Risk Factors for Thromboembolic Events in Patients With Dialysis-Dependent CKD: Pooled Analysis of Phase 3 Roxadustat Trials in Japan

Takayuki Hamano¹; Yusuke Yamaguchi²; Kashia Goto³; Sho Mizokawa³; Yuichiro Ito³; Frank Dellanna⁴; Jonathan Barratt⁵; Tadao Akizawa⁶

¹Nagoya City University School of Medicines, Nagoya, Japan; ²Astellas Pharma Global Development Inc., Northbrook, IL, USA; ³Astellas Pharma, Inc., Tokyo, Japan; ⁴MVZ DaVita Rhein-Ruhr GmbH, Düsseldorf, Germany; ⁵University of Leicaster, Leicaster, UK; ⁶Showa University School of Medicine, Tokyo, Japan

Corresponding Author:

Name: Takayuki Hamano Title: Nagoya City University Graduate School of Medical Sciences Affiliation: Department of Nephrology Street address: 1, Kawasumi, Mizuho-cho, Mizuho-ku City, State ZIP: Nagoya, Aichi, 467-8602 Phone: +81-52-853-7429 Fax: +81-52-842-7367 E-mail: hamatea@med.nagoya-cu.ac.jp

Supplementary Material:

Methods: Nested Case-Control Analysis

Figure S1. Illustration of Methodology

Figure S2. Medians ± Interquartile Ranges Plot of (a) MCV, (b) MCH, and (c) MCHC

in Patient Subgroups With and Without Thromboembolic Events

Figure S3. Medians ± Interquartile Ranges Plot of Platelets in Patient Subgroups

With and Without Thromboembolic Events

 Table S1. Dose Conversion Between Average Doses of ESA Before Study

Registration and Roxadustat Doses

Table S2. Univariate Cox Regression Analysis for Thromboembolic Events With

Onset Before Week 12: Other Factors

Table S3. Matching Variables and Other Baseline Characteristics in Nested Case-Control Analysis for Thromboembolic Events With Onset Before Week 12
Table S4. Cox Regression Analysis for Thromboembolic Events With Onset After Week 12: Other Factors

Table S5. Matching Variables and Other Baseline Characteristics in Nested Case-Control Analysis for Thromboembolic Events With Onset After Week 12

Methods: Nested Case-Control Analysis

A nested case-control analysis was conducted to infer the possible causal role of potential risk factors in the development of thromboembolic events. An advantage of a nested case-control analysis is the flexibility to control for confounding effects via matching techniques, and thus relatively high statistical power is expected even in studies of a small number of events where naive model adjustment for multiple confounding factors may be challenging [1-4].

Case Definition

A patient was defined as a case at the first recorded incidence of an event. Patients were only included as a case once; subsequent events in the same patient were not counted.

Definition of Patients at Risk

Identifying appropriate patients at risk from which controls are chosen allows the analysis to incorporate time-dependent data of potential risk factors and adjust for known confounders. A matched nested case-control design was used to match a patient with an event to patients with similar characteristics with respect to important confounding variables who have not experienced any events at the onset time of the case. Each time an event occurred (case), patients who were still at risk were eligible to be selected as a control. A matching algorithm was used to select controls with similar characteristics from these patients at risk. Patients selected as controls could go on to become a case themselves if they experienced the event of interest

subsequently and could also be included in the patients at risk for other cases before they experienced the event. **Figure S1b** is a schematic diagram of this process, where potential controls corresponding to a case are defined as all patients at risk (eg, case subject S002 has 5 potential control subjects: S003, S004, S007 S008, and S009).

Selection of Matching Variables

An important consideration is the appropriate selection of matching variables, as well as the optimum mechanism for matching. We selected the matching variables based on the results from the Cox regression analysis. The matching variables used for the analysis of events with onset before Week 12 included:

- Type of dialysis: hemodialysis, peritoneal dialysis
- Hemodialysis/peritoneal dialysis vintage category (months): <4, ≥4
- Age category: +/- 2 years
- Ferritin at Week 0
- Transferrin saturation at Week 0

The matching variables used for the analysis of events with onset after Week 12 included:

- Type of dialysis: hemodialysis, peritoneal dialysis
- History of thromboembolism: no, yes
- Age category: +/- 2 years
- History of cardiovascular: no, yes

Pre-treated ESA monthly dose, calculated by converting to darbepoetin alfa unit with the following conversion rate: darbepoetin alfa (ug/wk) : rHuEPO (IU/wk) = 1:200, darbepoetin alfa (ug/4 wk) : epoetin beta pegol (ug/4 wk) = 1:0.8.

Selection of Controls

Another important consideration is the method used to select controls from patients at risk for each case. We used the combination of exact matching and nearest neighbor matching, where a case was first matched to patients with the same levels of binary matching variables (exact matching), and among such patients, the case was matched to patients with the smallest Mahalanobis distance of continuous matching variables (nearest neighbor matching). Patients could be selected more than once as a control. We also included future cases of developing a thromboembolic event as controls, as their exclusion could also lead to biased estimates of relative risk [5].

Number of Controls

In standard case-control studies, it has been shown that there is little statistical efficiency gained from having more than four matched controls relative to each case [6,7]. There is also a concern that increasing the number of controls sampled per case would lead to an increase in repeated sampling, resulting in a larger number of duplicates present in the overall matched control population. However, it is also true that the present pooled data included the limited number of patients experiencing

5

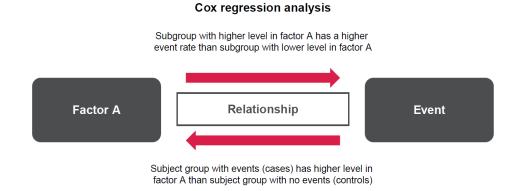
thromboembolic events. Therefore, to preserve statistical accuracy, we limited the number of matched controls to 10 per case in principle (eg, cases were matched to 10 controls with the same level of binary matching variables and the smallest Mahalanobis distance of continuous matching variables). As an exception, if more than 10 patients per case had the smallest Mahalanobis distance, caused due to tied distance, all these patients were selected as controls.

Statistical Analysis

The potential risk factors of patients experiencing thromboembolic events and the matched controls were compared. By case and matched control group, numbers and percentages of patients were calculated for binary and categorical factors. A conditional logistic regression model was used to calculate an odds ratio for cases compared with matched controls with 95% confidence intervals and *P* values. The conditional logistic regression allowed incorporation of matching by having different constant terms for each paired case-control, which is given by

 $Y_{ij} \sim Bernoulli(p_{ij})$

$$p_{ij} = \frac{\exp(\alpha_i + \beta X_{ij})}{1 + \exp(\alpha_i + \beta X_{ij})}$$


where Y_{ij} is a binary outcome ($Y_{ij} = 1$ for event and $Y_{ij} = 0$ for no event) for *i*-th case (j = 0) or his *j*-th control, and X_{ij} is a factor for *i*-th case (j = 0) or his *j*-th control.

References

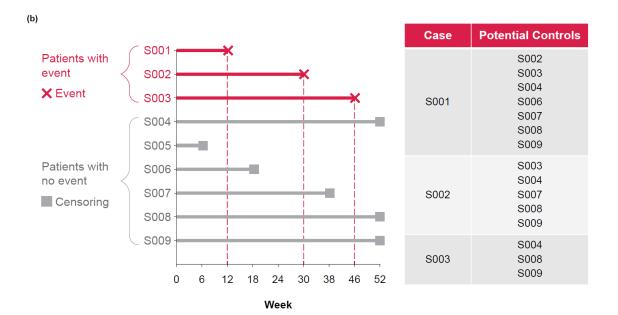
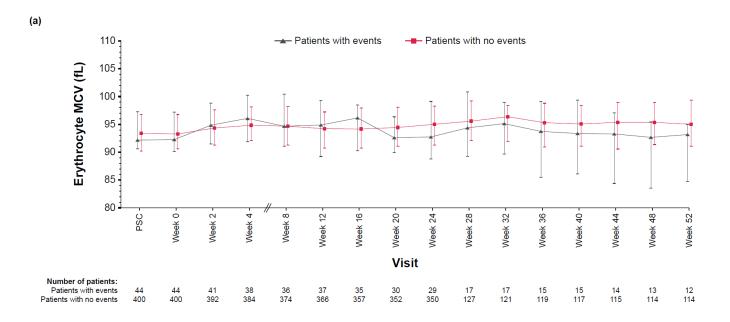
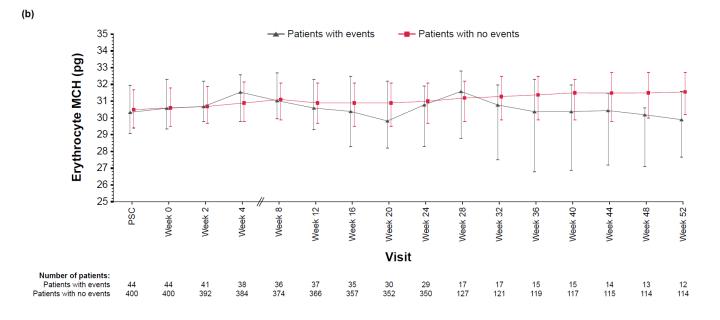
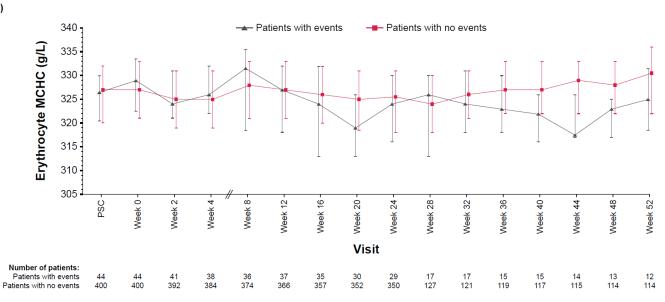

- Breslow NE. Statistics in epidemiology: the case-control study. J Am Stat Assoc. 1996; 91:14-28.
- Essebag V, Genest J, Suissa S, Pilote L. The nested case-control study in cardiology. Am Heart J. 2003; 146:581-90.
- Goldstein L, Langholz B. Asymptotic theory for nested case-control sampling in the Cox regression model. Ann Stat. 1992; 20:1903-28.
- Partlett C, Hall NJ, Leaf A, Juszczak E, Linsell L. Application of the matched nested case-control design to the secondary analysis of trial data. BMC Med Res Methodol. 2020; 20:117.
- Lubin JH, Gail MH. Biased selection of controls for case-control analyses of cohort studies. Biometrics. 1984; 40:63-75.
- 6. Ury HK. Efficiency of case-control studies with multiple controls per case: continuous or dichotomous data. Biometrics. 1975; 31:643-9.
- Gail M, Williams R, Byar DP, Brown C. How many controls? J Chronic Dis. 1976; 29:723-31.

Figure S1. Illustration of Methodology: (a) Cox Regression Analysis and Nested Case-Control Analysis; (b) Schematic Diagram Illustrating Potential Controls for Each Patient With Event (Case)






Figure S2. Medians ± Interquartile Ranges Plot of (a) MCV, (b) MCH, and (c) MCHC in Patient Subgroups With and Without Thromboembolic Events

MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; PSC, prescreening.

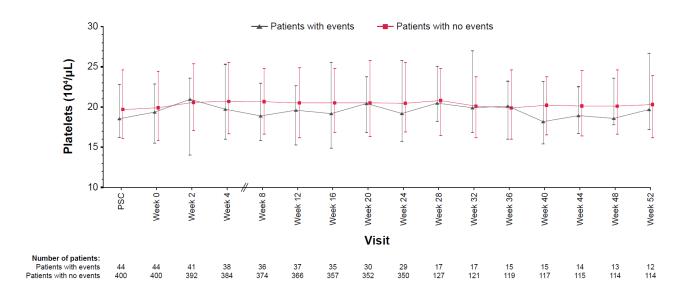


Figure S3. Medians ± Interquartile Ranges Plot of Platelets in Patient Subgroups With and Without Thromboembolic Events

PSC, prescreening.

Table S1. Dose Conversion Between Average Doses of ESA Before StudyRegistration and Roxadustat Doses

Study 1517-CL-0302, Study 1517-CL-0312					
	Epoetin Beta				
	Pegol	rHuEPO	Roxadustat	Roxadustat	
	(µg/4 wk)	(IU/wk)	(mg/dose)	(mg/wk)	
DA (µg/wk)					
<20	≤100	<4500	70	210	
≥20	>100	≥4500	100	300	
Study 1517-CL-0307					
		rHuEPO	Roxadustat	Roxadustat	
		(IU/wk)	(mg/dose)	(mg/wk)	
DA (µg/wk)					
<20		<4500	70	210	
≥20	—	≥4500	100	300	

Patients in study 1517-CL-0308 were ESA-naive and received a starting dose of either 50 mg or 70 mg of roxadustat three times weekly.

DA, darbepoetin alfa; ESA, erythropoiesis-stimulating agent; rHuEPO, recombinant human erythropoietin.

		No. of		
		Events	Hazard Ratio	
Category	n	(%)	(95% CI) ^a	<i>P</i> Value ^b
Sex				
Male	291	18 (6.2)	Ref	0.312
Female	153	6 (3.9)	0.62 (0.25–1.57)	0.512
Primary disease of CKD				
Chronic glomerular nephritis	151	10 (6.6)	0.92 (0.33–2.52)	
Diabetic nephropathy	145	5 (3.4)	0.47 (0.14–1.53)	0.529
Nephrosclerosis	67	3 (4.5)	0.62 (0.15–2.46)	0.529
Other	81	6 (7.4)	Ref	
History of diabetes				
No	278	16 (5.8)	Ref	0.652
Yes	166	8 (4.8)	0.82 (0.35–1.92)	0.052
Roxadustat starting dose (mg	g)			
50	43	3 (7.0)	Ref	
70	251	12 (4.8)	0.68 (0.19–2.42)	0.781
100	150	9 (6.0)	0.87 (0.23–3.20)	
Concomitant anticoagulant use				
No	426	23 (5.4)	Ref	0.079
Yes	18	1 (5.6)	1.03 (0.14–7.61)	0.978
Concomitant antiplatelet agent use				
No	242	15 (6.2)	Ref	0.411
Yes	202	9 (4.5)	0.71 (0.31–1.62)	0.411

Table S2. Univariate Cox Regression Analysis for Thromboembolic Events With Onset Before Week 12: Other Factors

CI, confidence interval; CKD, chronic kidney disease; Ref, reference. ^aEstimated using Cox proportional hazards model. ^bP values based on log-rank test to test the null hypothesis of no difference in incidence across subgroup categories.

Table S3. Matching Variables and Other Baseline Characteristics in Nested Case-ControlAnalysis for Thromboembolic Events with Onset Before Week 12

Variable	Statistics/Category	Cases (N=24)	Controls (N=223) ^a
Age	Mean (SD), years	66.7 (9.3)	67.5 (8.6)
	≥65 years, n (%)	17 (70.8)	156 (70.0)
Type of dialysis,	Hemodialysis	24 (100.0)	223 (100.0)
n (%)	Peritoneal dialysis	0 (0.0)	0 (0.0)
Dialysis vintage,	Mean (SD)	55.4 (75.4)	60.2 (83.0)
months	Median (Q1, Q3)	19.6 (0.6, 69.7)	27.9 (0.9, 75.5)
	≥4 months, n (%)	15 (62.5)	150 (67.3)
Ferritin at Week 0	Median (Q1, Q3), ng/mL	86.2 (53.5, 154.8)	80.3 (46.0, 113.5)
	<100 ng/mL, n (%)	13 (54.2)	152 (68.2)
TSAT at Week 0	Mean (SD), %	29.12 (11.33)	26.83 (7.79)
	<20%, n (%)	4 (16.7)	32 (14.3)

Q, quartile; SD, standard deviation; TSAT, transferrin saturation. ^aNumber of unique controls, N=158.

Table S4. Cox Regression Analysis for Thromboembolic Events With Onset After	
Week 12: Other Factors	

		No. of Events	Hazard Ratio		
Category	n	(%)	(95% CI) ^a	<i>P</i> Value ^b	
Sex					
Male	275	15 (5.5)	Ref	0.890	
Female	148	8 (5.4)	0.94 (0.40–2.22)	0.890	
Primary disease of CKD					
Chronic glomerular nephritis	142	8 (5.6)	0.99 (0.30–3.30)		
Diabetic nephropathy	141	9 (6.4)	1.17 (0.36–3.81)	0.894	
Nephrosclerosis	64	2 (3.1)	0.65 (0.12–3.54)	0.094	
Other	76	4 (5.3)	Ref		
History of diabetes					
No	264	12 (4.5)	Ref	0.280	
Yes	159	11 (6.9)	1.56 (0.69–3.55)	0.260	
Roxadustat starting dose (m	g)				
50	40	1 (2.5)	Ref		
70	240	11 (4.6)	1.03 (0.13–8.22)	0.352	
100	143	11 (7.7)	1.86 (0.23–14.91)		
Concomitant anticoagulant use					
No	406	22 (5.4)	Ref	0.000	
Yes	17	1 (5.9)	1.01 (0.14–7.53)	0.989	
Concomitant antiplatelet age	Concomitant antiplatelet agent use				
No	228	8 (3.5)	Ref	0.082	
Yes	195	15 (7.7)	2.11 (0.89–4.97)	0.002	

CI, confidence interval; CKD, chronic kidney disease; Ref, reference. ^aEstimated using Cox proportional hazards model. ^b*P* values based on log-rank test to test the null hypothesis of no difference in incidence across subgroup categories.

Table S5. Matching Variables and Other Baseline Characteristics in Nested Case-Control Analysis

 for Thromboembolic Events With Onset After Week 12

Variable	Statistics/Category	Cases (N=23)	Controls (N=164) ^a
Age	Mean (SD), years	67.2 (10.2)	66.8 (8.1)
	≥65 years, n (%)	17 (73.9)	123 (75.0)
Type of dialysis, n	Hemodialysis	23 (100.0)	164 (100.0)
(%)	Peritoneal dialysis	0 (0.0)	0 (0.0)
History of	Yes	11 (47.8)	51 (31.1)
thromboembolism,			
n (%)			
History of	Yes	6 (26.1)	20 (12.2)
cardiovascular			
disease, n (%)			
Pre-treated ESA	Mean (SD)	117.23 (127.31)	87.13 (64.46)
monthly dose	Median (Q1, Q3)	80.00 (40.00, 143.75)	80.0 (40.00, 120.00)
(µg/mo)			
Pre-treated ESA	<40.0	5 (21.7)	25 (15.2)
monthly dose	40.0 to <160.0	12 (52.2)	118 (72.0)
group (µg/mo), n (%)	≥160.0	6 (26.1)	21 (12.8)

ESA, erythropoiesis-stimulating agent; Q, quartile; SD, standard deviation. ^aNumber of unique controls, N=110.