 8-AG, 8-OHG, and 8-AzaG in H2O, KCl, NaCl, 

H3BO3, H3BO3 and Tris, NaB(OH)4, KB(OH)4, and AgNO3 solutions in revised 

manuscript.  

References: 

1. Adams, D. J. Personal Perspective on Understanding Low Molecular 

Weight Gels. J. Am. Chem. Soc. 144, 11047-11053 (2022). 

2.  Sreenivasachary, N. & Lehn, J.M. Gelation-driven component selection in 



the generation of constitutional dynamic hydrogels based on guanine-

quartet formation. Proc. Natl. Acad. Sci. USA 102, 5938-5943 (2005). 

3.  Davis, J.T. G-quartets 40 years later: from 5’-GMP to molecular biology and 

supramolecular chemistry. Angew. Chem. Int. Ed. 43, 668-698 (2004). 
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4802-4810 (2014). 

8.  Plank, T.N., Skala, L.P. & Davis, J.T. Supramolecular Hydrogels for 

Environmental Remediation: G4-quartet Gels that Selectively Absorb 

Anionic Dyes from Water. Chem. Commun. 53, 6235-6238 (2016). 
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Birefringence of Bioactive Dyes in a Supramolecular Guanosine Hydrogel. 
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Comment #7: p11 "This is the first-time cation-independent guanosine-

derived hydrogels have been discovered." Not correct see for example: i) 

ACS Omega 2018, 3, 2, 2230–2241, 

https://doi.org/10.1021/acsomega.7b02039, ii) soft mater DOI 

https://doi.org/10.1039/C8SM00299A, iii) Organic & Biomolecular 

Chemistry 2018, DOI: 10.1039/C8OB01023D, iv) Coordination Chemistry 

Reviews Volume 488, 1 August 2023, 215170 

https://doi.org/10.1016/j.ccr.2023.215170, etc 

Response: Thank you for your careful review. The responses to the four 

references are as follows: 

i). The review of “ACS Omega 2018, 3, 2, 2230–2241, 

https://doi.org/10.1021/acsomega.7b02039” mentioned that “Interestingly, the 

G-dots could utilize the self-assembly property of 5’-GMP to form fluorescent 

hydrogels without any externally added monopositive cations”. In the original 

reference (Ghosh, A. et al., Chem. Commun., 2016) 1, 5’-GMP is guanosine 5’-

monophosphate, sodium salt, which itself contains sodium. Furthermore, the 

article mentioned “the presence of a small number of guanine motifs of 5’-GMP 

would facilitate the self-assembly of the G-dots with the help of sodium to form 

extended structures”, indicating the hydrogel formed with the help of sodium. 

The scheme (Fig. R8) in the article also illustrates the hydrogel forms by 

templating alkali metal cations of sodium. Therefore, the hydrogels in this 

reference are not cation-independent hydrogels. 



 

Fig. R8. Formation of 5’-GMP carbon dots (G-dots). 

 

ii). In the article “soft mater DOI https://doi.org/10.1039/C8SM00299A”, the 

gelator is guanosine 5’-monophosphate, potassium salt. The presence of 

potassium suggests the formed hydrogel is not cation independent.0 

iii). We would like to explain the differences between the article of “Organic & 

Biomolecular Chemistry 2018, DOI: 10.1039/C8OB01023D” and the 

description of "the first-time cation-independent guanosine-derived hydrogels" 

in the following two aspects. Firstly, guanosine-3’- (1,2-dipalmitoyl-sn-glycero-

3-phosphate) (diC16-3’-dG) formed hydrogel in waters, without any externally 

added cations. However, diC16-3’-dG itself contains the cation of Et3NH+, which 

may help form gel, because G4-quartets may readily form in the presence of 

ammonium ions or quaternary ammonium ions (Peters,G.M. et al., Chem. Soc. 

Rev., 2016)2. Secondly, diC16-3’-dG is a derivative of guanylic acid, not 

guanosine. However, in our description is guanosine derivative. Therefore, the 

description of "This is the first-time cation-independent guanosine-derived 

hydrogels have been discovered" is not in conflict with the findings in the article 

of “Organic & Biomolecular Chemistry 2018, DOI: 10.1039/C8OB01023D”.  

jwu9191
Text Box
[REDACTED]



iv). We have read the review of “Coordination Chemistry Reviews Volume 488, 

1 August 2023, 215170 https://doi.org/10.1016/j.ccr.2023.215170” carefully. 

Table R6 is the summary of different guanosine-boronate esters-based self-

assembled hydrogels and their biomedical applications, and it shows that metal 

cations are used to form hydrogels except for the reference of 55 (Plank T. N. 

at al., Chem. Commun., 2016) 3. However, we found that in the reference of 55, 

the hydrogel was made by 5’-deoxy-5’-iodoguanosine and KB(OH)4, and K+ 

coordinated G-quartet assembly (Fig. R9). Therefore, the hydrogels in this 

reference are not cation-independent hydrogels. 

Based on these, the results in the above references are not in conflict with the 

description of "This is the first-time cation-independent guanosine-derived 

hydrogels have been discovered". To avoid the misunderstanding of readers, 

we would like to revise it to be more appropriate and rigorous based on your 

professional comments. “the first-time cation-independent guanosine-derived 

hydrogels” has been changed to “the rarely reported cation-independent 

guanosine-derived hydrogels” in the revised manuscript: 

 

 



Table R6. Summary of different guanosine-boronate esters based on self-
assembled hydrogels and their biomedical applications.  

 



Fig. R9. A hydrogel is made when guanosine or 5’-deoxy-5’-iodoguanosine 
reacts with KB(OH)4 to form GB esters that self-assemble into G4-wires 
stabilized by K+.  
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1. Ghosh, A., Parasar, B., Bhattacharyya, T. & Dash, J. Chiral carbon dots 
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nucleoside and nucleotide analogs, Chem. Soc. Rev. 45, 3188-3206 (2016). 

3. Plank, T. N. & Davis, J. T. A G4·K+ hydrogel that self-destructs. Chem. 

Commun., 52, 5037-5040 (2016). 
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Comment #8: p11 Results very similar to Org. Biomol. Chem (DOI: 

10.1039/C8OB01023D) 

Response: Thank you for your insightful comments. Although there are some 

similarities between the hydrogels in the article of Org. Biomol. Chem (DOI: 

10.1039/C8OB01023D) and that in our manuscript, there are many differences 

in their substance. We would like to expound on their differences in the following 

four aspects: 

i). Chemical structures. The gelator of guanosine-3’- (1,2-dipalmitoyl-sn-

glycero-3-phosphate) (diC16-3’-dG) is a derivative of guanylic acid, not 

guanosine. The gelators of cation-independent hydrogels are guanosine 

derivatives.  

ii). Ammonium salts. G-quartets may readily form in the presence of 

ammonium ions or quaternary ammonium ions (Peters,G.M. et al., Chem. Soc. 

Rev., 2016)1, thus self-assemble into gels. Acually, the diC16-3’-dG itself 

contains Et3NH+, which may contribute to forming hydrogels. In our study, no 

ammonium ions exist. 

iii). Self-assembly mechanisms. There are two main differences in self-

assembly mechanisms between the former article and our study. Firstly, the 

dynamic borate diester bonds helped form stable and self-healing hydrogels in 

the absence of cations. Secondly, the stacked G-quartets displays the bands 

of opposite sign at 240 and 260 nm in circular dichroism spectra (Peters, G. M. 

et al., J. Am. Chem. Soc., 2014)2. diC16-3’-dG’ a positive band at 240 nm and 

a negative band at 260 nm, suggesting diC16-3’-dG might form stacked G-

quartets. However, 8-AG and 8-OHG formed G-ribbons but not G-quartets in 

8AG-T and 8OHG-T hydrogels.  

iv). Application prospects. The diC16-3’-dG hydrogel exhibited drug-

controlled release properties, so it has application prospects in drug delivery. 

The 8OHG-T hydrogel in this work can be used for rapid visual detection of Ag+ 

and cysteine, and thus it has potential application in portable detection 

equipment for Ag+ or cysteine detection in the future. 

Taken together, the hydrogels in the article of Org. Biomol. Chem (DOI: 



10.1039/C8OB01023D) and our manuscript are differences in the chemical 

structures, ammonium salts, self-assembly mechanisms, and application 

prospects. 

References 

1.   Peters,G.M. Davis & J.T. Supramolecular gels made from nucleobase, 

nucleoside and nucleotide analogs, Chem. Soc. Rev. 45, 3188-3206 

(2016). 

2.   Peters, G. M., Skala, L. P., Plank, T. N., Hyman, B. J.,  Manjunatha Reddy, 

G. N.,  Marsh, A.,  Brown, S. P. & Davis, J. T. A G4·K+ Hydrogel 

Stabilized by an Anion. J. Am. Chem. Soc. 136, 12596-12599 (2014). 

Comment #9: Fig. 4c. G’ is not >> G’’  

Response: Thank you for your valuable comments. The commonly used 

methods of confirming hydrogel formation are tube-inversion test and 

rheological measurements (Zhou, X. et al., Adv. Sci., 2020; Zhong, R. et al., 

Adv. Mater., 2018)1-2. To verify the formation of hydrogels, firstly, we performed 

the tube-inversion tests, and the results demonstrated 8AG-T and 8OHG-T 

hydrogels were successfully formed. Then, rheological measurement was used 

to assess the solid-like characteristics of hydrogels. If the storage modulus (G’) 

is higher than the loss modulus (G″), the sample displays a solid-like 

characteristic (Zhong, R. et al., Adv. Mater., 2018)2. As shown in Fig. 4c, the 

hydrogel possessed a higher G’ compared to G″ over the entire applied 

frequency range, suggesting the formation of a solid-like hydrogel. The purpose 

of Fig. 4c is to access whether 8OHG-T hydrogel forms, so G’ is not need to be 

much greater than G’’. 

References 

1. Zhou, X., He, X., Shi, K., Yuan, L., Yang, Y., Liu, Q., Ming, Y., Yi, C. & Qian, 

Z. Injectable thermosensitive hydrogel containing Erlotinib ‐ Loaded 
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system for NSCLC therapy. Adv. Sci., 7, 202001442 (2020). 

2. Zhong, R.;  Tang, Q.;  Wang, S.;  Zhang, H.;  Zhang, F.;  Xiao, M.;  

Man, T.;  Qu, X.;  Li, L.;  Zhang, W. & Pei, H. Self-Assembly of Enzyme-

Like Nanofibrous G-Molecular Hydrogel for Printed Flexible 

Electrochemical Sensors. Adv. Mater. 30, e1706887 (2018). 

 



Comment #10: Fig. 4a. caption no mention of terms "Pre" or "Sol" in the 

Fig. 4a. 

Response: Thank you for your comments and we are very sorry for this error. 

We have deleted the terms "Pre" or "Sol" in the caption of original Fig. 4a (It is 

now shown in Supplementary Fig. 8 in revised Supporting Information). 

Comment #11: Fig. 4d, e caption seems do not match the figure? 

Response: We apologize for the error that the same figures are given in Fig. 

4d, e and Fig. 5a, b. We have corrected Fig. 4d, e (Fig. R10 in the response 

letter) in the revised manuscript. 

 

Fig. R10. The characterizations of hydrogels.  

a Photographs of 8AG-T and 8OHG-T hydrogels prepared for 6 months. b, c 
Evolution of G’ and G’’ as a function of frequency for of 8AG-T (b) and 8OHG-
T(c) hydrogels. d, e The self-healing of 8AG-T (d) and 8OHG-T(e) hydrogels by 
rheological measurements. f SEM (scale bar: 50 μm) images of 8AG-T and 
8OHG-T hydrogels. g AFM (scale bar: 200 nm) images of 8AG-T and 8OHG-T 
hydrogels. h, i The pair distances distribution functions (PDDF) profiles from 
VT-SAXS experiments of 8AG-T (h) 8OHG-T (i) hydrogels. 
 



Comment #12: Fig. 4j. Figure is missing 

Response: We are very sorry for this error. The caption of Fig. 4j is redundant 

and has been deleted in the revised manuscript. 

Comment #13: p15 "borate diester" was not introduced before. Give 

context. 

Response: We deeply appreciate your helpful and very constructive comments. 

We have added the content of introducing “borate diester” in the revised 

manuscript.  

Comment #14: Fig 5c inset illegible 

Response: Thank you very much for your suggestion. We have revised Fig. 

5c (The figure is assigned to be Fig. R11 in the response letter) to make it 

clearer. 



Fig. R11. Self-assembly mechanism of the cation-independent hydrogels.  

a 11B NMR spectra of 8AG-T and 8OHG-T hydrogels. b Fluorescence intensity 

of ARS in 8AG-T and 8OHG-T hydrogels. c ThT assay of 8AG-T and 8OHG-T 

hydrogels. d CD spectra of 8AG-T and 8OHG-T hydrogels. e The chemical 

structure and single crystal structure of 1. f 1H–1H NOE of 8AG-T hydrogels. g 

The single crystal structure of the base-pair pattern; h The schematic diagram 

of the single crystal of 6. The red dashed box includes the interactions between 

DMSO and 8AG. i The PXRD spectrum of 8AG-T and 8OHG-T hydrogels. j 

Schematic illustration of the formation of an 8AG-T hydrogel. Atoms are coded 

as follows: red, oxygen; blue, nitrogen; gray, carbon; white, hydrogen.  

 

 

 

 

 

 



Comment #15: Fig 6d. Completely wrong. Abs at 3 = no photon. Inset fit is 

inappropriately drawn and (voluntary) misleading 

Response: Thank you for your professional comments. Initially, we considered 

the upper limit of absorbance in quantitative analysis of ultraviolet 

spectrophotometry during the experiments. As you know, the most basic and 

fundamental basis of quantitative analysis in ultraviolet spectrophotometry is 

the Lamber–Beer law, which is as follows: 

A = log (I0/It) = log (1/T) = klC                     (1) 

where A is the absorbance, I0 and It are the intensities of incident light and 

transmission light, T is the light transmittance, l and C are the thickness (1.0 

cm) and the concentration (g/L) of the solution, and k is the absorbance 

coefficient.  

As your professional comment suggests, T is only 0.1% as A=3, indicating 

transmission light is only 0.1% of incident light, and photons detected by 

instrument is 0.1% of photons of incident light. In this case, the ultraviolet 

spectrophotometer requires high sensitivity to detect photons accurately. With 

the development of ultraviolet spectrophotometer, its sensitivity to photon 

detection has improved significantly. Besides, the factors of non-

monochromatic light, stray light, noise, and spectral bandwidth may make work 

curve deviate from the law of lambert-Beer in the spectrum analysis. With the 

progress of technology, these factors have been minimized to improve the 

instrumental errors significantly. At present many new-generation ultraviolet 

spectrophotometers exhibit good photometric linearity with the absorbances up 

to 3 or even higher. For example, the specification sheet (Fig. R12) of the Cary 

100 UV-Vis spectrophotometer (Agilent, USA) we used in our study shows that 

the photometric range of absorbance is up to 3.7. The specification sheet (Fig. 

R13) of the Cary 6000i UV-Vis spectrophotometer (Agilent, USA) even shows 

the photometric linearity of absorbance up to 9.  

In addition, to verify the photometric linearity of the Cary 100 UV-Vis 

spectrophotometer we used with the absorbance up to 3.0 at 204 nm, we 

detected a series of the acidic potassium dichromate solutions, which are the 



reference materials used for controlling absorbance of ultraviolet-visible 

spectroscopy in the United States Pharmacopoeia Convention (2023) 1. The 

results demonstrate it has good linearity with the absorbance range of 0.39-

3.03 at 204 nm (Fig. R14).  

Taken together, although the absorbance in Fig. 6d is up to 3, the accuracy of 

the stoichiometric titration result is reliable. Thanks for your valuable comment. 

For avoiding misleading readers, we have transferred Fig. 6d from manuscript 

to Supplementary Fig. 37. 

Fig. R12. The specification sheet of the Cary 100 UV-Vis spectrophotometer 
(Agilent, USA) 

jwu9191
Text Box
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Fig. R13. The specification sheet of the Cary 6000i UV-Vis spectrophotometer 

(Agilent, USA) 
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Fig. R14. The ultraviolet spectrum. a The ultraviolet spectrum of the acidic 
potassium dichromate solutions with the concentrations of 10 – 90 mg L-1. b 
The calibration curve of the acidic potassium dichromate solutions in ultraviolet 
spectrophotometry at 204 nm. 

References: 

1. United States Pharmacopeial Convention. Ultraviolet-Visible Spectroscopy. 

doi.org/10.31003/USPNF_M3209_04_01 (2023). 

Comment #16: - Pages 23 and 24 (Mat & Meth): "Due to the limited size of 

the training dataset (n=71), we divided all the data into five copies. One 

copy of the data was selected as the test set, and the remaining four 

copies were selected as the training set. A 5-fold cross-validation was 

randomly performed 20 times to improve the accuracy of the fitting 

results." 

I guess the authors mean "subsets" instead of "copies"? For cross-

validation the training and test sets must be independent. Using multiple 

copies of the same data and using some of them as training and the 

others as tests would be an invalid procedure because the same data 

would be used in both sets. 

Response: Thank you very much for the professional comments and we fully 

agree with this matter. What we really want to convey is that the 71 compounds 

were split into 80% (57) for the training set and 20% (14) for the test set. Fivefold 

stratified cross-validation was used to estimate the intervals of the parameters1, 

which was widely used in the prediction model building (Enot, D. P. et al. Nat. 

Protoc., 2008; Kohoutová, L. et al., Nat. Protoc., 2020)2-3. The 71 nucleoside 

derivatives were divided into five equal parts by maintaining the ratio of gelators 



to non-gelators and four of them were used as the training set to train the model 

and the other one as the test set. The model was trained five times without 

repetition. On top of this, 10 times random fivefold stratified cross-validations 

were performed to obtain more reliable information. In another word, 50 times 

of model training were performed.  

According to your professional suggestions, we have corrected the related parts 

about this comment, and corrected "copied" to "subsets" in the revised 

manuscript.  

Reference: 

1. Kohavi, R. Proceedings of the 14th international joint conference on Artificial 

intelligence (Morgan Kaufmann Publishers Inc., Montreal, 1995). 

2. Enot, D. P. et al. Preprocessing, classification modeling and feature 

selection using flow injection electrospray mass spectrometry metabolite 

fingerprint data. Nat. Protoc. 3, 446-470 (2008). 

3. Kohoutová, L. et al. Toward a unified framework for interpreting machine-

learning models in neuroimaging. Nat. Protoc. 15, 1399-1435 (2020). 

Comment #17: Also, cross-validation is not done to improve accuracy, but 

to calculate or estimate it. Note that these sentences (and the next 3, until 

"...(the difference between the predicted and actual values)" are exactly 

repeated on pages 23 and 24. 

Response: Thank you very much for your valuable comments, here is the 

description we used incorrectly. As you reminded us, we corrected to “fivefold 

stratified cross-validation was performed to estimate parameters”. 

 

 

 

 

 

 

 



Other minor details: 

Comment #18: _Fix the language. There are sentences with unclear 

grammar at several places in the manuscript. For ex.: 

Page 5: ... and four kinds of molecular fingerprints were used to present 

above nucleoside derivatives derived by SMILES.  

Response: Thank you very much for your comments, and we’ve corrected the 

description in the revised manuscript. 

Comment #19: Page 8: _Compared to the new important features 

concluded by ML model, the descriptors summarized by existing 

experience are not better predictors for the hydrogel-forming ability of 

nucleoside derivatives. 

Response: Thank your detailed comments, we apologize for the confusing 

description in our manuscript, and we have changed it in the revised manuscript. 

Comment #20: Page 4: "Firstly, a dataset of 71 nucleoside derivatives with 

hydrogel-forming ability": rephrase because some are gelators and some 

are not (page 5: "These nucleoside derivatives were then divided into two 

groups, namely, gelator (n=38) and nongelator (n=33)"). 

Response: Thank you for your comments, and we are very sorry for this error. 

We have corrected it in the revised manuscript. 

Comment #21: Page 5: "Pearson correlation coefficients (r < 0.8)", 

whereas on page 24 (Mat & Meth) it says "We performed a Spearman’s 

rank correlation test on the remaining descriptors to exclude one of the 

pairs of descriptors with correlations higher than 0.8." 

Response: Thank you for your valuable comment, in fact, we used Spearman 

correlation. We have unified the corresponding descriptions in revised 

manuscript. 



Comment #22: "Descripters" instead of "Descriptors" on Figures 1 and 

2"descriptor-last" on Figure 2a: I guess it refers to the final descriptor 

with 24 parameters. Maybe write "descriptor-24"? Also, "descriptor-40" 

not shown. 

Response: Thank you very much for your comment. Using "descriptor-last" to 

describe the four descriptors prediction models after feature elimination (RFE) 

is not easy to understand. In fact, different models have different optimal 

combinations of optimal descriptors according to the recursive feature 

elimination (RFE) based on different ML algorithms (XGBoost, n=16; LR, n =24; 

DT, n=30; RF, n=37). That’s why we do not used descriptor-24 in this place. To 

make it easier for readers to understand, we changed it to Descriptor-RFE. 

Meanwhile, we have added "descriptor-40" in Fig R15 (Fig. 2a in revised 

manuscript) and corrected the related part of the revised manuscript and made 

notes to explain it under the corresponding figures and tables (Table R4).  

Table R4. The corresponding updated part of Supplementary Table 2. 

Models Features 
Test Accuracy AUC# 

Mean Se Mean Se 

DT Descriptor_4175 0.65 0.01 0.65 0.02 

LR Descriptor_4175 0.65 0.02 0.67 0.02 

RF Descriptor_4175 0.63 0.01 0.72 0.02 

XGBoost Descriptor_4175 0.63 0.01 0.69 0.02 

DT Descriptor_144 0.64 0.01 0.64 0.01 

LR Descriptor_144 0.68 0.02 0.80 0.02 

RF Descriptor_144 0.67 0.01 0.75 0.02 

XGBoost Descriptor_144 0.64 0.02 0.72 0.02 

DT Descriptor_40 0.66 0.02 0.69 0.02 

LR Descriptor_40 0.70 0.01 0.81 0.02 

RF Descriptor_40 0.67 0.01 0.74 0.02 

XGBoost 

t 

Descriptor_40 0.65 0.01 0.75 0.02 

DT Descriptor_ REF* 0.59 0.02 0.63 0.02 

LR Descriptor_ REF* 0.71 0.01 0.84 0.02 

RF Descriptor_ REF* 0.67 0.01 0.75 0.02 



XGBoost Descriptor_ REF* 0.70 0.02 0.79 0.02 

Notes: *: Descriptors-REF: Recursive feature elimination (REF) has different 

optimal descriptors for different Algorithms: LR, n=24; XGBoost, n=16; DT, n= 

30; RF, n=37.  

#: AUC: Area Under Curve 

 

 

Fig R15. A scatterplot showed the distribution of AUC (area under the 
curve) and test accuracy for all models. The 4-point shapes represent 
different ML algorithm: extreme gradient boosting (XGBoost), logistic 
regression (LR), decision tree (DT), and random forest (RF). The colors 
represent eight different descriptors or fingerprints inputs. Descriptor’s part: 
Initially obtained 4175 descriptors,144 descriptors after rank sum test, 40 
descriptors after correlation coefficient selection, and descriptors after recursive 
feature elimination (RFE). The optimal number of descriptors for RFE of each 
machine learning (ML) algorithm is different (XGBoost, n=16; LR, n =24; DT, 
n=30; RF, n=37). Fingerprint part: ECFP4, ECPF6, Atom Pair and Topological 
Torsion. 
 
 
 
 
 
 
 



Comment #23: Figure 2b: the "Recall" and "Precision" metrics are not 

mentioned anywhere else in the manuscript. Maybe useful to remind what 

Recall/Precision/F1 score/AUC represent for non-ML expert readers? 

Response: Thank you very much for your valuable suggestion, we have added 

the relevant description of recall, F1 score and precision in revised Supporting 

Information (Supplementary Methods). 

Comment #24: Figure 4i: what are PDDF profiles? 

Response: Thank you for your comments and we are very sorry for this error. 

“PDDF profiles” is the abbreviation of “the pair distances distribution functions 

profiles”, which is from the variable-temperature small-angle X-ray scattering 

(VT-SAXS) measurements. We have changed “PDDF profiles” to “the pair 

distances distribution functions (PDDF) profiles” in the caption of Fig. 4i. 

Comment #25:  

Page 23: the reference to Scikit-learn is missing:Scikit-learn: Machine 

Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. 

Page 24: "We first filtered descriptors with a Wilcoxon rank-sum test less 

than 0.05": rank-sum test p-value less than 0.05 

Page 25: "Specific selection of nucleoside derivative structures" should 

be a title in bold. "The nucleoside derivative structures were selected 

from PubChem ()": missing reference. 

"Data availability" section: "Source data are provided with this paper and 

https://github.com/leescu/NHGPM": remove as it is redundant with the 

previous sentence. 

Page 31, Ref 30: Huang, J. et al. Identification of potent antimicrobial 

peptides via a machine-learning pipeline that mines the entire space of 

peptide sequences. Nature Biomedical Engineering, n/a, NA, (2023). 

Maybe include the doi: 10.1038/s41551-022-00991-2 

 

Response: Thank you very much for your valuable comments. We are very 

sorry for these errors. According to your suggestions, we have corrected the 

related sections in revised manuscript. 



Reviewer #3 (Remarks to the Author): 

Comment #1: After the introduction, which is quite well-written, the 

results and discussion is littered with abbreviations and acronyms that 

do not make much sense to the reader... For example, the opening 

sentences of this section read: "To construct the prediction model, all the 

published nucleoside derivatives and their hydrogel-forming ability were 

collected by literature review, and 71 molecules were included 5,7,40-55. 

To unify the molecular structure, the Chemdraw software (Version 20.0) 

was utilized to reproduce the 71 molecular structures." 

What does this mean? How many is "all published"? What does it mean 

to collect the hydrogel forming ability by literature review? Does this 

mean that every published nucleoside derivative has a documented 

ability to form, or not, a hydrogel?  

What does it mean that 71 molecules were included?  

How does one unify the molecular structure? And what does ChemDraw 

have to do with reproducing the molecular structures? 

I could go on, but these two sentences are sufficient to illustrate the point 

that the results, methods and discussion of this work is not sufficiently 

clearly articulated to allow a realistic judgement on the quality of the work. 

Response: Thanks for your valuable comments. We are sorry that our 

descriptions are not clear enough. We would like to reply to the comments on 

the following aspects. 

1). What does this mean? How many is "all published"? What does it mean 

that 71 molecules were included?  

The number of "all published" nucleoside derivatives is 71. And the purpose of 

including 71 molecules was to construct a dataset of nucleoside derivatives to 

build the prediction models. Here, the details of the screening process of "all 

published" nucleoside derivatives and the meaning of "71 molecules were 

included" are shown in the follows: 

Firstly, Medical Subject Headings (MeSH) was used to collect all subjects and 



free terms for nucleosides ("uridine", "thymidine", "adenosine", "guanosine", 

and "cytidine") and their derivatives, and a system-wide search was conducted 

on Medline, Web of Science, and SciFinder for all nucleoside-related studies. 

The specific information on the search strategy is shown in Supplementary Data 

S8.  

Secondly, we read the titles, abstracts, and full texts of the literature obtained 

in the previous step. Only the studies providing information on whether 

nucleoside derivatives formed hydrogels under arbitrary conditions in pure 

water or aqueous solutions were selected for dataset construction. Then, the 

studies reported only the gelators in organic solvents were excluded. Finally, 

71 nucleoside derivatives were collected as "all published" nucleoside 

derivatives from the literature after excluding duplicate nucleoside derivatives. 

Thirdly, a dataset was constructed based on the 71 nucleoside derivatives 

collected. This dataset including the structures of nucleoside derivatives and 

whether they have the hydrogel-forming ability was used to build the prediction 

model. 

2). What does it mean to collect the hydrogel forming ability by literature 

review? Does this mean that every published nucleoside derivative has a 

documented ability to form, or not, a hydrogel?  

The purpose of our study is to develop a ML model for accurate nucleoside 

hydrogel prediction. A dataset including the structures of nucleoside derivatives 

and whether they have the hydrogel-forming ability is necessary for the 

prediction model. Considering there is no such a dataset at present, we 

screened the published nucleoside derivatives which have the information of 

hydrogel-forming ability by literature review to build a new dataset.  

Therefore, each of the nucleoside derivatives in the dataset has a documented 

ability to form or not form a hydrogel. The nucleoside derivatives were divided 

into gelator and non-gelator groups according to documented hydrogel-forming 

ability. Documented ability to form or not form a hydrogel is usually defined 

clearly in literatures. However, some substances were just used as references 



or controls and were often not explicitly specified as gelators or not. They could 

be determined based on the results of tube-inversion tests or rheological 

measurements.  

3) How does one unify the molecular structure? What does ChemDraw 

have to do with reproducing the molecular structures? 

The molecular structures are generally unified by ChemDraw, where all 

molecules can be presented and characterized uniformly (Li, Z. J. et al., J. 

Chem. Inf. Comput. Sci., 2004)1. Nucleoside is a 3D chiral molecule, so only 

when it is unified can differences be found. Furthermore, we collected the 

structures of nucleoside derivatives from different journals. Since the 

requirements of journals are different, their molecules express in different forms. 

Therefore, unification of the molecular structure is a necessary step.  

ChemDraw is a powerful software for designing chemical and biological 

compositions and has been used to convert 2D molecular diagrams into 

SMILES strings. It is used to draw 2D molecular diagrams of molecules and 

convert them into SMILES strings in many studies (Li, Z. J. et al., J. Chem. Inf. 

Comput. Sci., 2004)1, and has been widely applied to build ML models (Tiihonen, 

A. et al., Journal of the American Chemical Society, 2021; Lyu, R. et al., Journal 

of the American Chemical Society, 2021)2-3.  

Therefore, in this study, we redrawn all the 2D molecular diagrams of 

nucleoside derivatives based on the structures provided in the published 

studies, using the ChemDraw function (Fig. R16). Thank you again for your 

valuable comments, we have revised the relevant content in the revised 

manuscript. 



 

Fig. R16. Flowchart of unify the molecular structures. 

Reference: 

1. Li, Z. J., Wan, H. G., Shi, Y. H. & Ouyang, P. K. Personal experience with 

four kinds of chemical structure drawing software: Review on ChemDraw, 

ChemWindow, ISIS/Draw, and ChemSketch. J. Chem. Inf. Comput. Sci. 44, 

1886-1890 (2004). 

2. Tiihonen, A. et al. Predicting Antimicrobial Activity of Conjugated 

Oligoelectrolyte Molecules via Machine Learning. J. Am. Chem. Soc. 143, 

18917-18931 (2021). 

3. Lyu, R., Moore, C. E., Liu, T., Yu, Y. & Wu, Y. Predictive Design Model for 

Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by 

Machine Learning. J. Am. Chem. Soc. 143, 12766-12776 (2021). 
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Comment #2: There are other significant issues with the manuscript hat 

raises some real concerns for this reviewer: 

1. There are a lot of references but a number of these are not really related 

to the thing being referenced. For example, reference 57 is a Nature paper 

on the development of an ML model for planning chemical syntheses. But 

the authors use it to reference a molecular fingerprint method (ECFP4) 

which is indeed used in the article but is not defined there. Equally, the 

literature on the prediction and discovery of hydrogels is not 

representative of the major steps in this field. 

Response: Many thanks for this comment and we apologize for the mistake, 

we have checked carefully and revised the references of the revised manuscript. 

The reference of ECFP4 was corrected as Reference 20, ECFP6 (Reference 

20), Atom Pair (Reference 21) and Topological Torsion (Reference 22) were 

also changed the references; The reference of discovery of hydrogels was 

corrected as Reference 4; The references of prediction of hydrogels were 

corrected as Reference 17-19. Detailed of example correction please see below: 

1). The reference of molecular fingerprint 

20. Rogers D, Hahn M. Extended-Connectivity Fingerprints. J. Chem. Inf. 

Model. 50, 742-754 (2010). 

21. Carhart RE, Smith DH, Venkataraghavan R. Atom pairs as molecular 

features in structure-activity studies: definition and applications. J. Chem. Inf. 

Comput. Sci. 25, 64-73 (1985). 

22. Nilakantan R, Bauman N, Dixon JS, Venkataraghavan R. Topologial torsion: 

A new molecular descriptor for sar applications. Comparison with other 

descriptors. J. Chem. Inf. Comput. Sci. 27, 82-85 (1987). 

2). The reference of discovery of hydrogels 

4. Bang I. Examination or the guanyle acid. Biochem. Z. 26, 293-311 (1910). 

3). The references of prediction of hydrogels 

17. Gupta JK, Adams DJ, Berry NG. Will it gel? Successful computational 

prediction of peptide gelators using physicochemical properties and molecular 



fingerprints. Chem. Sci. 7, 4713-4719 (2016). 

18. Li F, et al. Design of self-assembly dipeptide hydrogels and machine 

learning via their chemical features. Proc. Natl. Acad. Sci. U. S. A. 116, 11259-

11264 (2019). 

19. Van Lommel R, Zhao J, De Borggraeve WM, De Proft F, Alonso M. 

Molecular dynamics based descriptors for predicting supramolecular gelation. 

Chem. Sci. 11, 4226-4238 (2020). 

Comment #3:  The authors make some claims that are not evidenced in 

their results - e.g., "Under the appropriate conditions, three hydrogels 

display a long lifetime stability of 6 months (1 and 2 in H3BO3 and Tris 

solutions, and 3 in AgNO3 solution, Fig. 3c-e)". But Figure 3c-e only show 

photos of the hydrogels at a single time point? How is this 6 months 

timepoint to be evidenced? 

Response: Thank you for your suggestive comments. We are very sorry that 

the photographs of hydrogels prepared for 6 months weren’t shown in the 

manuscript before. We have rearranged the photographs of hydrogels and 

added the photographs of hydrogels prepared for 6 months to prove the lifetime 

stability of 6 months in the revised manuscript. Here, the photographs of 8AG-

T, 8OHG-T, and 8aza-Ag+ hydrogels prepared for 6 months were shown in Fig. 

R17. 

Fig. R17. Photographs of 8AG-T, 8OHG-T, and 8AzaG-Ag+ hydrogels prepared 
for 6 months. 



Comment #4: 3. The results shown in Figure 4d-e, are identical to the 

results in Figure 5a-b. This is probably a simple mistake as the figure 

captions indicate that the Figure 4 panels should so something else. But 

this carelessness is concerning and make it very difficult to judge the 

veracity of the results.  

Response: Thank you for pointing this out and we are very sorry for this error. 

We have corrected Fig. 4d-e (The figure is assigned to be Fig. R18 in the 

response letter) in the revised manuscript. 

 
Fig. R18. The characterizations of hydrogels.  
a Photographs of 8AG-T and 8OHG-T hydrogels prepared for 6 months. b, c 
Evolution of G’ and G’’ as a function of frequency for of 8AG-T (b) and 8OHG-
T(c) hydrogels. d, e The self-healing of 8AG-T (d) and 8OHG-T(e) hydrogels by 
rheological measurements. f SEM (scale bar: 50 μm) images of 8AG-T and 
8OHG-T hydrogels. g AFM (scale bar: 200 nm) images of 8AG-T and 8OHG-T 
hydrogels. h, i The pair distances distribution functions (PDDF) profiles from 
VT-SAXS experiments of 8AG-T (h) 8OHG-T (i) hydrogels. 



Reviewers' Comments:

Reviewer #1 (Remarks to the Author):

The previous version of this paper had a surprisingly large number of clarificafions, errors, and omissions 

and I persevered because of the novelty of the work. The authors have provided comprehensive 

responses to the many points that I and my fellow reviewer have raised.

However, the clarificafions provided by the authors have revealed a number of serious issues that were 

not apparent in the first draft. The most serious of these are that 5-fold cross-validafion, not an 

independent test set, was used to assess the producfivity of the models, and that proper feature 

selecfion was not performed (or not performed at all for the fingerprint descriptors) to ensure the model 

were not overfifted. Overfifting would have been idenfified if an independent test set had been used. 

Specifically...

1. the authors should not refer to the 20% of the data set aside as a test set (14 data points) because 

they were actually the 20% taken aside in 5-fold cross-validafion. As the data set is small, the use of 

cross-validafion is probably jusfified, although it would be important to see how well the final models 

could predict a proper independent test set.

2. Feature selecfion was performed on the descriptors but not on the 2048 fingerprint descriptors. With 

only 57 data points in the training set when cross-validafion is done. the number of features should be at 

most 30. None of the models presented have less than 40 features and the fingerprint models use 2048 

features. Clearly this is a grossly overtained situafion so none of the models really have any likelihood of 

being valid or useful.

3.I suspect that when the number of features is reduced to an acceptable number that the performance 

of all ML methods will be very similar

4. The LASSO and MLREM feature selecfion methods were tried but dismissed because they did not 

generate models quite as good as the overfitetd models. These methods should be used to generate an 

an acceptably sparse feature subset of features for both the descriptor and fingerprint features.

5. The 83% accuracy for the 12 nucleoside derivafives from the screening of a larger number of 

piossibilifies is misleading. The 'ranking' and 'probabilifies' of gelling are very unconvincing as all 

nucleosides have very simular probabilty values close to the arbitrary decision boundary. Essenfially this 

means that they only got one compound 'wrong'. However, almost all compounds were gel forming.

5. It is good that the authors used chemical simu=ilarity measure to choose the 7000 compounds for 

screening. However, the correct way to do this is to calulate the relevat descriptors foe r them all (which 

must have been done to make predicfiosn) and see whether these mulfidimensional features fel in or 

near the ranges for the taining set.

Reviewer #2 (Remarks to the Author):

The new version and responses from the authors answer to the remarks



Reviewer #3 (Remarks to the Author):

[Note from the Editor] This referee was unable to provide a report but made comments to the editor 

only.



Response: 

Point-by-point comments. 

Comment #1. The authors should not refer to the 20% of the data set aside 

as a test set (14 data points) because they were actually the 20% taken 

aside in 5-fold cross-validation. As the data set is small, the use of cross-

validation is probably justified, although it would be to see how well the 

final models could predict a proper independent test set. 

Response: Many thanks to the reviewer #1 for her/his comments, but we don't 

agree this comment. Although, we didn’t used a proper independent test set 

to test how well the final models could predict. But we have selected externally 

12 nucleoside derivatives from PubChem, and used experiment to evaluate 

whether the prediction performance of final model is good or not. Moreover, 

chose 20% (14) from 71 nucleoside derivative could not be an independent test 

set. All these 71 nucleoside derivatives were derived from the same dataset 

constructed by our literature search. We believe that continuing to split such a 

small data set will further degrade the performance of the model, when 20% of 

nucleoside derivatives are randomly selected at one time as the test set, the 

randomness is very large, and the results of such test set are hardly to be 

considered stable and reliable. Furthermore, some similar studies with small 

sample size also use similar method, instead of random select an independent 

test set in addition to the 5-fold cross-validation, they use experiments to verify 

as we do (Lyu, R. et al., J. Am. Chem. Soc., 2021; Kohoutová, L. et al., Nat. 

Protoc., 20201-2). Given that this study is a preliminary exploration of machine 

learning (ML) to predict the hydrogel-forming ability of nucleoside derivatives, 

and such a small data set, we believe that our scheme is also a viable option. 

The success rate of hydrogel-forming ability verification experiment of 12 

nucleoside derivatives is 83.33% (10/12), which we believe the performance of 

final model is acceptable. 

References: 

1 Tiihonen, A. et al. Predicting Antimicrobial Activity of Conjugated 
Oligoelectrolyte Molecules via Machine Learning. J. Am. Chem. Soc. 143, 
18917-18931 (2021). 

2 Kohoutová, L. et al. Toward a unified framework for interpreting machine-
learning models in neuroimaging. Nat. Protoc. 15, 1399-1435 (2020). 



Comment #2. Feature selection was performed on the descriptors but not 

on the 2048 fingerprint descriptors. With only 57 data points in the training 

set when cross-validation is done. the number of features should be at 

most 30. None of the models presented have less than 40 features and the 

fingerprint models use 2048 features. Clearly this is a grossly overtained 

situation so none of the models really have any likelihood of being valid 

or useful. 

Response: Thank the reviewer #1 for giving her/his comments to us, but we 

are curious about why the reviewer #1 said so. We have reason to think that 

the reviewer #1 did not look carefully at our response letter and manuscripts. 

Reviewer #1 mentioned that "the number of features should be at most 30. 

None of the models presented have less than 40 features". But all the 

models after 3-step feature selection have less than 40 features (logistic 

regression, LR, n for features =24; extreme gradient boosting, XGBoost, n 

for features =16; decision tree, DT, n for features = 30; random forest, RF, n 

for features =37), and the optimal model based on only 24 features, which 

conforms to the reviewer's comment. The information about the descriptor 

models have been provided in the response letter of version 1 (Reviewer #1, 

Comment #1, Response part 2): "The results indicated that the optimal 

number of descriptors for each ML algorithm is different (XGBoost, n=16; LR, n 

=24; DT, n=30; RF, n=37)". The manuscript also have provided details of the 

features information of all models (Page 7 line 16-18 in Results and 

Discussion; Table R1, assigned to be Supplementary Table 1 in Supporting 

Information; Fig. 2a annotation; Supplementary Data S4). In addition, the 

reason why molecular fingerprints are not screened for features is also 

explained in the response letter of version 1 (Reviewer #1, Comment #1, 

Response part 1): "Unlike the molecular descriptors, the individual bit string of 

fingerprints doesn’t have specific chemical meanings, so we didn’t perform the 

feature selection for the fingerprints". Our feature selection is indeed performed 

only on descriptors because we consider that only the complete molecular 



fingerprint is representative of the internal structure of the compound. Further 

feature selection of molecular fingerprints is not only meaningless for finding 

the specific descriptors closely related to the hydrogel-forming ability, but also 

loses the original chemical or structure meaning of complete fingerprints, which 

is the reason why we do not perform a feature selection on fingerprints.  

Table R1. Characteristics of the prediction models 

Features Algorithms Rows Columns 

Molecular Descriptors    

Descriptors-4175 LR, DT, RF, XGBoost# 71* 4175 

Descriptors-144 LR, DT, RF, XGBoost 71 144 

Descriptors-40 LR, DT, RF, XGBoost 71 40 

Descriptors-REF& LR, DT, RF, XGBoost 71 16-37& 

Molecular Fingerprints    

ECFP4 LR, DT, RF, XGBoost 71 2048 

ECFP6 LR, DT, RF, XGBoost 71 2048 

AtomPair LR, DT, RF, XGBoost 71 2048 

Topological Torsion LR, DT, RF, XGBoost 71 2048 

Notes: * Rows: Whether the nucleoside derivatives have the hydrogel-forming 
ability; #Algorithms: Logistic regression (LR), decision tree (DT), random forest 
(RF), and extreme gradient boosting (XGBoost); &Descriptors-REF: Recursive 
feature elimination (REF) has different optimal descriptors for different 
Algorithms: LR, n=24; XGBoost, n=16; DT, n= 30; RF, n=37.  

  



Comment #3. I suspect that when the number of features is reduced to an 

acceptable number that the performance of all ML methods will be very 

similar. 

Response: Thank the reviewer #1 for giving her/his comments to us. Indeed, 

as the reviewer #1 said, after feature selection, only referring to AUC and test 

accuracy, the performance of some ML models is similar (LR and XGBoost). 

However, we have also explained in our response letter of version 1 why LR 

is used as the optimal model (Reviewer #1, Comment #3, Response part 1): 

"Firstly, test accuracy, AUC, precision, recall and F1 score are commonly used 

to determine the optimal model in related research (Theodoris, C. V. et al., 

Nature, 2023, AUC and F1 score; Jablonka, K. M. et al., Nat. Chem., 2021, 

accuracy, precision, and recall; Han, T. et al., Nat. Mach. Intell., 2022, AUC, 

precision and recall)1-3, the five parameters were used to evaluate the 

performance of models comprehensively here. To select the optimal model, we 

mainly focused on test accuracy and AUC, and the results of precision, recall 

and F1 score were also used as auxiliary references. In this study, LR not only 

provided better results of test accuracy (0.71 ± 0.01) and AUC (0.84 ± 0.02), 

but also had higher recall (0.95 ± 0.01) and F1 score (0.78 ± 0.01) (Table R2; 

Fig. R1, the figure is assigned to be Fig. 2b in revised manuscript). So, we 

finally chose LR as the optimal model". Firstly, the five evaluation indexes (test 

accuracy, AUC, precision, recall and F1 score) were used to evaluate the 

performance of models comprehensively here. To select the optimal model, we 

mainly focused on test accuracy and AUC, and the results of precision, recall 

and F1 score were also used as auxiliary references. In this study, LR not only 

provided better results of test accuracy (0.71 ± 0.01) and AUC (0.84 ± 0.02), 

but also had higher recall (0.95 ± 0.01) and F1 score (0.78 ± 0.01) (Table R2; 

Fig. R1, the figure is assigned to be Fig. 2b in revised manuscript). So, we 

finally chose LR as the optimal model. Either refer to Fig. R1, Table R2, or 

perform any statistical difference test (DeLong test). Considering all the five 



evaluation indexes’ performance of the model after feature selection, these four 

ML methods will not be very similar. In fact, contrary to the suspicion of the 

reviewer #1, the performance of the models was similar without feature 

selection (Descriptor_4175, Table R1) in our study, but the difference between 

the performance of the models became more obvious after reducing the 

number of features by feature selection (Descriptor_ REF, Table R1). 

 

Fig. R1. Evaluation indexes of 4 models using descriptors after recursive 

feature elimination. 

  



Table R2. The descriptor models’ part of Supplementary Table 2. 

Models Features 
Test Accuracy AUC 

Mean Se Mean Se 

DT* Descriptor_4175 0.65 0.01 0.65 0.02 

LR Descriptor_4175 0.65 0.02 0.67 0.02 

RF Descriptor_4175 0.63 0.01 0.72 0.02 

XGBoost Descriptor_4175 0.63 0.01 0.69 0.02 

DT Descriptor_144 0.64 0.01 0.64 0.01 

LR Descriptor_144 0.68 0.02 0.80 0.02 

RF Descriptor_144 0.67 0.01 0.75 0.02 

XGBoost Descriptor_144 0.64 0.02 0.72 0.02 

DT Descriptor_40 0.66 0.02 0.69 0.02 

LR Descriptor_40 0.70 0.01 0.81 0.02 

RF Descriptor_40 0.67 0.01 0.74 0.02 

XGBoost 

t 

Descriptor_40 0.65 0.01 0.75 0.02 

DT Descriptor_ REF# 0.59 0.02 0.63 0.02 

LR Descriptor_ REF# 0.71 0.01 0.84 0.02 

RF Descriptor_ REF# 0.67 0.01 0.75 0.02 

XGBoost Descriptor_ REF# 0.70 0.02 0.79 0.02 

Notes: *: Logistic regression (LR), decision tree (DT), random forest (RF), and extreme 

gradient boosting (XGBoost); 

#: Descriptors-REF: Recursive feature elimination (REF) has different optimal descriptors 

for different Algorithms: LR, n=24; XGBoost, n=16; DT, n= 30; RF, n=37.  

 

References: 

1. Theodoris, C. V. et al. Transfer learning enables predictions in network 

biology. Nature 618, 616–624 (2023). 

2. Jablonka, K. M., Ongari, D., Moosavi, S. M. & Smit, B. Using collective 

knowledge to assign oxidation states of metal cations in metal–organic 

frameworks. Nat. Chem. 13, 771-777 (2021). 

3. Han, T. et al. Image prediction of disease progression for osteoarthritis by 

style-based manifold extrapolation. Nat. Mach. Intell. 4, 1029-1039 (2022). 

  



Comment #4. The LASSO and MLREM feature selection methods were 

tried but dismissed because they did not generate models quite as good 

as the overfitetd models. These methods should be used to generate an 

an acceptably sparse feature subset of features for both the descriptor 

and fingerprint features. 

Response: Thank the reviewer #1 for giving her/his comments about LASSO 

and MLREM, but we don't agree her/his comments about feature selection 

methods. We believe that the reviewer's claim our model "overfits" is 

unfounded and emotional. LASSO and MLREM have indeed been used for 

feature selection of ML models for some studies, but this does not mean that it 

is wrong to use methods such a 3-step feature selection without LASSO or 

MLREM. Referring to the previous studies, the three step of feature selection 

method has been widely used in molecular property prediction models 

(Tiihonen, A. et al., J. Am. Chem. Soc., 2021; Lyu, R. et al., J. Am. Chem. Soc., 

2021; Batra, R. et al., Nat. Mach. Intell., 20201-3). Meanwhile, under the same 

conditions, the performance of the model with LASSO and MLREM feature 

selection has not reached the effect of our 3-step feature selection. After 3-step 

feature selection, we believe that the number of features of the models have 

been reduced to an acceptable range for the reviewer #1 (n<40 or ≤30, 

according from Comment #2).  

Referencses: 

1. Tiihonen, A. et al. Predicting Antimicrobial Activity of Conjugated 

Oligoelectrolyte Molecules via Machine Learning. J. Am. Chem. Soc. 143, 

18917-18931 (2021). 

2 Lyu, R., Moore, C. E., Liu, T., Yu, Y. & Wu, Y. Predictive Design Model for 

Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine 

Learning. J. Am. Chem. Soc. 143, 12766-12776 (2021). 

3 Batra, R., Chen, C., Evans, T. G., Walton, K. S. & Ramprasad, R. Prediction 

of water stability of metal–organic frameworks using machine learning. Nat. 

Mach. Intell. 2, 704-710 (2020). 

 

  



Comment #5. The 83% accuracy for the 12 nucleoside derivatives from 

the screening of a larger number of piossibilities is misleading. The 

'ranking' and 'probabilities' of gelling are very unconvincing as all 

nucleosides have very simular probabilty values close to the arbitrary 

decision boundary. Essentially this means that they only got one 

compound 'wrong'. However, almost all compounds were gel forming. 

Response: We appreciate for the reviewer #1 to give us comments, but we still 

do not accept reviewer #1's this comment. As the reviewer #1 said, ''all 

nucleosides have very similar probability values''. But the reviewers seem 

not to have considered the objective circumstances of the study. Verification 

through experiments requires cost and time. We cannot verify all nucleoside 

derivatives predicted to be the hydrogel one by one. If ranking and probability 

are not considered, it is difficult to select part of thousands of nucleoside 

derivatives predicted to be gelled in a more reasonable way for verification. This 

study is the initial exploration to use ML to predict hydrogel-forming ability of 

nucleoside derivatives, and we believe that it is not unacceptable or misleading 

to prioritize a subset of nucleosides for verification based on probability and 

ranking. We used a logical scheme, chose 12 nucleoside derivatives with high 

probability (top 10%) of hydrogel-forming ability for verification. The vial 

inversion experiment also confirmed the hydrogel-forming ability, and we 

believed that this was an appropriate and effective way. In addition, we are 

curious why the reviewer #1 said ''Essentially this means that they only got 

one compound 'wrong' '', as in the manuscript and response letter, we all 

stated that we got two ‘wrong’ compounds among the 12 nucleoside derivatives 

(10/12 = 83.3%). 

Although the present prediction model is our initial attempt, we still hope that 

the present model can be applied to the prediction of nucleoside hydrogels. 

This study greatly accelerates the discovery of new nucleoside hydrogels 

compared to previous inadvertent discoveries or modifications of existing 

gelators.  



Comment #6. It is good that the authors used chemical simuilarity 

measure to choose the 7000 compounds for screening. However, the 

correct way to do this is to calulate the relevat descriptors foe r them all 

(which must have been done to make predictiosn) and see whether these 

multidimensional features fel in or near the ranges for the taining set. 

Response: We appreciate for the reviewer #1 to give us comments. Since the 

molecular descriptors are calculated based on the molecular structure, we 

believe that the structure selected by 3D similarity is bound to fell in or near the 

ranges in the feature distribution of molecular descriptors. We calculated the 

multidimensional features (24 molecular descriptors of the final model) of the 

7257 compounds according to the reviewer #1 comment. A grouped box plot 

(Fig. R2, as Supplementary Fig. 6 in revised manuscript) of the 24 descriptors 

in optimal model (LR) and a PCA plot (Fig. R3, as Supplementary Fig. 7 in 

revised manuscript) based on these 24 descriptors, all showed that the 24 

descriptors’s distribution of 7257 nucleoside derivatives are near the 71 

nucleoside derivatives constructed the prediction model. 

 

Fig.R2. A grouped box plot of 24 molecular descriptors (optimal model) for 
nucleoside derivatives. Nucleoside derivatives are divided into two groups, 
including nucleoside derivatives from PubChem dataset (Pubchem group, 
n=7257) and all published nucleoside gelators and nongelators (Published 
group, n=71). 



 

Fig.R3. 2D-PCA results of 24 features grouped by nucleoside derivatives, 

including PubChem dataset (Pubchem group, n=7257), published gelators 

(Gelator group, n=38) and published nongelators (Nongelator group, n=33). 

 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

1. The authors have significantly improved the manuscript by ensuring that the predicfions of the 7000+ 

nucleoside analogues as geleators/nom-geletors are near or within the domain of applicability of the 

chosen model, and by exploring the use of sparse L1 feature selecfion methods LASSO and MLREM. It is 

interesfing that these linear methods generated models with similar (albeit slightly inferior) performance 

to the other nonlinear ML methods. In light of this, it would be most appropriate to use the linear 

models to interpret the importance of the descriptors to gelafion. As was pointed out earlier, feature 

importance for nonlinear models is a local, not global property, so depends on where on the response 

surface it is measured (this should be menfioned in the manuscript). I strongly recommend that the 

LASSO or MLREM regression coefficients be used to determine the sign and magnitude of the 

contribufion of each sparse feature to the model. The authors could choose to compare these feature 

importances with those from the nonlinear models if they wish but the linear model feature importance 

will be the most relevant.

2. The authors have also not understood the issue with gross overfifting of models that I raised in the last 

review. In their rebuftal, they focused on the fact that feature selecture of descriptor-based models did 

indeed reduce the number of feature employed to signficantly fewer than the number of training 

examples (good). However, they sfill insist on using 2048 features for the fingerprint-based models (or is 

it 4096 features given 4 types of 1024 fingeprints?). Clearly with between 57 and 71 training examples, 

such a large number of features will grossly overfit the models. This is not "unfounded and emofional" 

but a stafisfical fact. I recommend they either use sparse feature selecfion to reduce the number of 

features drasfically, or they remove the models based on fingerprints enfirely. These models were not 

used to predict the larger set of nucleoside analogues so don't add any value to the manuscript. 

Fingerprints can in fact have chemical meaning (at least as much as the arcane molecular descriptors 

used in the final model) but this point is moot given that the models are grossly overfifted and are no 

befter than the models trained on sparse molecular descriptors.

3. Clearly, the point about the authors choosing 20% of the data set randoinly 10 fimes to define a 'test 

set' has not been made strongly enough in the last review. Normal pracfice, at least with larger data sets, 

is to parfifion it into a training set used to contruct the model and a test set used to assess model 

predicfive power for data it has not been trained on. The test set is chosen once and never used in 

training. The method employed by the authors is essenfially 'leave-20%-out' cross validafion which 

overesfimates model predicfivity because the training and test set are not independent. Given the 

relafively small data set size, the use of cross validafion rather than a test set may be jusfified. However a 

test set of 20% chosen by cluster analysis (once) to ensure it covers the same domaina s the training set, 

would be a befter and more stringent measure of model predicfivity and I strongly recommend the 

autjors include this in the revised manuscript. The authors are correct in that the final arbiter of model 

ufilty is on predicfing the properfies and an external set, as they have done.



4. Confinuing on with the predicfion of the 7000+ set, although the screened molecules appear to be 

within or near the domain of applicability fo the chosen model (good), it would be more persuasive if the 

authors had addifionally chosen 12 analogues predicted to have no gel-forming ability and measured 

those subsequently. Can this be done for the revised manuscript?

5. The manuscript sfill has ample evidence of lack of care in preperafion with sfill a substanfial number of 

spelling and grammafical errors after mulfiple rounds of review e.g., 'Descripters' in Fig. 1, 'Flow chat', 

'Dabase' etc etc.

6. Supplementary Table 2 should be in the body of the paper.

7. The last paragraph of the Introducfion is a summary of the results, delete this and leave it to the 

Results andDiscussion to describe this. Similarly, pages 6-8 is simply a repeat of Methods so could be 

deleted here and left for the Methods secfion to explain.

8. Suppl Table 3 suggests only 6-7 features are important given the standard errors of these (F-test)

9. The use of DT is probably redundant as ensemble methods like RF and XGB will always perform befter 

than DT.

Reviewer #4 (Remarks to the Author):

This is a paper by Hang Zhao and colleagues who developed a machine learning model to predict the 

gelafion characterisfics of nucleoside derivates. The authors used data from the literature to inifially 

train a new model then used this model to inform a few new designs for subsequent tesfing. This paper 

was very comprehensive and impressive. At first I was concerned by the large number of descriptors 

being used, but was later happy to see the authors reduce the number of valuable descriptors to a more 

reasonable number. It is interesfing that logisfic regression performed so well in this environment. 

Another area of strength was the in depth analysis of the two cafion-independent hydrogels (8AG-T and 

8OHG-T). Overall, the strength of the model training and subsequent analysis gives this reviewer much to 

praise about this paper and its methods. Also, the authors did a great job responding to the first 

reviewer's comments. My only suggesfion would be to include a summary schemafic at the beginning of 

the paper to help readers understand the main goals of the paper quickly. Otherwise, I am happy for this 

paper to be published without further revision.



Reviewer #1 

Comment #1: The authors have significantly improved the manuscript by 

ensuring that the predictions of the 7000+ nucleoside analogues as 

geleators/nom-geletors are near or within the domain of applicability of 

the chosen model, and by exploring the use of sparse L1 feature selection 

methods LASSO and MLREM. It is interesting that these linear methods 

generated models with similar (albeit slightly inferior) performance to the 

other nonlinear ML methods. In light of this, it would be most appropriate 

to use the linear models to interpret the importance of the descriptors to 

gelation. As was pointed out earlier, feature importance for nonlinear 

models is a local, not global property, so depends on where on the 

response surface it is measured (this should be mentioned in the 

manuscript). I strongly recommend that the LASSO or MLREM regression 

coefficients be used to determine the sign and magnitude of the 

contribution of each sparse feature to the model. The authors could 

choose to compare these feature importance’s with those from the 

nonlinear models if they wish but the linear model feature importance will 

be the most relevant.  

Response:  

Thank you very much for the professional comments and suggestions. As 

suggested by reviewer, regression coefficients of linear model methods such 

as LASSO or MLREM are better used as feature importance [1,2] and can 

provide valuable information. Therefore, we have revised the manuscript as 

follows: 

Firstly, we provided the regression coefficients of the optimal model based on 

24 molecular descriptors (logistic regression of L1 penalty terms) as the feature 

importance of the optimal model in the revised manuscript (Fig. R1, as Fig. 2e 

in the revised manuscript). There are only four important features (Coef > ± 0.1), 

which is basically consistent with the previous results. And we have briefly 

elaborated on these descriptors in this manuscript (Supplementary 

Discussion 1.1); Secondly, the results of permutation feature importance (PFI, 

as Fig. 2e and Supplementary Table 2 in the previous manuscript) are 

reserved into Supplementary materials (Fig. R2, Table R1, as 

Supplementary Fig. 8 and Supplementary Table 2 in the revised manuscript). 

Thirdly, as a reference, we added the regression coefficients of LASSO based 

on 4175 molecular descriptors as the feature importance for the descriptors (as 

Supplementary Data S6 in the revised manuscript).  

Perhaps for reasons we do not explain specifically, our feature importance 

results are actually based on logistic regression (L1 penalty), also a generalized 

linear model[3]. This is also in line with the reviewer's opinion that " the linear 

model feature importance will be the most relevant". While, we used the PFI 

method to calculate the influence of each feature on the average accuracy of 

the model in the previous manuscript. We are in favour of the reviewer's 



reference “regression coefficients be used to determine the sign and magnitude 

of the contribution of each sparse feature to the model”, and have made 

corresponding modification in the revised manuscript (Results and 

Discussion: Page 9 line 1 to line 9; Methods: Page 35 line 5 to line 13). 

 

Fig. R1. The feature importance of 24 descriptors for logistic regression based 

on the regression coefficients.  

 

 

Fig. R2. The feature importance of 24 descriptors for logistic regression based 

on the permutation feature importance. 

  



Table R1. The feature importance of 24 descriptors for logistic regression. 

Descriptors Information Feature importance 

Name Description 
PFI& Coeffici

ent* Mean Se 

CATS2D_06_DL 
Pharmacophore 

descriptors 
0.018 0.005 -0.090 

B09[O-O] 2D Atom Pairs 0.018 0.003 0.155 
P_VSA_charge_7 P_VSA-like descriptors 0.014 0.003 -0.083 

H-052 Atom-centred fragments 0.014 0.003 -0.133 

CATS2D_03_DL 
Pharmacophore 

descriptors 
0.011 0.004 -0.072 

nN(CO)2 Functional group counts 0.009 0.004 0.131 

CATS2D_04_AA 
Pharmacophore 

descriptors 
0.006 0.005 0.053 

CATS2D_05_DA 
Pharmacophore 

descriptors 
0.006 0.005 0.057 

C-016 Atom-centred fragments 0.004 0.005 -0.099 
F07[N-O] 2D Atom Pairs 0.001 0.003 0.085 

VE1sign_Dz(v) 
2D matrix-based 

descriptors 
0.000 0.006 -0.054 

CATS2D_05_DL 
Pharmacophore 

descriptors 
-0.001 0.003 -0.087 

F05[N-N] 2D Atom Pairs -0.001 0.003 0.092 
P_VSA_charge_4 P_VSA-like descriptors -0.001 0.003 -0.103 

F10[O-O] 2D Atom Pairs -0.002 0.005 -0.083 
MATS3p 2D autocorrelations -0.004 0.005 -0.055 

VE3sign_D/Dt 
2D matrix-based 

descriptors 
-0.005 0.004 -0.082 

SM10_AEA (dm) Edge adjacency indices -0.005 0.005 -0.076 
SpDiam_AEA(ed) Edge adjacency indices -0.006 0.005 -0.068 

VE1sign_B(p) 
2D matrix-based 

descriptors 
-0.008 0.003 0.057 

GATS6i 2D autocorrelations -0.008 0.003 0.059 
SpMAD_EA(ri) Edge adjacency indices -0.012 0.003 0.067 

GATS7s 2D autocorrelations -0.014 0.007 0.077 

CATS2D_09_DA 
Pharmacophore 

descriptors 
-0.016 0.008 0.076 

&: Permutation feature importance to calculate the mean accuracy decrease of 

logistic regression model 

*: Regression coefficient of logistic regression model. 

 

[1] Guidotti R., Monreale A., Ruggieri S., Turini F., Giannotti F., Pedreschi D. A 
survey of methods for explaining black box models. ACM Comput surv 51(5):1–
42 (2018). 
[2] Saarela M., Jauhiainen S. Comparison of feature importance measures as 
explanations for classification models. SN. Appl. Sci. 3: 272 (2021). 
[3] Huang J., Zhang CH.  Estimation and Selection via Absolute Penalized 
Convex Minimization and Its Multistage Adaptive Applications. Journal of 
Machine Learning Research. 13:1839-1864  (2012).  



Comment #2:  The authors have also not understood the issue with gross 

overfitting of models that I raised in the last review. In their rebuttal, they 

focused on the fact that feature selecture of descriptor-based models did 

indeed reduce the number of features employed to significantly fewer 

than the number of training examples (good). However, they still insist on 

using 2048 features for the fingerprint-based models (or is it 4096 features 

given 4 types of 1024 fingeprints?). Clearly with between 57 and 71 

training examples, such a large number of features will grossly overfit the 

models. This is not "unfounded and emotional" but a statistical fact. I 

recommend they either use sparse feature selection to reduce the number 

of features drastically, or they remove the models based on fingerprints 

entirely. These models were not used to predict the larger set of 

nucleoside analogues so don't add any value to the manuscript. 

Fingerprints can in fact have chemical meaning (at least as much as the 

arcane molecular descriptors used in the final model) but this point is 

moot given that the models are grossly overfitted and are no better than 

the models trained on sparse molecular descriptors. 

Response: 

Thank you very much for the professional comments. We agree with the 

reviewer that using 2048 features in "between 57 and 71 training examples" 

may lead to overfitting of the model. So we completely removed the part of the 

models based on the molecular fingerprints of 2048 features.  

The reason why we used four molecular fingerprints in previous manuscript 

were to evaluate whether the prediction models based on descriptors have a 

good performance in predicting the hydrogel-forming ability of nucleoside 

derivatives. And we considered that the dimensionality reduction of the 

molecular fingerprint model may lose the original chemical or structure meaning 

of complete fingerprints. As mentioned in rebutter letter of NCOMMS-23-

16267B-Z (Comment #2, Response part 1): "Further feature selection of 

molecular fingerprints is not only meaningless for finding the specific 

descriptors closely related to the hydrogel-forming ability, but also loses the 

original chemical or structure meaning of complete fingerprints". While we have 

verified the performance of the model based on experiments, we believe that 

removing the models based on molecular fingerprints could not undermine the 

integrity of the manuscript, so we have removed the results about molecular 

fingerprints. 



Comment #3:  Clearly, the point about the authors choosing 20% of the 

data set randoinly 10 times to define a 'test set' has not been made 

strongly enough in the last review. Normal practice, at least with larger 

data sets, is to partition it into a training set used to contruct the model 

and a test set used to assess model predictive power for data it has not 

been trained on. The test set is chosen once and never used in training. 

The method employed by the authors is essentially 'leave-20%-out' cross 

validation which overestimates model predictivity because the training 

and test set are not independent. Given the relatively small data set size, 

the use of cross validation rather than a test set may be justified. However, 

a test set of 20% chosen by cluster analysis (once) to ensure it covers the 

same domain s the training set, would be a better and more stringent 

measure of model predictivity and I strongly recommend the autjors 

include this in the revised manuscript. The authors are correct in that the 

final arbiter of model utilty is on predicting the properties and an external 

set, as they have done. 

Response: 

We thank the referee for this comment. We also followed the reviewer's 

suggestion and add corresponding content to the revised manuscript, that is, 

the test set of 20% nucleoside derivative data is selected through cluster 

analysis (once, not for training), and the remaining 80% is used as the training 

set (with five-fold cross validation). The results showed that, consistent with our 

previous five-fold cross validation of 71 nucleoside derivatives, the three-step 

feature screening based logistic regression (LR-RFE) performed better in both 

the training set (with five-fold cross validation) and test set. In the training set, 

validation accuracy: 0.70± 0.02, AUC:0.84± 0.02 (Table R2, as Supplementary 

Table 3 in the revised manuscript); In the test set, accuracy:0.67, AUC:0.81 

(Table R3 as Table 2 in the revised manuscript). The corresponding parts have 

been added to the revised manuscript for reference (Results and Discussion: 

Page 8 line 13 to line 24; Methods: Page 33 line 22 to Page 34 line 4)  

Detailed description:  

We reduced dimensionality by PCA for 4175 molecular descriptors of 71 

nucleoside derivatives, and 71 nucleoside derivatives were clustered by k-

means (Fig. R3, as Supplementary Fig. 5 in the revised manuscript). The K 

value was determined based on the inertia method and silhouette score (K=4, 

Fig. R4, as Supplementary Fig. 6 in the revised manuscript). To ensure that 

the test set covered the same areas as the training set, we conducted stratified 

sampling based on clustering and gelling results, dividing nucleoside 

derivatives into 80% as training set (n=56) and 20% as test set (n=15) (Fig. R5, 

as Supplementary Fig. 7 in the revised manuscript). We use 5-fold cross 

validation to train and hyperparameter the model on the training set, and 

evaluate the model's generalization ability on the additional test set.  

For larger data sets, choosing 20% as a separate test set ensures that it covers 

the same areas as the training set.  But considering that this study is based on 



only 71 nucleoside derivatives, as we mentioned in the rebutter letter, we need 

to note that continuing to segment such a small data set will further degrade the 

performance of the model when 20% of nucleoside derivatives are randomly 

selected as the test set at once, even after passing the cluster analysis. We still 

need to emphasize that there is inevitably a lot of instability with this approach, 

and that this 20% test set is not an independent external data set. Therefore, in 

our revised manuscript, even though we added the method of randomly 

selecting 20% nucleoside derivatives as the test set as a sensitivity analysis 

(results were showed in the supplementary), we still used the cross-validated 

optimal model for the prediction of the external set, referring to the methods 

commonly used in similar studies with small sample size[1,2].  

We have to admit that the current data set size is relatively small. However, as 

a first attempt, this prediction model have also achieved meaningful results, 

many new nucleoside hydrogels have been discovered based on a certain 

accuracy (83.3%). For better accumulation in the future, we have established 

an online database: NHGPM (www.nhgpm.com, Fig. R6), which recorded a 

range of chemical properties of collected nucleoside derivatives, including the 

hydrogel-forming ability. We are also uploading the results of our prediction 

model into this online database. Readers could obtain the collected information 

of nucleoside derivatives and also could choose the nucleoside derivatives they 

want to further study according to the hydrogel-forming probability provided by 

us. All this information is freely available for scientific researchers on our 

website. We hope that our efforts can promote the development of this field. As 

the research progresses in the field of nucleoside hydrogels, more records on 

the hydrogel-forming ability of nucleoside derivatives will be collected. We will 

further optimize our model based on larger data sets in the future. 

  

http://www.nhgpm.com/


Table R2. The result of AUC (Area under Curve) and validation accuracy for all 
models based on training set . 

  training set performance 

Models Features Validation accuracy AUC 
  Mean Se Mean Se 

DT* Descriptor_4175 0.68 0.02 0.68 0.02 
LR Descriptor_4175 0.58 0.02 0.58 0.03 
RF Descriptor_4175 0.64 0.02 0.72 0.02 

XGBoost Descriptor_4175 0.63 0.02 0.66 0.02 
DT Descriptor_119 0.62 0.02 0.62 0.01 
LR Descriptor_119 0.64 0.02 0.80 0.02 
RF Descriptor_119 0.67 0.02 0.74 0.02 

XGBoost Descriptor_119 0.64 0.02 0.68 0.02 
DT Descriptor_34 0.67 0.02 0.67 0.02 
LR Descriptor_34 0.70 0.01 0.84 0.02 
RF Descriptor_34 0.68 0.01 0.75 0.02 

XGBoost Descriptor_34 0.67 0.01 0.73 0.02 
DT Descriptor_ REF# 0.63 0.02 0.65 0.02 
LR Descriptor_ REF# 0.70 0.01 0.84 0.02 
RF Descriptor_ REF# 0.67 0.02 0.75 0.02 

XGBoost Descriptor_ REF# 0.67 0.02 0.74 0.02 

Notes: *: Logistic regression (LR), decision tree (DT), random forest (RF), and extreme 
gradient boosting (XGBoost). 
#: Descriptors-REF: Recursive feature elimination (REF) has different optimal 
descriptors for different Algorithms: LR, n=34; XGBoost, n=33; DT, n= 23; RF, n=26.  

Table R3. The result of AUC (Area under Curve) and validation accuracy for all models 
based on test set. 

Models Features 
Test set performance 

Accuracy F1 Score Precision Recall AUC 

DT Descriptor_ REF# 0.60 0.67 0.75 0.60 0.60 
LR Descriptor_ REF# 0.67 0.76 1.00 0.61 0.81 
RF Descriptor_ REF# 0.53 0.59 0.63 0.56 0.53 

XGBoost Descriptor_ REF# 0.60 0.57 0.50 0.67 0.61 

Notes: *: Logistic regression (LR), decision tree (DT), random forest (RF), and extreme 
gradient boosting (XGBoost). 

#: Descriptors-REF: Recursive feature elimination (REF) has different optimal 

descriptors for different Algorithms: LR, n=34; XGBoost, n=33; DT, n= 23; RF, n=2 

 



 

Fig. R3. Results of principal component analysis (PCA)

 
Fig. R4. Results of cluster analysis of K-means . a. result of inertia, b. 

result of inertia, c. result of K-means. 

 



 

Fig. R5. The distribution of training set and test set 

 

  
Fig. R6. The home page of www.nhgpm.com  

 

[1]. Tiihonen, A. et al Predicting Antimicrobial Activity of Conjugated 

Oligoelectrolyte Molecules via Machine Learning. J. Am. Chem. Soc. 143, 

18917-18931 (2021). 

[2]. Kohoutová, L. et al Toward a unified framework for interpreting 

machinelearning models in neuroimaging. Nat. Protoc. 15, 1399-1435 (2020). 



Comment #4.  Continuing on with the prediction of the 7000+ set, although 

the screened molecules appear to be within or near the domain of 

applicability fo the chosen model (good), it would be more persuasive if 

the authors had additionally chosen 12 analogues predicted to have no 

gel-forming ability and measured those subsequently. Can this be done 

for the revised manuscript? 

Response:  

Thank you for your constructive comments. According to your suggests, we 

have additionally chosen 12 nucleoside derivatives with low hydrogel-forming 

probability to validate they have no gel-forming ability. The validation methods 

are consistent with the methods of validating the hydrogel-forming ability in this 

study, and are as follows: first, the 12 nucleoside derivatives (13, 5,6-

Dichlorobenzimidazole riboside, DRB; 14, 9-(2-tetrahydropyranyl)adenine, 9-

THPA; 15, 9-(2-tetrahydrofuryl)adenine, 9-THFA; 16, 2-thiocytidine, 2-TC; 17, 

2’,3’-dideoxy-2’3’-didehydroadenosine, 2’,3’-DA; 18, 2',5'-dideoxyadenosine, 

2’,5’-DA; 19, 2'-C-methyladenosine, 2’-MeA; 20, gemcitabine, GCTB; 21, 2-

chloro-2',3'-O-isopropylideneadenosine-5'-N-ethylcarboxamide, 2-ClA; 22, 2-

chloro-9-(2-tetrahydropyranyl)adenine, 2-Cl-9-THPA; 23, 7-deaza-2′-C-

methyladenosine, 7-D-2’-MeA; 24, 2'-C-methylcytidine, 2’-MeC) with low gelling 

prediction probability were selected in a relatively homogeneous manner based 

on the costs of obtaining and synthesizing. Then, the tube-inversion tests were 

performed to validate whether they could form hydrogels in the presence of 

alkali metal cations, borate anions, or metal ions. The results showed that 10 

of the 12 nucleoside derivatives didn’t form hydrogels, while the two others 

formed (Table R4, Fig. R7-R10 as Supplementary Data S8 and 

Supplementary Fig. 16-19 in the revised manuscript), demonstrating the rate 

of not forming hydrogels is 83.33%. The validation results indicated that the 

nucleoside derivatives with low gelling prediction probability have low gel-

forming ability. In total, the accuracy of the optimal model for predicting 

hydrogel-forming ability was 83,33% (20/24) for 24 nucleoside molecules which 

further confirmed the reliability of our ML models. Thank you again for your 

valuable comments, we have added the relevant content in the revised 

manuscript (Abstract: Page 2 line 8 to line 10; Results and Discussion: Page 

16 line 3 to line 7, Page 16 line 22 to line 25, Page 17 line 1 to line 3; 

Conclusion: Page 30 line 4 to line 5; Methods: Page 36 line 23 to Page 37 

line 11) 



 

Fig. R7. Photographs of hydrogels or samples assembled from 

nucleoside derivatives in different solutions. Sol: solution. Pre: precipitate. 

 
Fig. R8. Photographs of hydrogels or samples assembled from 

nucleoside derivatives in different solutions. Sol: solution. Pre: precipitate. 



 

Fig. R9. Photographs of hydrogels or samples assembled from 

nucleoside derivatives in different solutions. Sol: solution. Pre: precipitate. 

 
Fig. R10 12 nucleoside derivatives with low probability of hydrogel-

forming ability were selected. The result shows 10 nucleoside derivatives 

(14-23) formed hydrogels, while the two others (13 and 24) did not.  

 



 

Table R4. The validation for the hydrogel-forming ability of the nucleoside 
derivatives (13 - 24) 

No. Nucleoside derivatives PMID 
P for 

Gelability 
Rank for 
Gelability 

Test 
Result 

13 DRB* 

 

5894 0.452 
6400 

(88.2%) 
Gel (+) 

14 9-THPA 

 

1932 0.449 
6473 

(89.2%) 
Gel (-) 

15 9-THFA 

 

5270 0.448 
6507 

(89.7%) 
Gel (-) 

16 2-TC 

 

3011746 0.447 
6534 

(90.0%) 
Gel (-) 

17 2’,3’-DA 

 

64975 0.444 
6585 

(90.7%) 
Gel (-) 

18 2’,5’-DA 

 

65166 0.443 
6592 

(90.8%) 
Gel (-) 

19 2’-MeA 

 

500900 0.430 
6803 

(93.7%) 
Gel (-) 

20 GCTB 

 

60750 0.424 
6872 

(94.7%) 
Gel (-) 



21 2-ClA 

 

14775452 0.418 
6949 

(95.8%) 
Gel (-) 

22 2-Cl-9-THPA 

 

12777819 0.415 
6980 

(96.2%) 
Gel (-) 

23 7-D-2’-MeA 

 

3011893 0.391 
7144 

(98.4%) 
Gel (-) 

24 2’-MeC 

 

500902 0.379 
7188 

(99.1%) 
Gel (+) 

Notes: *: 13, 5,6-Dichlorobenzimidazole riboside, DRB; 14, 9-(2-

tetrahydropyranyl)adenine, 9-THPA; 15, 9-(2-tetrahydrofuryl)adenine, 9-THFA; 

16, 2-thiocytidine, 2-TC; 17, 2’,3’-dideoxy-2’3’-didehydroadenosine, 2’,3’-DA; 

18, 2',5'-dideoxyadenosine, 2’,5’-DA; 19, 2'-C-methyladenosine, 2’-MeA; 20, 

gemcitabine, GCTB; 21, 2-chloro-2',3'-O-isopropylideneadenosine-5'-N-

ethylcarboxamide, 2-ClA; 22, 2-chloro-9-(2-tetrahydropyranyl)adenine, 2-Cl-9-

THPA; 23, 7-deaza-2′-C-methyladenosine, 7-D-2’-MeA; 24, 2'-C-methylcytidine, 

2’-MeC. 

 

Comment #5. The manuscript still has ample evidence of lack of care in 

preperation with still a substantial number of spelling and grammatical 

errors after multiple rounds of review e.g., 'Descripters' in Fig. 1, 'Flow 

chat', 'Dabase' etc etc. 

Response: 

Thank you very much for your reminding. We have reviewed the manuscript 

and corrected the errors. 

 

Comment #6. Supplementary Table 2 should be in the body of the paper. 

Response: 

Thank you very much for the professional comments, we have included 

previous supplementary Table 2 in the body of the paper (As Table 1 in the 

revised manuscript). 

  



Comment #7. The last paragraph of the Introduction is a summary of the 

results, delete this and leave it to the Results and Discussion to describe 

this. Similarly, pages 6-8 is simply a repeat of Methods so could be deleted 

here and left for the Methods section to explain. 

Response: 

Thanks for your comment and we fully agree with this matter. We have modified 

the corresponding part. Firstly, for the last paragraph of the Introduction, we 

have deleted this and leaved it to the Results and Discussion. Secondly, for 

the content  on pages 6-8, In order to make it easier for readers to understand, 

we have completely cut down the content, kept only a few result descriptions, 

and left for the Methods and Supplementary Methods 2.1 to explain. 

(Introduction: Page 5 line 10 to line 14; Results and Discussion: Page 6 line 

4 to line 25, Page 10 line 3 to line 7, Page 28 line 14 to line 18) 

 

Comment #8. Suppl Table 3 suggests only 6-7 features are important 

given the standard errors of these (F-test) 

Response: 

Thanks for your comments, as you noted, given the standard error of these 

features, only a few descriptors are important. In addition, following your 

suggestion, we focus more on feature importance based on regression 

coefficients in the revised manuscript. According to the regression coefficients, 

there are only four important features (Coef > ± 0.1), which is basically 

consistent with the previous results. And we have briefly elaborated on these 

descriptors in this manuscript (Supplementary Discussion 1.1)(Results and 

Discussion: Page 9 line 1 to line 9; Methods: Page 35 line 5 to line 13). 

 

Comment #9. The use of DT is probably redundant as ensemble methods 

like RF and XGB will always perform better than DT. 

Response: 

Many thanks for this comment. As you said, RF,XGB, and LR all tend to perform 

better than DT. However, as a typical machine learning model [1], DT has also 

been widely used in previous studies to predict the properties of compounds [2], 

and we believe that it is also feasible to retain it as a comparison. Second, the 

results of DT may also provide a reference for readers, if DT is removed, only 

three kinds of machine learning models were left, which may seem not 

convincing enough. So we think that we may keep the results of DT in the 

revised manuscript. 

 

[1]. Quinlan JR. Induction of decision trees. Mach. Learn. 1, 81-106 (1986). 

[2]. Batra, R. et al. Machine learning overcomes human bias in the discovery of 

self-assembling peptides. Nat. Chem. 14, 1427-1435, (2022). 

  



Reviewer #4 
 (Remarks to the Author): 

This is a paper by Hang Zhao and colleagues who developed a machine 

learning model to predict the gelation characteristics of nucleoside 

derivates. The authors used data from the literature to initially train a new 

model then used this model to inform a few new designs for subsequent 

testing. This paper was very comprehensive and impressive. At first I was 

concerned by the large number of descriptors being used, but was later 

happy to see the authors reduce the number of valuable descriptors to a 

more reasonable number. It is interesting that logistic regression 

performed so well in this environment. Another area of strength was the 

in depth analysis of the two cation-independent hydrogels (8AG-T and 

8OHG-T). Overall, the strength of the model training and subsequent 

analysis gives this reviewer much to praise about this paper and its 

methods. Also, the authors did a great job responding to the first 

reviewer's comments. My only suggestion would be to include a summary 

schematic at the beginning of the paper to help readers understand the 

main goals of the paper quickly. Otherwise, I am happy for this paper to 

be published without further revision. 

Response: 

Thank you very much for your approval of our work, and taking the time to 

review our manuscript.  Following your suggestion, we have also included a 

summary schematic in the introduction (Fig. R11, as Graphic abstract in the 

revised manuscript).  

 

 

Fig. R11 An optimal ML model was constructed for nucleoside derivatives 

hydrogel-forming ability prediction, and potential gelators were selected based 

on the optimal model external application and the hydrogel-forming ability were 

experimentally verified. Besides, the self-assembly mechanism of the cation-

independent hydrogel was explored, which could be applied in rapid visual 

detection of Ag+ and cysteine. 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors have made a series aftempt to address the remaining, important deficiencies in their 

submifted manuscript. The paper must be revised again to correct residual grammar and spelling issues 

as there are sfill a considerable number of errors. In parficular there is a chunk of manuscript missing 

from the PDF between lines 324 and 412, and 787-920, line 615 should read 'self-assembly', incorrect 

spelling of descriptors in Figure 1 despite this having been flagged in prior reviews.

Reviewer #4 (Remarks to the Author):

Authors have addressed this reviewer's main concern.



Reviewer #1 

Comment #1: The authors have made a series attempt to address the 

remaining, important deficiencies in their submitted manuscript. The 

paper must be revised again to correct residual grammar and spelling 

issues as there are still a considerable number of errors. In particular 

there is a chunk of manuscript missing from the PDF between lines 324 

and 412, and 787-920, line 615 should read 'self-assembly', incorrect 

spelling of descriptors in Figure 1 despite this having been flagged in 

prior reviews. 

Response:  

Thank you very much for your reminding. We have reviewed the manuscript 

and corrected all the errors. We have revised the manuscript as follows: 

1). The paper must be revised again to correct residual grammar and 

spelling issues as there are still a considerable number of errors: 

We have corrected residual grammar and spelling issues in revised manuscript 

and Supplementary Information, such as:  

a). Used the present tense to discuss the current work in the abstract. (Abstract) 

b). Replaced the "descripters" with "descriptors" in Figure 1.  

c). Replaced the "the PFI method for the accuracy of the optimal model was 

also provided" with "the PFI results (mean accuracy decrease) of the 24 

molecular descriptors in the optimal model were also provided". (Page 7 

Line 7-8) 

d). Added a "for" before "external application". (Page 9 Line 1 in revised 

manuscript) 

e). Replaced the "is generated" with "generates".(Page 11 Line 14 in revised 

manuscript) 

f). Added a "for" before "external application". (Page 13 Line 9 in revised 

manuscript) 

g). Replaced the "self-assemble" with "self-assembly". (Page 18 Line 20 in 

revised manuscript) 

h). Replaced the "self-assemble" with "self-assembly". (Page 18 Line 20 in 

revised manuscript) 

2). In particular there is a chunk of manuscript missing from the PDF 

between lines 324 and 412, and 787-920 

We are sorry that there was an unknown error when we uploaded the 

manuscript, which resulted in some contents not being displayed. We have 



made the corresponding changes, and now it can be displayed correctly. 

3). line 615 should read 'self-assembly': 

We have replaced the "self-assemble" with " self-assembly" 

4). Incorrect spelling of descriptors in Figure 1 despite this having been 

flagged in prior reviews: 

We are very sorry that we did not correct it in time and we have revised it in the 

latest manuscript. 

We sincerely thank your effort for improving our work, and taking the time to 

review our manuscript. 
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