

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Nonlinear relationship between pulse pressure and the risk of prediabetes: a secondary retrospective Chinese cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-080018
Article Type:	Original research
Date Submitted by the Author:	19-Sep-2023
Complete List of Authors:	Cao, Changchun; Shenzhen Dapeng New District Nan'ao People's Hospital, Han, Yong; Shenzhen Second People's Hospital, Department of Emergency Hu, Haofei; The First Affiliated Hospital of Shenzhen University, Department of Nephrology He, Yongcheng ; Shenzhen Hengsheng Hospital, Department of Nephrology; Affiliated Hospital of North Sichuan Medical College, Department of Nephrology Luo, Jiao; Shenzhen Dapeng New District Nan'ao People's Hospital, Department of Rehabilitation
Keywords:	Blood Pressure, China, General diabetes < DIABETES & ENDOCRINOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Nonlinear relationship between pulse pressure and the risk of
2	prediabetes: a secondary retrospective Chinese cohort study
3	Running title: PP and Pre-DM risk
4	Changchun Cao ^{1#} , Yong Han ^{2#} , Haofei Hu ^{3*} , Yongcheng He ^{4,5*} , Jiao Luo ^{1*}
5	¹ Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen 518000,
6	Guangdong Province, China
7	² Department of Emergency, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen
8	University, Shenzhen 518000, Guangdong Province, China
9	³ Department of Nephrology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen
10	University, Shenzhen 518000, Guangdong Province, China
11	⁴ Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen 518000, Guangdong Province, China
12	⁵ Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan
13	Province, China
14	
15	Changchun Cao and Yong Han have contributed equally to this work.
16	*Corresponding author
17	Haofei Hu
18	Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong
19	Province, China
20	E-mail: huhaofei0319@126.com
21	Yongcheng He
22	Department of Nephrology, Shenzhen Hengsheng Hospital, No.20 Yintian Road, Xixiang Street, Baoan District,

2		
3 4	23	Shenzhen 518000, Guangdong Province, China
5	25	Shenzhen 510000, Guangaong 110vinee, ennia.
6 7	24	Department of Nephrology, Affiliated hospital of North Sichuan Medical College, No.1 Maoyuan South Road,
8 9	25	Nanchong Sichuan China
10	25	Nanonong, Stendan, China.
11 12	26	E-mail: heyongcheng640815@126.com
13		
14 15	27	Jiao Luo
15		
17	28	Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road,
18		
19	20	Denne Ne District Clara La Clance De Las Clara
20	29	Dapeng New District, Shenzhen 518000, Guangdong Province, China.
21		
22	30	E-mail: luojiao1989@email.szu.edu.cn
23		
24	31	
25	51	
20		
28	32	
29		
30	33	
31		
32	24	
33	54	
34		
35 36	35	
37		
38	36	
39		
40	37	
41	57	
42		
43	38	
44		
45 46	39	
47		
48	40	
49	40	
50		
51	41	
52		
53	42	
54 55		
56	43	
57	Ъ	
58		
59	44	
60		

Abstract **Objective:** Previous research has shown that pulse pressure (PP) has a significant role in the start and development of type 2 diabetes mellitus. However, there is little proof that PP and prediabetes (Pre-DM) are related. Our study aimed to investigate the relationship between PP and incident Pre-DM in a substantial cohort of Chinese participants. Design: The 'DATADRYAD' database (www.Datadryad.org) was used to retrieve the data for this secondary retrospective cohort analysis. Participants: Data from 182672 Chinese individuals who participated in the medical examination program were recorded in this retrospective cohort study between 2010 and 2016 across 32 sites and 11 cities in China. Setting: PP assessed at baseline and incident Pre-DM during follow-up were the target-independent and dependent variables. The association between PP and Pre-DM was investigated using Cox proportional hazards regression. Primary outcome measures: The outcome was incident Pre-DM. Impaired fasting glucose levels (fasting blood glucose between 5.6 and 6.9 mmol/L) were used to define Pre-DM. Results: After controlling for confounding variables, PP was positively correlated with incident Pre-DM among Chinese adults (HR: 1.009, 95%CI: 1.007-1.010). Additionally, at a PP inflection point of 29 mmHg, a nonlinear connection between the PP and incident Pre-DM was discovered. Increased PP was an independent risk factor for developing Pre-DM when PP was greater than 29 mmHg. However, their association was not significant when PP was less than 29 mmHg. According to subgroup analyses, females, never smokers, and non-obesity correlated more significantly with PP and Pre-DM.

BMJ Open

Conclusion: We discovered that higher PP independently correlated with Pre-DM risk in this study of Chinese participants. The connection between PP and incident Pre-DM was also nonlinear. High PP levels were related to a higher chance of developing pre-DM when PP was above 29 mmHg. for occurrence of the one of the

З	
4	
4	
5	
6	
7	
8	
٥ ٥	
10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

89 **Article Summary**

- 90 **Article focus**
- 91 Our study investigated the relationship between PP and incident Pre-DM in a secondary
- 92 retrospective cohort of Chinese participants.

93 **Key Messages**

- 94 We found that elevated PP was independently associated with an increased risk of Pre-DM in our
- 95 study involving Chinese participants.
- 96 Higher PP levels were associated with a greater risk of developing Pre-DM when PP exceeded 29
- 97 mmHg.
- Further investigation is needed to understand PP's impact on the incident Pre-DM. 98
- Strengths and limitations of this study 99
- 100 Our research leveraged a substantial sample size, drawing participants from multiple centers, thus
- 101 ensuring a robust representation of the Chinese population.
- We elucidated a nonlinear relationship, marking the pioneering effort to pinpoint the inflection 102
- 103 point of PP's impact on Pre-DM.
- Our subgroup analysis allowed us to delve into other potential risk factors within the PP and 104
- 105 incident Pre-DM association.
 - 106 Our study did not incorporate a 2-hour oral glucose tolerance test or glycosylated hemoglobin
 - 107 level measurements, which could potentially lead to an underestimation of the incidence of
- 108 Pre-DM.

109

111 I	ntrod	luction

Prediabetes (Pre-DM) is intermediate hyperglycemia below the diagnostic cutoff for type 2 diabetes mellitus (T2DM). Patients with Pre-DM have been reported to have a higher risk for cardiovascular disease and nephropathy, indicating that impaired glucose begins to have a pathogenic effect at this early stage of diabetes[1]. The prevalence of Pre-DM is increasing globally with an aging population, urbanization, and changing lifestyles. From 2008 to 2017, the prevalence of Pre-DM in China has climbed from 15.5%[2] to 35.2%[3], creating a significant public health burden. Approximately 70% of subjects with Pre-DM will eventually get T2DM[4]. Numerous studies looked for ways to pinpoint the causes of diabetes and Pre-DM to prevent and cure the disease in its earliest stages. Pulse pressure (PP) is referred to as the difference between systolic blood pressure (SBP) and diastolic blood pressure (DBP). Clinically, PP is the manifestation of atherosclerosis[5]. Compared to their non-diabetic contemporaries, people with T2DM have greater atherosclerosis, which results in a broad PP[5]. A greater risk of cardiovascular disease (CVD) exists in T2DM patients[6]. In addition, an increase in PP is another risk factor for CVD incidence and positively correlates with mortality[7-9]. Additionally, compared to healthy individuals, prediabetic patients have a greater burden from coronary atherosclerosis[10]. Notably, the atherosclerosis burden began to develop even before T2DM's clinical symptoms[10]. PP was found to be a significant risk factor for T2DM in a recent retrospective cohort investigation of a sizable sample[11]. However, whether prediabetes in Chinese adults is associated with PP is unknown. This study sought to analyze the precise correlation between PP and the likelihood of developing Pre-DM in Chinese participants.

133 Methods

134 Data source

Researchers can obtain original research data for free via the Dryad Digital Repository. The Dryad data repository's data on 211833 Chinese persons was downloaded[12]. The current research employed openly available data from a medical examination program as a secondary inquiry. Researchers may use the data for secondary analysis in accordance with the Dryad terms of service without interfering with the interests of the authors.

140 Study population

Each participant conducted under the Rich Healthcare Group Review Board, gave their written informed permission before taking part[12]. In addition, the Declaration of Helsinki was followed during our research. The necessary standards and legislation were followed in the execution of all procedures, including the declarations in the Declarations section.

Individuals were excluded from the investigation under these conditions: (1) diabetes at
baseline; (2) diabetes or not defined diabetes status at follow-up; (3) abnormal body mass index
(BMI) values (BMI over 55 or less than 15 kg/m²); (4) lacking data on baseline fasting plasma
glucose (FPG), FPG at follow-up, height, DBP, gender, weight, and SBP; (5) FPG>6.9mmol/L
during follow-up and FPG≥5.6mmol/L at baseline; (6) follow-up interval < 2 years; (7) PP outliers
(three standard deviations above or below the mean). Finally, 182672 subjects eventually entered
the study. The study's design and participant flow are shown in Figure 1.

Data collection

153 Trained staff members gathered and compiled all of the data. Data from laboratory inspections154 were gathered in the original study under uniform conditions using standardized handling

BMJ Open

procedures. The skilled personnel, including height, blood pressure, body weight, and age, gathered demographic information. Professional trainees without light clothing and shoes measure individuals for weight and height. Weight/Height² (kg/m²) was used to compute BMI. Trained staff members took blood pressure using a standard mercury sphygmomanometer. A Beckman 5800 autoanalyzer was used to measure laboratory data, such as low-density lipoprotein cholesterol (LDL-C), FPG, total cholesterol (TC), aspartate aminotransferase (AST), blood urea nitrogen (BUN), triglyceride (TG), alanine aminotransferase (ALT), serum creatinine (Scr), and high-density lipoprotein cholesterol (HDL-C). SBP (mmHg) - (DBP (mmHg)) were the formulas used to compute PP. **Diagnosis of Pre-DM** Impaired fasting glucose levels (FPG between 5.6 and 6.9 mmol/L) were used to define J.V.C Pre-DM[13]. **Statistical analysis** R software version 3.4.3 and EmpowerStats (R) version 4.0 were used for all statistical analyses. We initially assessed the baseline data distribution by categorizing it into quartiles based on the PP (Q1 \leq 36; 36 \leq Q2 \leq 43; 43 \leq Q3 \leq 50; 50 \leq Q4). Continuous data were reported as medians with interquartile ranges (25th-75th percentile) or means with standard deviations (SD), while categorical data were expressed as frequencies and percentages. The Kruskal-Wallis H test, chi-square test, and one-way ANOVA were employed to assess disparities between PP groups. The cumulative incidence and terms person-year were used to represent incidence rates[14]. Comparisons of survival and cumulative event rates were done using the Kaplan-Meier method.

Using the log-rank test, we also examined the Kaplan-Meier hazard ratios (HR) of unfavorableevents [15].

There were 133257 (72.32%), 4240 (2.30%), 1541 (0.84%),4209 (2.28%), 107684 (58.44%), 82879 (44.98%), 18563 (10.07%), 83382 (45.25%), 9759 (5.30%) and 133257 (72.32%) individuals with missing data for smoking status, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, and drinking status, respectively. The present study employed multiple imputations to handle the missing data of covariants. The imputation model included smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, FPG, sex, family history of diabetes, drinking status, and age. Processes for missing data analysis employ the assumption of missing at random[16]. This analysis assessed each factor's impact on incident Pre-DM using univariate Cox proportional hazards regression models. The multivariate Cox regression analysis also examined the precise connection between the PP and incident Pre-DM. In addition, we created three models (fully-adjusted, minimally-adjusted, and non-adjusted) to evaluate the connection between PP and incident Pre-DM. Suppose the HR is changed by at least 10% after the covariance is included in the model. At this point, the covariance should be adjusted [17].

The current analysis conducted several sensitivity analyses to determine if the findings were trustworthy. We converted PP into a categorical variable based on the quartile. We computed the P for the trend to verify the outcomes of the PP as the continuous variable and test for nonlinearity. Obesity and older adults were connected to a greater occurrence of Pre-DM. Thus, we excluded individuals with BMI ≥ 25 kg/m² or age ≥ 60 years for subsequent sensitivity analyses to examine the connection between PP and Pre-DM risk. Additionally, we incorporated the continuous covariate as a curve to the equation using a generalized additive model (GAM) to

BMJ Open

199 confirm the validity of the results.

200 Considering PP is a continuous variable, we investigated potential nonlinear correlations 201 between PP and Pre-DM using the Cox proportional hazards regression with cubic spline 202 functions and smooth curve fitting. If the relationship proved nonlinear, a two-piecewise Cox 203 proportional hazards regression model was applied to pinpoint the inflection point[18]. The study 204 determined the most appropriate model for PP's connection with Pre-DM through log-likelihood 205 ratio analysis.

Subgroup analysis, utilizing the Cox proportional hazard model, was also conducted. Subgroup variables included smoking status, age, BMI, family history of diabetes, gender, and drinking status. Stratification was performed based on medians or established clinical cut points[19], and variables such as age ($\leq 60, \geq 60$ years) and BMI ($\leq 25, \geq 25$ kg/m²) were converted into categorical factors. Each stratum underwent a thoroughly adjusted analysis, except for the stratification factor. The likelihood ratio tests were conducted to ascertain subgroup interactions[20, 21]. The study adhered to the STROBE statement for all outcomes[17, 22]. Statistical significance was determined by a P-value < 0.05, using two-tailed tests.

Results

215 Characteristics of individuals

In the current research, 182672 individuals deemed free of Pre-DM at baseline were included. The average age was 40.832 ± 11.864 years, and 53.082% of individuals were male. Twenty thousand two hundred eighty-four individuals eventually got Pre-DM after an average of 3.143years of follow-up. Table 1 displays comprehensive clinical measurements, biochemical tests, and various parameters. We categorized participants into subgroups based on PP quartiles (Q1 \leq 36;

 $36 < Q2 \le 43$; $43 < Q3 \le 50$; 50 < Q4). Compared to the Q1 group, the other groups (Q2 group, Q3) group, Q4 group) had higher ALT, BMI, age, TG, Scr, TC, AST, BUN, LDL-C, and lower HDL-C. Additionally, the Q4 group had a higher proportion of men, smokers, and drinkers. The incidence rate of Pre-DM During the follow-up, 20284 individuals developed incident Pre-DM, as outlined in Supplemental Table 1. All people had a prevalence rate of 11.10%. The four PP groups' prevalence rates were 8.92%, 9.47% (9.21%-9.73%), 10.82%, and 14.58%. In addition, the cumulative incidence rate of the overall population and four PP groups were 3532.68, 2779.24, 2999.95, 3470.06, and 4701.37 per 100,000 person-years, respectively. Individuals in the Q2, Q3, and Q4 groups exhibited significantly greater cumulative incidence and prevalence rates of Pre-DM than those in the Q1 group. The Kaplan-Meier curves for the propensity to survive without Pre-DM are shown in Supplemental Figure 1. There was a significant difference between the four PP groups regarding the likelihood of developing Pre-DM (P 0.0001). As PP levels increased, the chance of living without prediabetes steadily dropped. As a result, Pre-DM risk was highest among those in the highest PP categories.

237 Univariate analysis

Supplemental Table 2 presents the findings of the univariate analysis. DBP, TC, BMI, SBP,
FPG, age, TG, SCr, LDL-C, PP, and BUN were correlated with Pre-DM risk. HDL-C exhibits an
inverse relationship with Pre-DM risk. Individuals who never drink or smoke also have a lower
risk of developing pre-DM. Pre-DM risk was shown to be greater in men than in women.

242 The results of the connection between PP and Pre-DM

BMJ Open

The Cox proportional hazard regression models for the association between PP and Pre-DM are shown in Table 2. In the non-adjusted model, the HR (95%CI) for the relationship between Pre-DM and PP was 1.025 (1.023-1.026). The HR (95%CI) in the minimally-adjusted model was 1.013 (1.011-1.014) after adjusting for smoking status, age, BMI, family history of diabetes, gender, and drinking status. The HR (95%CI) was 1.009 (1.007-1.010) in the fully-adjusted model after controlling for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking status, and age. The findings showed that for every 1mmHg rise in PP, the risk of Pre-DM rose by 0.9%.

251 Sensitivity analyses

We used several sensitivity analyses to evaluate how reliable our results were. PP was changed from a continuous to a categorical variable before being reintroduced into the model. Following the translation of PP into categorical variables, the trend p was not equal, suggesting a potential nonlinear connection between PP and the chance of developing Pre-DM. Additionally, a GAM added the continuity covariate to the equation. Results for the GAM model showed a positive connection between PP and the probability of developing Pre-DM (HR: 1.008, 95%CI:1.007-1.010) (Table 2).

Besides, the current research excluded participants with BMI<25kg/m² for sensitivity analysis.
After controlling for confounding factors, we observed a positive association between PP and
Pre-DM risk (HR: 1.011, 95%CI: 1.009-1.013) (Supplemental Table 3). Moreover, we considered
participants with ages < 60 years for sensitivity studies. After adjusting for smoking status, BMI,
TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking
status, and age, the results showed that PP remained positively correlated with the likelihood of

developing Pre-DM (HR: 1.008, 95%CI: 1.007-1.010). (Supplemental Table 3). According to the
sensitivity analysis, our findings appeared to be solid.

The analysis of the nonlinear connection

The nonlinear connection between PP and incident Pre-DM is illustrated in Figure 2. After correcting for confounding factors, there was a nonlinear link between PP and incident Pre-DM (Table 3). Based on a two-piecewise Cox proportional hazards regression model, the PP's inflection point was 29 mmHg (P for log-likelihood ratio test = 0.008). When PP was more than 270 29 mmHg, PP was strongly linked with incident Pre-DM (HR:1.009, 95%CI: 1.008-1.011, P<0.0001). However, their correlation was not significant when PP was less than 29 mmHg (HR:

274 0.990, 95%CI: 0.977-1.003, P=0.1492).

275 The results of the subgroup analysis

In our investigation, subgroup analysis was used to examine other risk variables that could have altered the relationship between PP and incident prediabetes. We selected age, BMI, gender, family history of diabetes, smoking status, and drinking status as stratification variables and examined the changes in their impact sizes (Supplemental Table 4). Age, drinking status, and family history of diabetes had no impact on the correlation between PP and the risk of prediabetes. Females, never smokers, ever smokers, and subjects with BMI<25 kg/m² were more likely to be associated with prediabetes risk. Conversely, there was a weaker connection in males, current smokers, and individuals with BMI≥25 kg/m².

Discussion

285 The current study's main goal was to investigate the connection between PP and incident286 Pre-DM in Chinese participants. The findings demonstrated a correlation between increased PP

BMJ Open

and a higher risk of prediabetes. The correlation between PP and Pre-DM was also investigated on the left and right sides of the inflection point. PP level and incident prediabetes have a nonlinear relationship. It was found that never-smokers, ever-smokers, females, and individuals with BMI<25 kg/m² had a greater correlation between PP and incident Pre-DM. PP, the arithmetic difference between SBP and DBP, is determined by arterial wall elasticity and is related to all-cause mortality, cardiovascular events, stroke, kidney injury, severe eye illness, and arterial stiffness[23-28]. In comparison to blood pressure, PP has a better predictive capacity for poor cardiovascular outcomes in people with diabetes, according to several previous pieces of evidence[6, 29]. In addition, some studies found that PP demonstrated strong predictive

ability in the homeostatic model assessment of insulin resistance index, diabetes, and metabolic

syndrome[30-32]. In a retrospective study involving 211814 Chinese participants, after controlling for BMI, smoking and drinking status, age, TC, gender, family history of diabetes, FPG, TG, and BUN and ALT, Higher PP levels independently connect with increased T2DM risk (HR:1.003, 95%CI:1.001,1.005)[11]. In a longitudinal study involving 12272 Chinese, Zhang L et al.[30] found that high PP in Chinese women may be related to the development of T2DM after adjusting for confounding covariates. In a national cross-sectional study involving 6187 Korean older adults, Kwon YJ et al. [32] discovered a positive association between PP and metabolic syndrome after adjusting for alcohol consumption, smoking, age, regular exercise, and mean arterial blood pressure. In another cross-sectional cohort study that included 38708 rural Chinese participants, compared with the lowest group, the odds ratio (95%CI) of PP in the highest quartile of risk for metabolic syndrome was found to be 1.81 (1.67-1.95) after controlling for confounders[33]. In addition, in a prospective research enrolling 32917 Chinese, the HR (95%CI) for diabetes in the

Q3 and Q4 groups were 1.13 (1.04-1.22) and 1.14 (1.05-1.24), respectively, after adjusting for covariates compared to the Q1 group[34]. However, in a multicenter, longitudinal cohort study that included 18619 adults, high PP was not related to an increased risk of diabetes after adjusting for BMI, mean arterial pressure, gender, high-sensitivity C reactive protein, age, exercise, smoking, blood pressure lowering agents, drinking, hyperlipidemia, and family history of diabetes[35]. A retrospective study of 178 individuals with hypertension found that PP was not associated with the risk of new-onset diabetes after adjusting for potential confounders[36]. This retrospective cohort study involved 182672 Chinese individuals and revealed a higher incidence of prediabetes at increased PP levels. After adjusting for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking status, and age, the results indicated that each unit of the LAP raised the risk of prediabetes by 0.9%. Moreover, sensitivity analysis has demonstrated that this correlation remains observable in Chinese adults with age <60 years or BMI <25 kg/m². The efforts mentioned above have demonstrated the consistency of the connection between PP and Pre-DM risk. The findings offered a clinical PP-level intervention guideline to decrease Pre-DM risk.

Few previous studies have investigated the probable curvilinear link between PP and prediabetes. The current study first examined the nonlinear association between PP and prediabetes. After controlling for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking status, and age, the findings revealed that the connection between PP and prediabetes was nonlinear. Based on a two-piecewise Cox proportional hazards regression model, we identified the inflection point of PP as 29 mmHg. When PP levels exceeded 29 mmHg, a 1-unit increase in PP correlated with a 0.9% increase in the

BMJ Open

hazard ratio (HR) for individuals with Pre-DM (HR: 1.009, 95% CI: 1.008-1.011, P<0.0001). However, no significant correlation was observed between PP levels below 29 mmHg and the incident Pre-DM (HR: 0.990, 95% CI: 0.977-1.003, P = 0.1492). Elevated PP serves as a valuable indicator for identifying high-risk participants likely to develop Pre-DM during follow-up. This information can remind individuals to adopt healthier lifestyle habits sooner, ultimately improving their outcomes.

The mechanism behind the association between PP and prediabetes is yet unknown. Several explanations currently exist for PP leading to Pre-DM. Firstly, endothelial cell dysfunction may result in microvascular dysfunction[37], which in turn causes dysfunctional glucose metabolism, insulin resistance, poor tissue perfusion, and arterial stiffness[38-40]. Additionally, arterial stiffness may exacerbate microvascular lesions, creating a vicious cycle[41, 42]. Secondly, normal arteries can reduce PP, but arterial stiffness increases blood flow through low-resistance organs (such as the kidney and brain), which will cause organ dysfunction[43]. As a low-resistance, high-blood-flow organ with a mean tissue perfusion of 250–300 ml/min/100g, the pancreas may be negatively impacted by arterial stiffness in terms of its endocrine function.

The current research possesses several notable advantages. Firstly, we delved deeper into the nonlinear relationship between PP and prediabetes. Secondly, we minimized the impact of residual confounding factors through rigorous statistical adjustments. Thirdly, we conducted sensitivity analyses to ensure the robustness of our findings. Lastly, we performed a group analysis to evaluate other potential risk covariates that could affect the link between PP and Pre-DM.

The present study has certain limitations. First, because we used FPG levels to diagnose Pre-DM in this investigation, we might have overlooked some new cases of Pre-DM. Second, our

database lacks information on atherosclerosis, the use of antihypertensive medications, and the presence of hypertension. As a result, a sub-analysis based on the presence or absence of hypertension or the use of antihypertensive drugs was not possible. Third, SBP and DBP were only measured at baseline in the original study, and we did not assess how SBP and DBP changed over time. Future iterations of our investigation may incorporate additional confounding variables, such as variations in SBP and DBP during follow-up, hypertension, and antihypertensive medications. Consequently, we may consider utilizing a GAM model to explore the impact of changes in PP on future Pre-DM risk. Conclusion

This cohort study of the Chinese population shows that PP was inversely and non-linearly associated with the incidence of Pre-DM after adjusting for other confounding factors. High PP levels were related to Pre-DM risk when PP was above 29 mmHg. From a therapeutic standpoint, lowering the PP below the inflection point represents a cost-effective and straightforward approach for the early prevention and intervention of Pre-DM.

368 Declarations

369 Ethics approval and consent to participate

The original study followed guidelines outlined by the Helsinki Declaration and was approved by

- 371 the Rich Healthcare Group Review Board, as did our secondary retrospective cohort study. The
- 372 information was retrieved retrospectively and patient consent was not required.
- **Consent for publication**
 - 374 Not applicable.

2	
3	
Δ	
-	
2	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
22	
רכ זע	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
., 18	
+0 40	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

375 Availability of data and materials

376 The raw data can be downloaded from the 'DATADRYAD' database (<u>www.Datadryad.org</u>).

377 Dryad Digital Repository. <u>https://datadryad.org/stash/dataset/doi:10.5061/dryad.ft8750v</u>.

378 **Competing interests**

The authors declare that they have no competing interests.

380 Funding

381 This study was supported by the Natural Science Funding of China (No.82272598, No.81901470).

382 Author contributions

383 Changchun Cao and Yong Han contributed to the study concept and design, researched and interpreted the data, and drafted the manuscript. Haofei Hu, Yongcheng He, and Jiao Luo 384 analyzed the data and reviewed the manuscript. Changchun Cao and Yong Han oversaw the 385 project's progress, contributed to the discussion, and reviewed the manuscript. Haofei Hu, 386 Yongcheng He, and Jiao Luo were the guarantors of this work. As such, they had full access to all 387 data in the study and were responsible for the data integrity and analysis accuracy. All authors 388 389 read and approved the final manuscript. Acknowledgments 390

391 Not applicable.

392

393

394

395

39914 16960 (42.491%) 22954 (57.509%) 39.837 ± 9.945	47771 22739 (47.600%) 25032 (52.400%) 39 905 + 10 269	43811 24830 (56.675%) 18981 (43.325%)	51176 32437 (63.383%)	<0.001
16960 (42.491%) 22954 (57.509%) 39.837 ± 9.945	22739 (47.600%) 25032 (52.400%) 39 905 + 10 269	24830 (56.675%) 18981 (43.325%)	32437 (63.383%)	< 0.001
16960 (42.491%) 22954 (57.509%) 39.837 ± 9.945	22739 (47.600%) 25032 (52.400%) 39 905 + 10 269	24830 (56.675%) 18981 (43.325%)	32437 (63.383%)	
22954 (57.509%) 39.837 ± 9.945	25032 (52.400%) 39 905 + 10 269	18981 (43.325%)		
39.837 ± 9.945	$39,905 \pm 10,269$	(18739 (36.617%)	
	37.703 ± 10.207	40.186 ± 11.236	43.028 ± 14.560	< 0.001
526 (1.318%)	712 (1.490%)	682 (1.557%)	1004 (1.962%)	
3923 (9.829%)	5436 (11.379%)	5777 (13.186%)	7498 (14.651%)	
35465 (88.854%)	41623 (87.130%)	37352 (85.257%)	42674 (83.387%)	
				< 0.001
5468 (13.699%)	7191 (15.053%)	7324 (16.717%)	9441 (18.448%)	
1164 (2.916%)	1536 (3.215%)	1707 (3.896%)	2159 (4.219%)	
33282 (83.384%)	39044 (81.732%)	34780 (79.386%)	39576 (77.333%)	
				<0.001
				<0.001
38974 (97.645%)	46764 (97.892%)	42922 (97.971%)	50379 (98.443%)	
940 (2.355%)	1007 (2.108%)	889 (2.029%)	797 (1.557%)	
104.383 ± 10.737	111.554 ± 10.604	119.000 ± 10.592	131.740 ± 12.760	< 0.001
73.782 ± 10.685	72.461 ± 10.398	73.164 ± 10.347	74.508 ± 10.733	< 0.001
22.205 ± 3.119	22.654 ± 3.134	23.100 ± 3.184	23.773 ± 3.358	< 0.001
21.2 (17, 26.6)	21.5 (17.2, 27)	22 (17.7, 27.8)	23(18.1, 28.7)	< 0.001
16 (11.6, 24)	16.6(12, 25.3)	18 (12, 27.4)	19.3(14, 29)	< 0.001
1.394 ± 0.312	1.384 ± 0.310	1.365 ± 0.304	1.351 ± 0.303	< 0.001
0.94 (0.67, 1.40)	0.99 (0.70, 1.47)	1.04 (0.72, 1.55)	1.12 (0.79, 1.69)	< 0.001
2.651 ± 0.656	2.663 ± 0.660	2.685 ± 0.671	2.734 ± 0.690	
4.617 ± 0.858	4.632 ± 0.863	4.659 ± 0.880	4.725 ± 0.916	< 0.001
4.502 ± 1.142	4.538 ± 1.148	4.612 ± 1.156	4.732 ± 1.199	< 0.001
67.116 ± 14.932	68.284 ± 15.134	70.240 ± 15.137	72.093 ± 16.223	
4.691 ± 0.513	4.730 ± 0.497	4.772 ± 0.480	4.849 ± 0.450	< 0.001
30.601 ± 3.971	39.093 ± 1.979	45.836 ± 1.986	57.232 ± 6.395	
	526 (1.318%) 3923 (9.829%) 35465 (88.854%) 5468 (13.699%) 1164 (2.916%) 33282 (83.384%) 38974 (97.645%) 940 (2.355%) 104.383 \pm 10.737 73.782 \pm 10.685 22.205 \pm 3.119 21.2 (17, 26.6) 16 (11.6, 24) 1.394 \pm 0.312 0.94 (0.67, 1.40) 2.651 \pm 0.656 4.617 \pm 0.858 4.502 \pm 1.142 67.116 \pm 14.932 4.691 \pm 0.513 30.601 \pm 3.971 or mean \pm SD c, SBP systolic blood p	526 (1.318%)712 (1.490%)3923 (9.829%)5436 (11.379%)35465 (88.854%)41623 (87.130%)5468 (13.699%)7191 (15.053%)1164 (2.916%)1536 (3.215%)33282 (83.384%)39044 (81.732%)38974 (97.645%)46764 (97.892%)940 (2.355%)1007 (2.108%)104.383 \pm 10.737111.554 \pm 10.60473.782 \pm 10.68572.461 \pm 10.39822.205 \pm 3.11922.654 \pm 3.13421.2 (17, 26.6)21.5 (17.2, 27)16 (11.6, 24)16.6(12, 25.3)1.394 \pm 0.3121.384 \pm 0.3100.94 (0.67, 1.40)0.99 (0.70, 1.47)2.651 \pm 0.6562.663 \pm 0.6604.617 \pm 0.8584.632 \pm 0.8634.502 \pm 1.1424.538 \pm 1.14867.116 \pm 14.93268.284 \pm 15.1344.691 \pm 0.5134.730 \pm 0.49730.601 \pm 3.97139.093 \pm 1.979or mean \pm SDExexSBP systolic blood pressure, DBP diastolic 1	$526 (1.318\%)$ $712 (1.490\%)$ $682 (1.557\%)$ $3923 (9.829\%)$ $5436 (11.379\%)$ $5777 (13.186\%)$ $35465 (88.854\%)$ $41623 (87.130\%)$ $37352 (85.257\%)$ $5468 (13.699\%)$ $7191 (15.053\%)$ $7324 (16.717\%)$ $1164 (2.916\%)$ $1536 (3.215\%)$ $1707 (3.896\%)$ $33282 (83.384\%)$ $39044 (81.732\%)$ $34780 (79.386\%)$ $38974 (97.645\%)$ $46764 (97.892\%)$ $42922 (97.971\%)$ $940 (2.355\%)$ $1007 (2.108\%)$ $889 (2.029\%)$ 104.383 ± 10.737 111.554 ± 10.604 119.000 ± 10.592 73.782 ± 10.685 72.461 ± 10.398 73.164 ± 10.347 22.205 ± 3.119 22.654 ± 3.134 23.100 ± 3.184 $21.2 (17, 26.6)$ $21.5 (17.2, 27)$ $22 (17.7, 27.8)$ $16 (11.6, 24)$ $16.6(12, 25.3)$ $18 (12, 27.4)$ 1.394 ± 0.312 1.384 ± 0.310 1.365 ± 0.304 $0.94 (0.67, 1.40)$ $0.99 (0.70, 1.47)$ $1.04 (0.72, 1.55)$ 2.651 ± 0.656 2.663 ± 0.660 2.685 ± 0.671 4.617 ± 0.858 4.632 ± 0.863 4.659 ± 0.880 4.502 ± 1.142 4.538 ± 1.148 4.612 ± 1.156 67.116 ± 14.932 68.284 ± 15.134 70.240 ± 15.137 4.691 ± 0.513 4.730 ± 0.497 4.772 ± 0.480 30.601 ± 3.971 39.093 ± 1.979 45.836 ± 1.986 or mean $\pm SD$ SP systolic blood pressure, DBP diastolic blood pressure, BMI box	$526 (1.318\%)$ $712 (1.490\%)$ $682 (1.557\%)$ $1004 (1.962\%)$ $3923 (9.829\%)$ $5436 (11.379\%)$ $5777 (13.186\%)$ $7498 (14.651\%)$ $35465 (88.854\%)$ $41623 (87.130\%)$ $37352 (85.257\%)$ $42674 (83.387\%)$ $5468 (13.699\%)$ $7191 (15.053\%)$ $7324 (16.717\%)$ $9441 (18.448\%)$ $1164 (2.916\%)$ $1536 (3.215\%)$ $1707 (3.896\%)$ $2159 (4.219\%)$ $33282 (83.384\%)$ $39044 (81.732\%)$ $34780 (79.386\%)$ $39576 (77.333\%)$ $38974 (97.645\%)$ $46764 (97.892\%)$ $42922 (97.971\%)$ $50379 (98.443\%)$ $940 (2.355\%)$ $1007 (2.108\%)$ $889 (2.029\%)$ $797 (1.557\%)$ 104.383 ± 10.737 111.554 ± 10.604 119.000 ± 10.592 131.740 ± 12.760 73.782 ± 10.685 72.461 ± 10.398 73.164 ± 10.347 74.508 ± 10.733 22.205 ± 3.119 22.654 ± 3.134 23.100 ± 3.184 23.773 ± 3.358 $21.2 (17, 26.6)$ $21.5 (17.2, 27)$ $22 (17.7, 27.8)$ $23(18.1, 28.7)$ $16 (11.6, 24)$ $16.6(12, 25.3)$ $18 (12, 27.4)$ $19.3(14, 29)$ 1.394 ± 0.312 1.384 ± 0.310 1.365 ± 0.304 1.351 ± 0.303 $0.94 (0.67, 1.40)$ $0.99 (0.70, 1.47)$ $1.04 (0.72, 1.55)$ $1.12 (0.79, 1.69)$ 2.651 ± 0.656 2.663 ± 0.660 2.685 ± 0.671 2.734 ± 0.690 4.617 ± 0.450 4.632 ± 0.863 4.659 ± 0.880 4.725 ± 0.916 4.502 ± 1.142 4.538 ± 1.148 4.612 ± 1.156 4.732 ± 1.199 67.116 ± 14.932 68.284 ± 15.134 70.240 ± 15.13

Table 1 The Baseline Characteristics of Participants

3	410	Table 2 Relat	tionship between PP	and incident predia	betes in different r	nodels
4 5		Variable	Non-adjusted model	Minimally-adjusted	Fully-adjusted model	GAM
6			(HR.,95% CI, P)	model (HR,95% CI, P)	(HR,95% CI, P)	(HR,95% CI, P)
7		Total	1.025 (1.023, 1.026)	1.013 (1.011, 1.014)	1.009 (1.007, 1.010)	1.008 (1.007, 1.010)
9		PP	< 0.00001	< 0.00001	< 0.00001	< 0.00001
10		PP (quartile)				
11		Q1	ref	ref	ref	ref
12		02	1.125 (1.077, 1.176)	1.070 (1.024, 1.118)	1.043 (0.998, 1.090)	1.046 (1.001, 1.093)
14		Q2	< 0.00001	0.00263	0.06100	0.04505
15		02	1.347 (1.290, 1.407)	1.208 (1.156, 1.262)	1.131 (1.083, 1.181)	1.129 (1.080, 1.179)
16 17		QS	<0.00001	< 0.00001	< 0.00001	< 0.00001
18		04	1.860 (1.787, 1.935)	1.408 (1.352, 1.467)	1.246 (1.197, 1.298)	1.238 (1.188, 1.291)
19		Q4	<0.00001	< 0.00001	< 0.00001	< 0.00001
20		P for trend	<0.00001	< 0.00001	< 0.00001	< 0.00001
21	411	Crude model: we c	did not adjust for other covaria	ants.		
23	412	Minimally-adjuste	d model: we adjusted for gen	der, age, family history of dial	betes, drinking status, smoki	ng status, and BMI.
24	413	Fully-adjusted mo	del: we adjusted for gender, a	ge, family history of diabetes,	drinking status, smoking st	atus, BMI, TC, TG,
25 26	414	HDL-C, LI	DL-C, AST, ALT, SCr, BUN,	, and FPG.		
27	415	GAM: All covaria	tes listed in Table 1 were adju	usted. However, continuous co	variates were adjusted as no	onlinearity.
28	416	HR, hazard ratios;	CI, confidence interval; Ref,	reference; GAM, generalized	additive mode; PP, pulse p	ressure.
29	417					
30 31	418					
32	419					
33	420					
34 35	421					
36	422					
37	423					
38	424					
40	425					
41	426					
42	427					
43 44	428					
45	429					
46	430					
47 48	431					
49	432					
50	433					
51 52	434					
53	435					
54	436					
55 56	437					
סכ 57	438					
58	439					
59	440					
60						

3 ∕I	441	Table 3 The result of the two-pie	cewise Cox proportion	onal hazards regression model
4 5		Incident prediabetes	HR (95%CI)	Р
6		Fitting model by standard linear regression	1.009 (1.007, 1.010)	<0.0001
7		Fitting model by two-piecewise Cox proport	ional hazards regression	
8		The inflection point of PP (mmHg)	29	
9 10		<29	0.990 (0.977, 1.003)	0.1492
11		>29	1 009 (1 008 1 011)	<0.0001
12		P for the log-likelihood ratio test	0.008	0.0001
13	112	We adjusted for gender, age, family history of di	abatas drinking status smoki	ag status RMLTC TG HDLC LDLC AST
14 15	442	ALT SCE DIN LEDC	abetes, urinking status, smokn	ig status, bivii, iC, iO, iDL-C, LDL-C, ASI,
16	445	AL1, SCF, BUN, and FPG.		
17	444	HR, hazard ratios; CI, confidence; PP: pulse pressu	ire	
18	445			
19 20				
20	116			
22	440			
23	4 4 7			
24	447			
25 26				
27	448			
28				
29	449			
30				
31 32	450			
33	454			
34	451			
35	452			
36	453			
37 38	454			
39	455			
40	456			
41	457			
42	458			
44	459			
45	460			
46	461			
47	462			
48 49	462			
50	405			
51	404			
52	465			
53 54	466			
54 55	467			
56	468			
57	469			
58	470			
59 60	471			
00				

1	
2 3	
4	
5	
6 7	
8	
9 10	
10	
12	
13 14	
15	
16	
17	
19	
20 21	
21	
23	
24 25	
26	
27 29	
28 29	
30	
31 32	
33	
34 25	
35 36	
37	
38 39	
40	
41	
42 43	
44	
45 46	
47	
48 40	
49 50	
51	
52 53	
54	
55	
56 57	
58	
59 60	
υU	

Figure 1 Study Population Figure 2 The nonlinear relationship between PP and incident prediabetes. A nonlinear relationship between PP and incident prediabetes was detected after adjusting for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking status, and age.

2		
3 1		Deferences
5	496	Neier ences.
6	497	1. Ali MK, Bullard KM, Saydah S, Imperatore G, Gregg EW: Cardiovascular and renal burdens
7	498	of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988-2014. Lancet
8	499	<i>Diabetes Endocrinol</i> 2018, 6 (5):392-403.
9 10	500	2. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q et al: Prevalence of
11	501	diabetes among men and women in China. N Engl J Med 2010, 362(12):1090-1101.
12	502	3. Li Y. Teng D. Shi X. Oin G. Oin Y. Ouan H. Shi B. Sun H. Ba J. Chen B <i>et al</i> : Prevalence of
13 14	503	diabetes recorded in mainland China using 2018 diagnostic criteria from the American
15	504	Diabetes Association: national cross sectional study. <i>BMJ</i> 2020. 369 :m997.
16	505	4 Tabak AG Herder C Rathmann W Brunner EI Kivimaki M: Prediabetes: a high-risk state for
17	506	diabetes development 1 ANCET 2012 379(9833):2279-2290
18 19	507	5 Somaratne IB Whalley GA Ponne KK ter Bals MM Wadams G Pearl A Bagg W Doughty RN:
20	509	Screening for left ventricular hypertrophy in patients with type 2 diabates mollitus in the
21	508	screening for left ventricular hypertrophy in patients with type 2 diabetes mentus in the
22	509	Community. CARDIOVASC DIADETOL 2011, 10.29.
23 24	510	6. Kodama S, Horikawa C, Fujinara K, Yosnizawa S, Yachi Y, Tanaka S, Ohara N, Matsunaga S,
25	511	Yamada 1, Hanyu O et al. Meta-analysis of the quantitative relation between pulse pressure and
26	512	mean arterial pressure and cardiovascular risk in patients with diabetes mellitus. AM J CARDIOL
27	513	2014, 113 (6):1058-1065.
28	514	7. Laugesen E, Knudsen ST, Hansen KW, Rossen NB, Poulsen PL: Invasive aortic pulse pressure
30	515	is not superior to cuff pulse pressure in cardiovascular risk prediction. J HYPERTENS 2020,
31	516	Publish Ahead of Print.
32	517	8. Rojas RJ, Chavez-Sosa JV, Gutierrez-Ajalcrina R, Huancahuire-Vega S: Association between
33 34	518	dehydroepiandrosterone levels and cardiovascular risk in public sector health workers in a
35	519	Peruvian region . Cardiovasc Endocrinol Metab 2021, 10 (1):51-55.
36	520	9. Lee CJ, Yoon M, Ha J, Oh J, Park S, Lee SH, Kang SM: Comparison of the Association
37	521	Between Arterial Stiffness Indices and Heart Failure in Patients With High Cardiovascular Risk:
38 30	522	A Retrospective Study. Front Cardiovasc Med 2021, 8:782849.
40	523	10. Acar B, Ozeke O, Karakurt M, Ozen Y, Ozbay MB, Unal S, Karanfil M, Yayla C, Cay S, Maden
41	524	O et al: Association of Prediabetes With Higher Coronary Atherosclerotic Burden Among
42	525	Patients With First Diagnosed Acute Coronary Syndrome. ANGIOLOGY 2019, 70(2):174-180.
43 44	526	11. Wu C, Ma D, Chen Y: Association of Pulse Pressure Difference and Diabetes Mellitus in
45	527	Chinese People: A Cohort Study. Int J Gen Med 2021, 14:6601-6608.
46	528	12. Chen Y, Zhang XP, Yuan J, Cai B, Wang XL, Wu XL, Zhang YH, Zhang XY, Yin T, Zhu XH et
47	529	al: Association of body mass index and age with incident diabetes in Chinese adults: a
48 49	530	population-based cohort study. BMJ OPEN 2018. 8(9):e21768.
50	531	13 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018
51	532	DIARETES CARE 2018 41(Suppl 1):S13-S27
52	522	14 Oin H Chen Z Zhang Y Wang I Ouvang P Cheng I Zhang V. Triglycarida to high density
55 54	52/	linonrotein chalesteral ratio is associated with incident diabates in man. A retrospective study of
55	525	Chinese individuals I Diabetes Investig 2020 11(1):102 108
56	222	15 Dabson ME Tung N Conta D Im SA Sonlays E Vy D Magyda N Dalalaga S L: W Amystrone
57	550	A at al. OlympiAD final events and talayakiity regults. OlympiAD final events
эө 59	53/	A et al. Organization over an survival and tolerability results: Olaparib versus chemotherapy
60	538	treatment of physician's choice in patients with a germine BRUA mutation and HER2-negative

2		
3	539	metastatic breast cancer. ANN ONCOL 2019, 30(4):558-566.
4 5	540	16. White IR, Royston P, Wood AM: Multiple imputation using chained equations: Issues and
6	541	guidance for practice. STAT MED 2011, 30(4):377-399.
7	542	17. Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, Poole C,
8	543	Schlesselman JJ, Egger M: Strengthening the Reporting of Observational Studies in Epidemiology
9 10	544	(STROBE): explanation and elaboration. INT J SURG 2014, 12(12):1500-1524.
11	545	18. Zhu F. Chen C. Zhang Y. Chen S. Huang X. Li J. Wang Y. Liu X. Deng G. Gao J: Elevated
12	546	blood mercury level has a nonlinear association with infertility in U.S. women: Data from the
13	547	NHANES 2013-2016 REPROD TOXICOL 2020 91:53-58
14	548	19. Zheng X. Cao C. He Y. Wang X. Wu J. Hu H: Association between nonalcoholic fatty liver
16	549	disease and incident diabetes mellitus among Japanese: a retrospective cohort study using
17	550	propensity score matching. <i>LIPIDS HEALTH DIS</i> 2021. 20 (1):59.
10	551	20. Mullee A. Romaguera D. Pearson-Stuttard J. Viallon V. Stepien M. Freisling H. Fagherazzi G.
20	552	Mancini FR Boutron-Ruault MC Kuhn T <i>et al</i> : Association Between Soft Drink Consumption and
21	553	Mortality in 10 European Countries IAMA INTERN MED 2019 179(11):1479-1490
22	550	21 Keidel D. Anto IM. Basagana X. Bono R. Burte F. Carsin AF. Forsherg B. Fuertes F. Galobardes
25 24	555	P. Heinrich L et al. The Dole of Socioeconomic Status in the Association of Lung Function and Air
25	222	D, Hennich J et al. The Kole of Socioeconomic Status in the Association of Lung Function and An Dollution A Doolod Analysis of Three Adult ESCADE Cohorta Int. L. Environ Bog Dublic Health
26	550	Pollution-A Pooled Analysis of Three Adult ESCAPE Conorts. Int J Environ Res Public Health
27	557	2019, 16(11).
28 20	558	22. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP: The
30	559	Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement:
31	560	guidelines for reporting observational studies. <i>INT J SURG</i> 2014, 12 (12):1495-1499.
32	561	23. Yamamoto M, Fujihara K, Ishizawa M, Osawa T, Kaneko M, Ishiguro H, Matsubayashi Y, Seida
33	562	H, Yamanaka N, Tanaka S et al: Pulse Pressure is a Stronger Predictor Than Systolic Blood
34 35	563	Pressure for Severe Eye Diseases in Diabetes Mellitus. JAM HEART ASSOC 2019, 8(8):e10627.
36	564	24. Al-Qamari A, Adeleke I, Kretzer A, Hogue CW: Pulse pressure and perioperative stroke. Curr
37	565	<i>Opin Anaesthesiol</i> 2019, 32 (1):57-63.
38	566	25. Li J, Huang JY, Lo K, Zhang B, Huang YQ, Feng YQ: Association of pulse pressure with
39 40	567	all-cause mortality in young adults. POSTGRAD MED J 2020, 96(1138):461-466.
41	568	26. St-Louis E, Sudarshan M, Al-Habboubi M, El-Husseini HM, Deckelbaum DL, Razek TS,
42	569	Feldman LS, Khwaja K: The outcomes of the elderly in acute care general surgery. Eur J Trauma
43	570	<i>Emerg Surg</i> 2016. 42 (1):107-113.
44 45	571	27 Brown CT Neuman MD [.] Ontimizing Perioperative Care for Older Adults Anesthesiol Clin
46	572	2015 33 (3):xv-xvi
47	572	28 Gavish B Bursztyn M. Amhulatory nulse pressure components: concept determination and
48	574	clinical relevance I HVDERTENS 2010 37(A):765-77A
49 50	574	20 Daving D.A. Willingen ID. Wehk DI: Autorial stiffness and hypertension, emerging concents
51	575	29. Payne KA, whithison 1B, webb DJ. Arterial stiffness and hypertension: emerging concepts.
52	570	HIPERIENSION 2010, 55(1):9-14.
53	5//	30. Zhang L, Wang B, Wang C, Li L, Ren Y, Zhang H, Yang X, Zhao Y, Han C, Zhou J <i>et al</i> : High
54 55	578	pulse pressure is related to risk of type 2 diabetes mellitus in Chinese middle-aged females. INT J
56	579	<i>CARDIOL</i> 2016, 220 :467-471.
57	580	31. Yasuno S, Ueshima K, Oba K, Fujimoto A, Hirata M, Ogihara T, Saruta T, Nakao K: Is pulse
58	581	pressure a predictor of new-onset diabetes in high-risk hypertensive patients?: a subanalysis of
59 60	582	the Candesartan Antihypertensive Survival Evaluation in Japan (CASE-J) trial. DIABETES
00		

CARE 2010, 33(5):1122-1127. 32. Kwon YJ, Chung TH, Shim JY, Lee YJ: The association of pulse pressure with metabolic syndrome in Korean elderly: A nationwide population-based study. Diabetes Res Clin Pract 2017, 123:75-81. 33. Zhang X, Li Y, Wang F, Zang J, Liu X, Zhang H, Yang K, Zhang G, Wang C: Independent and combined effects of resting heart rate and pulse pressure with metabolic syndrome in Chinese rural population: The Henan Rural Cohort study. CLIN CHIM ACTA 2018, 484:246-252. 34. Li WJ, Fang W, Cai ZF, Han X, Zheng MY, Chen GZ, Wu WQ, Chen ZC, Chen YR, Wu SL: [Association between pulse pressure and new-onset diabetes in hypertensive patients]. Zhonghua Xin Xue Guan Bing Za Zhi 2021, 49(7):673-679. 35. Wu Y, Han X, Gao J, Wang Y, Zhu C, Huang Z, Xing A, Chen S, Ma Y, Zheng M et al: Individual and combined contributions of age-specific and sex-specific pulse pressure and brachial-ankle pulse wave velocity to the risk of new-onset diabetes mellitus. BMJ Open Diabetes Res Care 2021, 9(1). 36. Chen JY, Chou CH, Lee YL, Tsai WC, Lin CC, Huang YY, Chen JH: Association of central aortic pressures indexes with development of diabetes mellitus in essential hypertension. AM J HYPERTENS 2010, 23(10):1069-1073. 37. Muris DM, Houben AJ, Schram MT, Stehouwer CD: Microvascular dysfunction is associated with a higher incidence of type 2 diabetes mellitus: a systematic review and meta-analysis. Arterioscler Thromb Vasc Biol 2012, 32(12):3082-3094. 38. Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, Struijker-Boudier HA: Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. CIRCULATION 2008, 118(9):968-976. 39. Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, Barrett EJ: Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. DIABETES 2004, 53(6):1418-1423. 40. Malik AR, Kondragunta V, Kullo IJ: Forearm vascular reactivity and arterial stiffness in asymptomatic adults from the community. HYPERTENSION 2008, 51(6):1512-1518. 41. Malik AR, Kondragunta V, Kullo IJ: Forearm vascular reactivity and arterial stiffness in asymptomatic adults from the community. HYPERTENSION 2008, 51(6):1512-1518. 42. O'Rourke MF, Hashimoto J: Mechanical factors in arterial aging: a clinical perspective. J AM COLL CARDIOL 2007, 50(1):1-13. 43. Ungvari Z, Csiszar A, Kaminski PM, Wolin MS, Koller A: Chronic high pressure-induced arterial oxidative stress: involvement of protein kinase C-dependent NAD(P)H oxidase and local renin-angiotensin system. AM J PATHOL 2004, 165(1):219-226.

32

Page 28 of 35

РР	Participants	prediabetes events	Cumulative incidence (95%CI) (%)	Per 100,000
	(n)	(n)		person-year
Total	182672	20284	11.10 (10.96–11.25)	3532.68
Q1	39914	3560	8.92(8.64–9.20)	2779.24
Q2	47771	4525	9.47 (9.21–9.73)	2999.95
Q3	43811	4740	10.82 (10.53–11.11)	3470.06
Q4	51176	7459	14.58 (14.27–14.88)	4701.37
P for			<0.001	< 0.001
trend				

Supplemental Table 1 Incidence rate of incident prediabetes.

PP: pulse pressure, CI: confidence interval

Tore teries only

C	1 1	T-L1- 1	T1		- f 41			1-	
Sup	plemental	I able 2	Ine	results	or the	univ	ariate	anar	y SIS

	Statistics	HR (95%CI)	P value
Gender			< 0.0001
Male	96966 (53.082%)	ref	
Female	85706 (46.918%)	0.627 (0.609, 0.645)	< 0.00001
Age(years)	40.832 ± 11.864	1.033 (1.032, 1.034)	< 0.00001
Drinking status			
Current-drinker	2924 (1.601%)	ref	
Ex-drinker	22634 (12.391%)	0.770 (0.701, 0.846)	< 0.00001
Never- drinker	157114 (86.009%)	0.607 (0.556, 0.663)	< 0.00001
Smoking status			
Current-smoker	29424 (16.108%)	ref	
Ex-smoker	6566 (3.594%)	0.896 (0.834, 0.963)	0.00286
Never-smoker	146682 (80.298%)	0.714 (0.691, 0.739)	< 0.00001
Family history of diabetes			0.3503
No	179039 (98.011%)	ref	
Yes	3633 (1.989%)	1.054 (0.965, 1.153) 0.24372	
SBP (mmHg)	117.428 ± 15.208	1.026 (1.025, 1.027)	< 0.00001
DBP (mmHg)	73.492 ± 10.572	1.029 (1.028, 1.030)	< 0.00001
PP (mmHg)	43.936 ± 10.595	1.025 (1.023, 1.026)	< 0.00001
BMI (kg/m2)	22.976 ± 3.259	1.124 (1.120, 1.129)	< 0.00001
AST(U/L)	23.591 ± 12.164	1.005 (1.005, 1.006)	< 0.00001
ALT (U/L)	23.232 ± 21.734	1.003 (1.003, 1.004)	< 0.00001
HDL-C (mmol/L)	1.372 ± 0.307	0.739 (0.707, 0.773)	< 0.00001
TG (mmol/L)	1.267 ± 0.934	1.200 (1.192, 1.208)	< 0.00001
LDL-C (mmol/L)	2.685 ± 0.671	1.280 (1.256, 1.305)	< 0.00001
TC (mmol/L)	4.661 ± 0.882	1.220 (1.202, 1.238)	< 0.00001
BUN (mmol/L)	4.602 ± 1.167	1.136 (1.124, 1.149)	< 0.00001
SCr (umol/L)	69.565 ± 15.522	1.006 (1.006, 1.007)	< 0.00001
FPG (mmol/L)	4.765 ± 0.487	5.711 (5.513, 5.916)	< 0.00001

PP: pulse pressure, SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index, ALT alanine aminotransferase, AST aspartate aminotransferase, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, Scr serum creatinine, BUN blood urea nitrogen, FPG fasting plasma glucose

Supplemental Table 3 Relationship between PP and prediabetes in different sens	itivity
analyses	

5		
Exposure	Model I (HR,95%CI, P)	Model II (HR,95%CI, P)
PP	1.011 (1.009, 1.013) <0.00001	1.008 (1.007, 1.010) <0.00001
PP (Quintile)		
Q1	Ref	Ref
Q2	1.055 (0.999, 1.115) 0.05494	1.040 (0.993, 1.090) 0.09739
Q3	1.166 (1.104, 1.232) <0.00001	1.123 (1.072, 1.177) <0.00001
Q4	1.310 (1.244, 1.379) <0.00001	1.228 (1.175, 1.285) <0.00001
P for trend	<0.00001	<0.00001

Model I was sensitivity analysis in participants without BMI≥25kg/m². We adjusted gender, age, family history of diabetes, drinking status, smoking status, TC, TG, HDL-C, LDL-C, AST, ALT, SCr, BUN, and FPG.

Model II was sensitivity analysis in participants without age 260 years. We adjusted gender, family history of diabetes, drinking

status, smoking status, BMI, TC, TG, HDL-C, LDL-C, AST, ALT, SCr, BUN, and FPG.

HR, hazard ratios; CI, confidence, Ref: reference; PP: pulse pressure

confidence, Ker. Ironovi

subgroups			
Characteristic	No of participants	HR (95%CI) P value	P for interaction
Age, years			0.1335
<60	165813	1.008 (1.006, 1.009) <0.0001	
≥ 60	16859	1.010 (1.007, 1.013) <0.0001	
Gender			0.0002
Male	96966	1.006 (1.004, 1.008) < 0.0001	
Female	85706	1.011 (1.009, 1.013) <0.0001	
BMI (kg/m ²)			< 0.0001
<25	135554	1.012 (1.010, 1.014) <0.0001	
≥25	47118	1.006 (1.004, 1.008) < 0.0001	
Smoking status			0.0075
Current smoker	29424	1.005 (1.002, 1.008) 0.0002	
Ever smoker	6566	1.007 (1.001, 1.013) 0.0211	
Never smoker	146682	1.010 (1.008, 1.011) <0.0001	
Drinking status			0.2713
Current drinker	2924	1.014 (1.006, 1.022) <0.0001	
Ever drinker	22634	1.007 (1.004, 1.010) <0.0001	
Never drinker	157114	1.009 (1.007, 1.010) <0.0001	
Family history of diabetes			0.0618
No	179039	1.009 (1.007, 1.010) <0.0001	
Yes	3633	1.001 (0.992, 1.009) 0.9074	

Supplemental Table 4 Effect size of PP on prediabetes in prespecified and exploratory subgroups

Note 1: The above model was adjusted for gender, age, family history of diabetes, drinking status, smoking status, BMI, TC,

TG, HDL-C, LDL-C, AST, ALT, SCr, BUN, and FPG.

Note 2: The model is not adjusted for the stratification variable in each case.

to beet teries only

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3-4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	6
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			-
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	7
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7-8
		describe which groupings were chosen and why	0
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8
		confounding	10
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	9
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	10-
		eligible, examined for eligibility, confirmed eligible, included in the study,	11
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	10-
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	10-
Outcome data	15*	Report numbers of outcome events or summary measures over time	11
	10		<u> </u>

Main results	16	(a) Give unadjusted estimates and if applicable, confounder adjusted estimates and their	
Wall results	10	precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
	22	Give the source of funding and the role of the funders for the present study and, if	
Funding	22		

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Nonlinear relationship between pulse pressure and the risk of prediabetes: a secondary retrospective Chinese cohort study

Journal:	BMJ Open		
Manuscript ID	bmjopen-2023-080018.R1		
Article Type:	Original research		
Date Submitted by the Author:	10-Feb-2024		
Complete List of Authors:	Cao, Changchun; Shenzhen Dapeng New District Nan'ao People's Hospital, Han, Yong; Shenzhen Second People's Hospital, Department of Emergency Hu, Haofei; Shenzhen University First Affiliated Hospital, Department of Nephrology He, Yongcheng ; Shenzhen Hengsheng Hospital, Department of Nephrology; Affiliated Hospital of North Sichuan Medical College, Department of Nephrology Luo, Jiao; Shenzhen Dapeng New District Nan'ao People's Hospital, Department of Rehabilitation		
Primary Subject Heading :	Diabetes and endocrinology		
Secondary Subject Heading:	Cardiovascular medicine		
Keywords:	Blood Pressure, China, General diabetes < DIABETES & ENDOCRINOLOGY		
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.			
data.zsav			

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Nonlinear relationship between pulse pressure and the risk of
2	prediabetes: a secondary retrospective Chinese cohort study
3	Running title: PP and Pre-DM risk
4	Changchun Cao ^{1#} , Yong Han ^{2#} , Haofei Hu ^{3*} , Yongcheng He ^{4,5*} , Jiao Luo ^{1*}
5	¹ Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen 518000,
6	Guangdong Province, China
7	² Department of Emergency, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen
8	University, Shenzhen 518000, Guangdong Province, China
9	³ Department of Nephrology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen
10	University, Shenzhen 518000, Guangdong Province, China
11	⁴ Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen 518000, Guangdong Province, China
12	⁵ Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan
13	Province, China
14	
15	Changchun Cao and Yong Han have contributed equally to this work.
16	*Corresponding author
17	Haofei Hu
18	Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong
19	Province, China
20	E-mail: huhaofei0319@126.com
21	Yongcheng He
22	Department of Nephrology, Shenzhen Hengsheng Hospital, No.20 Yintian Road, Xixiang Street, Baoan District,

2		
3		
4	23	Shenzhen 518000, Guangdong Province, China.
5		
6	24	Department of Nephrology Affiliated hospital of North Sichuan Medical College, No.1 Maoyuan South Road
/	- ·	Deparament of Rephrotogy, miniated hospital of Rotal Steman Medical Conege, Rot Mategaan South Rota,
8		
9	25	Nanchong, Sichuan, China.
10		
11	26	E mail: havongehang640815@126.com
12	20	E-man. neyongenengo40815@120.com
13		
14	27	Jiao Luo
15		
10	20	
17	28	Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road,
18		
19	29	Dapeng New District, Shenzhen 518000, Guangdong Province, China.
20		
21		
22	30	E-mail: luojiao1989@email.szu.edu.cn
25		
24	31	
25	51	
20		
27	32	
20		
29	22	
21	33	
27		
32	34	
37		
25	~-	
36	35	
37		
38	36	
39		
40		
41	37	
42		
43	38	
44		
45		
46	39	
47		
48	40	
49	40	
50		
51	41	
52		
53	10	
54	42	
55		
56	43	
57		
58		
59	44	
60		

3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
1/
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
22
22
34
35
36
37
38
39
40
/1
41
42
43
44
45
46
47
48
49
50
50
וכ רי
52
53
54
55
56
57
58
50
22
υU

45 Abstract

46 Objective: Previous research has shown that pulse pressure has a significant role in the start and 47 development of type 2 diabetes mellitus. However, there is little proof that pulse pressure and 48 prediabetes are related. Our study aimed to investigate the relationship between pulse pressure and 49 incident prediabetes in a substantial cohort of Chinese participants.

50 Design: The 'DATADRYAD' database (www.Datadryad.org) was used to retrieve the data for this
51 secondary retrospective cohort analysis.

52 Participants: Data from 182672 Chinese individuals who participated in the medical examination
53 program were recorded in this retrospective cohort study between 2010 and 2016 across 32 sites
54 and 11 cities in China.

Setting: Pulse pressure assessed at baseline and incident prediabetes during follow-up were the
target-independent and dependent variables. The association between pulse pressure and
prediabetes was investigated using Cox proportional hazards regression.

58 Primary outcome measures: The outcome was incident prediabetes. Impaired fasting glucose
59 levels (fasting blood glucose between 5.6 and 6.9 mmol/L) were used to define prediabetes.

Results: After controlling for confounding variables, pulse pressure was positively correlated with incident prediabetes among Chinese adults (HR: 1.009, 95%CI: 1.007-1.010). Additionally, at a pulse pressure inflection point of 29 mmHg, a nonlinear connection between the pulse pressure and incident prediabetes was discovered. Increased pulse pressure was an independent risk factor for developing prediabetes when pulse pressure was greater than 29 mmHg. However, their association was not significant when pulse pressure was less than 29 mmHg. According to subgroup analyses, females, never smokers, and non-obesity correlated more significantly with

pulse pressure and prediabetes.

Conclusion: We discovered that higher pulse pressure independently correlated with prediabetes

risk in this study of Chinese participants. The connection between pulse pressure and incident

prediabetes was also nonlinear. High pulse pressure levels were related to a higher risk of

2	
3	
4	
5	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
19	
20	
21	
22 23	
24	
25	
26	
27 28	
29	
30	
31	
32 33	
34	
35	
36	
37	
30 39	
40	
41	
42	
45 44	
45	
46	
47	
40 49	
50	
51	
52	
53 54	
55	
56	
57	
58	
59 60	

89	Article Summary
90	Article focus
91	Our study investigated the relationship between PP and incident Pre-DM in a secondary
92	retrospective cohort of Chinese participants.
93	Key Messages
94	We found that elevated PP was independently associated with an increased risk of Pre-DM in our
95	study involving Chinese participants.
96	Higher PP levels were associated with a greater risk of developing Pre-DM when PP exceeded 29
97	mmHg.
98	Further investigation is needed to understand PP's impact on the incident Pre-DM.
99	Strengths and limitations of this study
100	Our research leveraged a substantial sample size, drawing participants from multiple centers, thus
101	ensuring a robust representation of the Chinese population.
102	We elucidated a nonlinear relationship, marking the pioneering effort to pinpoint the inflection
103	point of PP's impact on Pre-DM.
104	Our subgroup analysis allowed us to delve into other potential risk factors within the PP and
105	incident Pre-DM association.
106	Our study did not incorporate a 2-hour oral glucose tolerance test or glycosylated hemoglobin
107	level measurements, which could potentially lead to an underestimation of the incidence of
108	Pre-DM.
109	
110	

BMJ Open

Prediabetes (Pre-DM) is intermediate hyperglycemia below the diagnostic cutoff for type 2 diabetes mellitus (T2DM). Patients with Pre-DM have been reported to have a higher risk for cardiovascular disease and nephropathy, indicating that impaired glucose begins to have a pathogenic effect at this early stage of diabetes[1]. The prevalence of Pre-DM is increasing globally with an aging population, urbanization, and changing lifestyles. From 2008 to 2017, the prevalence of Pre-DM in China has climbed from 15.5%[2] to 35.2%[3], creating a significant public health burden. Approximately 70% of subjects with Pre-DM will eventually get T2DM[4]. Numerous studies looked for ways to pinpoint the causes of diabetes and Pre-DM to prevent and cure the disease in its earliest stages. Pulse pressure (PP) is referred to as the difference between systolic blood pressure (SBP) and diastolic blood pressure (DBP). Clinically, PP is the manifestation of atherosclerosis[5]. Compared to their non-diabetic contemporaries, people with T2DM have greater atherosclerosis, which results in a broad PP[5]. A greater risk of cardiovascular disease (CVD) exists in T2DM patients[6]. In addition, an increase in PP is another risk factor for CVD incidence and positively correlates with mortality[7-9]. Additionally, compared to healthy individuals, prediabetic patients have a greater burden from coronary atherosclerosis[10]. Notably, the atherosclerosis burden began to develop even before T2DM's clinical symptoms[10]. PP was found to be a significant risk factor for T2DM in a recent retrospective cohort investigation of a sizable sample[11]. However, whether prediabetes in Chinese adults is associated with PP is unknown. This study sought to analyze the precise correlation between PP and the likelihood of developing Pre-DM in Chinese participants.

133 Methods

134 Data source

Researchers can obtain original research data for free via the Dryad Digital Repository. The Dryad data repository's data on 211833 Chinese persons was downloaded[12]. The current research employed openly available data from a medical examination program as a secondary inquiry. Researchers may use the data for secondary analysis in accordance with the Dryad terms of service without interfering with the interests of the authors.

140 Study population

The original study was approved by the Rich Healthcare Group Review Board. Hence, ethical approval was not required for this secondary analysis. Each participant conducted under the Rich Healthcare Group Review Board, gave their written informed permission before taking part[12]. In addition, the Declaration of Helsinki was followed during our research. The necessary standards and legislation were followed in the execution of all procedures, including the declarations in the Declarations section.

Individuals were excluded from the investigation under these conditions: (1) diabetes at
baseline; (2) diabetes or not defined diabetes status at follow-up; (3) abnormal body mass index
(BMI) values (BMI over 55 or less than 15 kg/m²); (4) lacking data on baseline fasting plasma
glucose (FPG), FPG at follow-up, height, DBP, gender, weight, and SBP; (5) FPG>6.9mmol/L
during follow-up and FPG≥5.6mmol/L at baseline; (6) follow-up interval < 2 years; (7) PP outliers
(three standard deviations above or below the mean). Finally, 182672 subjects eventually entered
the study. The study's design and participant flow are shown in Figure 1.

154 Data collection

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Trained staff members gathered and compiled all of the data. Data from laboratory inspections were gathered in the original study under uniform conditions using standardized handling procedures. The skilled personnel, including height, blood pressure, body weight, and age, gathered demographic information. Professional trainees without light clothing and shoes measure individuals for weight and height. Weight/Height² (kg/m²) was used to compute BMI. Trained staff members took blood pressure using a standard mercury sphygmomanometer. A Beckman 5800 autoanalyzer was used to measure laboratory data, such as low-density lipoprotein cholesterol (LDL-C), FPG, total cholesterol (TC), aspartate aminotransferase (AST), blood urea nitrogen (BUN), triglyceride (TG), alanine aminotransferase (ALT), serum creatinine (Scr), and high-density lipoprotein cholesterol (HDL-C). SBP (mmHg) - (DBP (mmHg)) were the formulas used to compute PP. **Diagnosis of Pre-DM** Impaired fasting glucose levels (FPG between 5.6 and 6.9 mmol/L) were used to define Pre-DM[13]. **Patient and Public Involvement** Given this was a secondary retrospective cohort study, no patient was involved in the study. **Statistical analysis** R software version 3.4.3 and EmpowerStats (R) version 4.0 were used for all statistical

analyses.

174 We initially assessed the baseline data distribution by categorizing it into quartiles based on the

175 PP (Q1 \leq 36; 36<Q2 \leq 43; 43<Q3 \leq 50; 50<Q4). Continuous data were reported as medians with

176 interquartile ranges (25th-75th percentile) or means with standard deviations (SD), while

categorical data were expressed as frequencies and percentages. The Kruskal-Wallis H test, chi-square test, and one-way ANOVA were employed to assess disparities between PP groups. The cumulative incidence and terms person-year were used to represent incidence rates[14]. Comparisons of survival and cumulative event rates were done using the Kaplan-Meier method. Using the log-rank test, we also examined the Kaplan-Meier hazard ratios (HR) of unfavorable events [15]. There were 133257 (72.32%), 4240 (2.30%), 1541 (0.84%), 4209 (2.28%), 107684 (58.44%), 82879 (44.98%), 18563 (10.07%), 83382 (45.25%), 9759 (5.30%) and 133257 (72.32%) individuals with missing data for smoking status, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, and drinking status, respectively. The present study employed multiple imputations to handle the missing data of covariants. The imputation model included smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, FPG, sex, family history of diabetes, drinking status, and age. Processes for missing data analysis employ the assumption of missing at random[16]. This analysis assessed each factor's impact on incident Pre-DM using univariate Cox proportional hazards regression models. The multivariate Cox regression analysis also examined the precise connection between the PP and incident Pre-DM. In addition, we created three models (fully-adjusted, minimally-adjusted, and non-adjusted) to evaluate the connection between PP and incident Pre-DM. Suppose the HR is changed by at least 10% after the covariance is included in the model. At this point, the covariance should be adjusted[17]. The current analysis conducted several sensitivity analyses to determine if the findings were trustworthy. We converted PP into a categorical variable based on the quartile. We computed the P for the trend to verify the outcomes of the PP as the continuous variable and test for

Page 11 of 39

BMJ Open

199	nonlinearity. Obesity and older adults were connected to a greater occurrence of Pre-DM. Thus,
200	we excluded individuals with BMI $\geqslant 25 kg/m^2$ or age $\geqslant 60$ years for subsequent sensitivity
201	analyses to examine the connection between PP and Pre-DM risk. Additionally, we incorporated
202	the continuous covariate as a curve to the equation using a generalized additive model (GAM) to
203	confirm the validity of the results. We also calculated E-values to examine the possibility of
204	unmeasured confounding between PP and the risk of prediabetes
205	We used Cox proportional hazards regression with cubic spline functions and smooth curve
206	fitting to explore the nonlinear relationship between PP and Pre-DM. We first utilized a recursive
207	technique to locate the inflection point if a non-linear relationship was discovered[18]. The
208	recursive algorithm commences with an arbitrary initialization and subsequently undergoes a
209	series of filtering and smoothing steps in order to identify the inflection point accurately.
210	Following this, we construct a two-piece Cox proportional hazards regression model, separately
211	analyzing the data on either side of the inflection point. Ultimately, the study determined the most
212	appropriate model for PP's connection with Pre-DM through log-likelihood ratio analysis.
213	Subgroup analysis, utilizing the Cox proportional hazard model, was also conducted. Firstly,
214	these variables were selected based on a combination of clinical relevance, literature review, and
215	the availability of data within our cohort. Secondly, the interaction test between these variables
216	and PP was performed before the subgroup analysis. The likelihood ratio test was used to compare
217	models with and without the multiplicative interaction term. Secondly, stratification was
218	performed based on medians or established clinical cut points[19], and variables such as age (<60,
219	\geq 60 years) and BMI (<25, \geq 25 kg/m ²) were converted into categorical factors. Thirdly, a fully
220	adjusted analysis was performed for each stratum, except for the stratification factor. Ultimately,

the likelihood ratio test was used to determine whether interaction terms existed in models with
and without interaction terms[20, 21]. The study adhered to the STROBE statement for all
outcomes[17, 22]. Statistical significance was determined by a P-value < 0.05, using two-tailed
tests.

Results

226 Characteristics of individuals

In the current research, 182672 individuals deemed free of Pre-DM at baseline were included. The average age was 40.832 ± 11.864 years, and 53.082% of individuals were male. Twenty thousand two hundred eighty-four individuals eventually got Pre-DM after an average of 3.143 years of follow-up. Table 1 displays comprehensive clinical measurements, biochemical tests, and various parameters. We categorized participants into subgroups based on PP quartiles ($Q1 \le 36$; 36<Q2 ≤43; 43<Q3 ≤50; 50<Q4). Compared to the Q1 group, the other groups (Q2 group, Q3 group, Q4 group) had higher ALT, BMI, age, TG, Scr, TC, AST, BUN, LDL-C, and lower HDL-C. Additionally, the Q4 group had a higher proportion of men, smokers, and drinkers.

The incidence rate of Pre-DM

During the follow-up, 20284 individuals developed incident Pre-DM, as outlined in Supplemental Table 1. All people had a prevalence rate of 11.10%. The four PP groups' prevalence rates were 8.92%, 9.47% (9.21%–9.73%), 10.82%, and 14.58%. In addition, the cumulative incidence rate of the overall population and four PP groups were 3532.68, 2779.24, 2999.95, 3470.06, and 4701.37 per 100,000 person-years, respectively. Individuals in the Q2, Q3, and Q4 groups exhibited significantly greater cumulative incidence and prevalence rates of Pre-DM than those in the Q1 group.

BMJ Open

2		
د م		
4		
5		
6		
7		
8		
9		
1	ი	
1	1	
1	י ר	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
ົງ	י כ	
2	2	
2	5	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
2 2	1	
כ כ	י ר	
с ר	2	
3	3	
3	4	
3	5	
3	6	
3	7	
3	8	
3	9	
4	0	
⊿	1	
Л	י כ	
- 1	2 2	
+ 1	د ۸	
4	4	
4	5	
4	6	
4	7	
4	8	
4	9	
5	0	
5	1	
5	, ว	
5	2 2	
כ ר	د ۸	
Э г	4 7	
5	5	
5	6	
5	7	
5	8	
5	9	

60

The Kaplan-Meier curves for the propensity to survive without Pre-DM are shown in Supplemental Figure 1. There was a significant difference between the four PP groups regarding the likelihood of developing Pre-DM (P<0.0001). As PP levels increased, the chance of living without prediabetes steadily dropped. As a result, Pre-DM risk was highest among those in the highest PP categories.

248 Univariate analysis

Supplemental Table 2 presents the findings of the univariate analysis. DBP, TC, BMI, SBP,
FPG, age, TG, SCr, LDL-C, PP, and BUN were correlated with Pre-DM risk. HDL-C exhibits an
inverse relationship with Pre-DM risk. Individuals who never drink or smoke also have a lower
risk of developing pre-DM. Pre-DM risk was shown to be greater in men than in women.

253 The results of the connection between PP and Pre-DM

254 The Cox proportional hazard regression models for the association between PP and Pre-DM are shown in Table 2. In the non-adjusted model, the HR (95%CI) for the relationship between 255 Pre-DM and PP was 1.025 (1.023-1.026). The HR (95%CI) in the minimally-adjusted model was 256 257 1.013 (1.011-1.014) after adjusting for smoking status, age, BMI, family history of diabetes, gender, and drinking status. The HR (95%CI) was 1.009 (1.007-1.010) in the fully-adjusted model 258 259 after controlling for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, 260 FPG, family history of diabetes, drinking status, and age. The findings showed that for every 261 1mmHg rise in PP, the risk of Pre-DM rose by 0.9%.

262 Sensitivity analyses

We used several sensitivity analyses to evaluate how reliable our results were. PP was changedfrom a continuous to a categorical variable before being reintroduced into the model. Following

the translation of PP into categorical variables, the trend p was not equal, suggesting a potential nonlinear connection between PP and the chance of developing Pre-DM. Additionally, a GAM added the continuity covariate to the equation. Results for the GAM model showed a positive connection between PP and the probability of developing Pre-DM (HR: 1.008, 95%CI:1.007-1.010) (Table 2). Besides, the current research excluded participants with BMI<25kg/m² for sensitivity analysis. After controlling for confounding factors, we observed a positive association between PP and Pre-DM risk (HR: 1.011, 95%CI: 1.009-1.013) (Supplemental Table 3). Moreover, we considered participants with ages < 60 years for sensitivity studies. After adjusting for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking

status, and age, the results showed that PP remained positively correlated with the likelihood of
developing Pre-DM (HR: 1.008, 95%CI: 1.007-1.010). (Supplemental Table 3). According to the
sensitivity analysis, our findings appeared to be solid.

Additionally, an E-value was computed to assess the vulnerability of the study results to potential unobserved confounding factors. The resulting E-value (1.21) demonstrated a higher level of statistical significance in comparison to the relative risk (1.05) associated with unmeasured confounders and PP. This suggests that the impact of unmeasured or unidentified confounders on the relationship between PP and the occurrence of Pre-DM was negligible.

The analysis of the nonlinear connection

The nonlinear connection between PP and incident Pre-DM is illustrated in Figure 2. After correcting for confounding factors, there was a nonlinear link between PP and incident Pre-DM (Table 3). Based on a two-piecewise Cox proportional hazards regression model, the PP's Page 15 of 39

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38	
39	
40	
41	
4Z 42	
43 11	
44 15	
45 16	
40 17	
47 48	
40 29	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

inflection point was 29 mmHg (P for log-likelihood ratio test = 0.008). When PP was more than
28 29 mmHg, PP was strongly linked with incident Pre-DM (HR:1.009, 95%CI: 1.008-1.011,
P<0.0001). However, their correlation was not significant when PP was less than 29 mmHg (HR:
0.990, 95%CI: 0.977-1.003, P=0.1492).

291 The results of the subgroup analysis

Interaction tests performed before subgroup analyses showed that age, BMI, gender, family 292 history of diabetes, smoking status, and drinking status interacted with PP (P<0.001) 293 294 (Supplemental Table 4). We selected age, BMI, gender, family history of diabetes, smoking status, 295 and drinking status as stratification variables and examined the changes in their impact sizes 296 (Supplemental Table 5). Age, drinking status, and family history of diabetes had no impact on the 297 correlation between PP and the risk of prediabetes. Females, never smokers, ever smokers, and 298 subjects with BMI<25 kg/m² were more likely to be associated with prediabetes risk. Conversely, 299 there was a weaker connection in males, current smokers, and individuals with BMI≥25 kg/m².

300 **Discussion**

The current study's main goal was to investigate the connection between PP and incident Pre-DM in Chinese participants. The findings demonstrated a correlation between increased PP and a higher risk of prediabetes. The correlation between PP and Pre-DM was also investigated on the left and right sides of the inflection point. PP level and incident prediabetes have a nonlinear relationship. It was found that never-smokers, ever-smokers, females, and individuals with BMI<25 kg/m² had a greater correlation between PP and incident Pre-DM.

307 PP, the arithmetic difference between SBP and DBP, is determined by arterial wall elasticity308 and is related to all-cause mortality, cardiovascular events, stroke, kidney injury, severe eye

2	
3	
4	
5	
6	
7	
8	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
22	
56	
57	
58	
59	
60	

309	illness, and arterial stiffness[23-28]. In comparison to blood pressure, PP has a better predictive
310	capacity for poor cardiovascular outcomes in people with diabetes, according to several previous
311	pieces of evidence[6, 29]. In addition, some studies found that PP demonstrated strong predictive
312	ability in the homeostatic model assessment of insulin resistance index, diabetes, and metabolic
313	syndrome[30-32]. In a retrospective study involving 211814 Chinese participants, after controlling
314	for BMI, smoking and drinking status, age, TC, gender, family history of diabetes, FPG, TG, and
315	BUN and ALT, Higher PP levels independently connect with increased T2DM risk (HR:1.003,
316	95%CI:1.001,1.005)[11]. In a longitudinal study involving 12272 Chinese, Zhang L et al.[30]
317	found that high PP in Chinese women may be related to the development of T2DM after adjusting
318	for confounding covariates. In a national cross-sectional study involving 6187 Korean older
319	adults, Kwon YJ et al.[32] discovered a positive association between PP and metabolic syndrome
320	after adjusting for alcohol consumption, smoking, age, regular exercise, and mean arterial blood
321	pressure. In another cross-sectional cohort study that included 38708 rural Chinese participants,
322	compared with the lowest group, the odds ratio (95%CI) of PP in the highest quartile of risk for
323	metabolic syndrome was found to be 1.81 (1.67-1.95) after controlling for confounders[33]. In
324	addition, in a prospective research enrolling 32917 Chinese, the HR (95%CI) for diabetes in the
325	Q3 and Q4 groups were 1.13 (1.04-1.22) and 1.14 (1.05-1.24), respectively, after adjusting for
326	covariates compared to the Q1 group[34]. However, in a multicenter, longitudinal cohort study
327	that included 18619 adults, high PP was not related to an increased risk of diabetes after adjusting
328	for BMI, mean arterial pressure, gender, high-sensitivity C reactive protein, age, exercise,
329	smoking, blood pressure lowering agents, drinking, hyperlipidemia, and family history of
330	diabetes[35]. A retrospective study of 178 individuals with hypertension found that PP was not

Page 17 of 39

BMJ Open

associated with the risk of new-onset diabetes after adjusting for potential confounders[36]. This retrospective cohort study involved 182672 Chinese individuals and revealed a higher incidence of prediabetes at increased PP levels. After adjusting for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking status, and age, the results indicated that each unit of the LAP raised the risk of prediabetes by 0.9%. Moreover, sensitivity analysis has demonstrated that this correlation remains observable in Chinese adults with age <60 years or BMI <25 kg/m². The efforts mentioned above have demonstrated the consistency of the connection between PP and Pre-DM risk. The findings offered a clinical PP-level intervention guideline to decrease Pre-DM risk. Few previous studies have investigated the probable curvilinear link between PP and prediabetes. The current study first examined the nonlinear association between PP and prediabetes. After controlling for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking status, and age, the findings revealed that the connection between PP and prediabetes was nonlinear. Based on a two-piecewise Cox proportional hazards regression model, we identified the inflection point of PP as 29 mmHg. When PP levels exceeded 29 mmHg, a 1-unit increase in PP correlated with a 0.9% increase in the hazard ratio (HR) for individuals with Pre-DM (HR: 1.009, 95% CI: 1.008-1.011, P<0.0001). However, no significant correlation was observed between PP levels below 29 mmHg and the incident Pre-DM (HR: 0.990, 95% CI: 0.977-1.003, P = 0.1492). Elevated PP serves as a valuable indicator for identifying high-risk participants likely to develop Pre-DM during follow-up. Moreover, our analysis revealed that the relationship between PP and the emergence of Pre-DM was more pronounced in never-smokers, ever-smokers, females, and individuals with BMI< 25

353	kg/m ² . In contrast, this association appeared attenuated in males, current smokers, and individuals
354	with BMI \geq 25 kg/m ² . Prior research has consistently identified obesity, smoking, and male as
355	contributors to insulin resistance[37, 38], which is a precursor to Pre-DM. We postulated that the
356	attenuated association observed in these subgroups may be attributable to the overriding influence
357	of these risk factors on the pathogenesis of Pre-DM. The direct impact of PP on prediabetes risk
358	may be somewhat eclipsed by the more substantial effects of obesity, active smoking, and the
359	male sex on insulin resistance and subsequent Pre-DM development. This information can remind
360	individuals to adopt healthier lifestyle habits sooner, ultimately improving their outcomes.
361	The mechanism behind the association between PP and prediabetes is yet unknown. Several
362	explanations currently exist for PP leading to Pre-DM. Firstly, endothelial cell dysfunction may
363	result in microvascular dysfunction[39], which in turn causes dysfunctional glucose metabolism,
364	insulin resistance, poor tissue perfusion, and arterial stiffness[40-42]. Additionally, arterial
365	stiffness may exacerbate microvascular lesions, creating a vicious cycle[43, 44]. Secondly, normal
366	arteries can reduce PP, but arterial stiffness increases blood flow through low-resistance organs
367	(such as the kidney and brain), which will cause organ dysfunction[45]. As a low-resistance,
368	high-blood-flow organ with a mean tissue perfusion of 250-300 ml/min/100g, the pancreas may
369	be negatively impacted by arterial stiffness in terms of its endocrine function.
370	The current research possesses several notable advantages. Firstly, we delved deeper into the
371	nonlinear relationship between PP and prediabetes. Secondly, we minimized the impact of residual
372	confounding factors through rigorous statistical adjustments. Thirdly, we conducted sensitivity
373	analyses to ensure the robustness of our findings. Lastly, we performed a group analysis to

evaluate other potential risk covariates that could affect the link between PP and Pre-DM.

Page 19 of 39

BMJ Open

The present study has certain limitations. First, this study is based on a Chinese population, and while it offers valuable insights, the findings might not be directly generalizable to other populations due to genetic, lifestyle, and environmental differences. In the future, we will explore the relationship between PP and prediabetes risk in diverse populations. Second, as our study was a secondary analysis, we cannot guarantee data quality monitoring and variable control. In forthcoming research endeavors, we will endeavor to construct prospective cohort studies with enhanced data quality oversight and variable control, thereby mitigating bias. Third, the original study excluded people with diabetes at baseline or those with missing data, which may have affected the representativeness of the sample. In the future, we will design our own study in a more diverse population to validate our findings. Fourth, prediabetes was defined based on impaired fasting glucose levels in our study. This could potentially lead to underestimation of prediabetes incidence. This is a secondary retrospective study, and the raw data did not provide information regarding 2-hour oral glucose tolerance test or glycosylated hemoglobin level measurements. In the future, we will consider designing our study to document more variables, including 2-hour oral glucose tolerance test or glycosylated hemoglobin level measurements. Fifth, as with all observational studies, there may be uncontrolled or unmeasured confounding factors, such as diet, exercise, atherosclerosis, the use of antihypertensive medications, and the presence of hypertension, despite controlling for known potential confounders like BMI, TC, LDL-C, AST, ALT, Scr, BUN, and FPG. However, we used the E-value to evaluate the impact of unmeasured confounders and determined it unlikely that they fully explained the results. Sixth, SBP and DBP were only measured at baseline in the original study, and we did not assess how SBP and DBP changed over time. In the future, we will consider designing our own study and

documenting more information, such as diet, exercise, atherosclerosis, antihypertensive
medications, the presence of hypertension and changes in blood pressure over time, and then
utilizing a GAM model to explore the impact of changes in PP on Pre-DM risk.

Conclusion

This cohort study of the Chinese population shows that PP was inversely and non-linearly associated with the incidence of Pre-DM after adjusting for other confounding factors. High PP levels were related to Pre-DM risk when PP was above 29 mmHg. From a therapeutic standpoint, lowering the PP below the inflection point represents a cost-effective and straightforward approach for the early prevention and intervention of Pre-DM.

Declarations

408 Ethics approval and consent to participate

409 The original study followed guidelines outlined by the Helsinki Declaration and was approved by410 the Rich Healthcare Group Review Board. In addition, the Rich Healthcare Group Review Board

411 has waived informed consent for the current retrospective study. All methods were performed in

412 accordance with the relevant the Declaration of Helsinki.

- **Consent for publication**
- 414 Not applicable.

415 Availability of data and materials

- 416 The authors confirm that the data supporting the findings of this study are available within the
- 417 article [and/or its supplementary materials].

Competing interests

3 4	419	The authors declare that they have no competing interests.
5 6 7	420	Funding
8 9 10	421	This study was supported by the Natural Science Funding of China (No.82272598, No.81901470),
11 12	422	and the Natural Science Foundation of Guangdong Province, China (No. 2020A1515011203).
13 14 15	423	This study was also supported by the Science, Technology and Innovation Commission of
16 17 18	424	Shenzhen (JCYJ20210324135804012, JCYJ20220530150407015).
19 20	425	Author contributions
21 22 23	426	Changchun Cao and Yong Han contributed to the study concept and design, researched and
24 25 26	427	interpreted the data, and drafted the manuscript. Haofei Hu, Yongcheng He, and Jiao Luo
27 28	428	analyzed the data and reviewed the manuscript. Changchun Cao and Yong Han oversaw the
29 30 31	429	project's progress, contributed to the discussion, and reviewed the manuscript. Haofei Hu,
32 33 34	430	Yongcheng He, and Jiao Luo were the guarantors of this work. As such, they had full access to all
35 36	431	data in the study and were responsible for the data integrity and analysis accuracy. All authors
37 38 39	432	read and approved the final manuscript.
40 41	433	Acknowledgments
42 43 44	434	Not applicable.
45 46 47	435	
48 49	436	
50 51 52	437	
53 54	438	
55 56 57	439	
58 59 60	440	

РР	Q1(≤36)	Q2(36 to ≤43)	Q3(43 to ≤50)	Q4(>50)	P-valu
Participants	39914	47771	43811	51176	
Gender					< 0.00
Male	16960 (42.491%)	22739 (47.600%)	24830 (56.675%)	32437 (63.383%)	
Female	22954 (57.509%)	25032 (52.400%)	18981 (43.325%)	18739 (36.617%)	
Age(years)	39.837 ± 9.945	39.905 ± 10.269	40.186 ± 11.236	43.028 ± 14.560	<0.00
Drinking status					
Current-drinker	526 (1.318%)	712 (1.490%)	682 (1.557%)	1004 (1.962%)	
Ex-drinker	3923 (9.829%)	5436 (11.379%)	5777 (13.186%)	7498 (14.651%)	
Never- drinker	35465 (88.854%)	41623 (87.130%)	37352 (85.257%)	42674 (83.387%)	
Smoking status					< 0.0
Current-smoker	5468 (13.699%)	7191 (15.053%)	7324 (16.717%)	9441 (18.448%)	
Ex-smoker	1164 (2.916%)	1536 (3.215%)	1707 (3.896%)	2159 (4.219%)	
Never-smoker	33282 (83.384%)	39044 (81.732%)	34780 (79.386%)	39576 (77.333%)	
Family history of					
diabetes					<0.0
No	38974 (97.645%)	46764 (97.892%)	42922 (97.971%)	50379 (98.443%)	
Yes	940 (2.355%)	1007 (2.108%)	889 (2.029%)	797 (1.557%)	
SBP (mmHg)	104.383 ± 10.737	111.554 ± 10.604	119.000 ± 10.592	131.740 ± 12.760	< 0.0
DBP (mmHg)	73.782 ± 10.685	72.461 ± 10.398	73.164 ± 10.347	74.508 ± 10.733	< 0.0
BMI (kg/m ²)	22.205 ± 3.119	22.654 ± 3.134	23.100 ± 3.184	23.773 ± 3.358	<0.0
AST(U/L)	21.2 (17, 26.6)	21.5 (17.2, 27)	22 (17.7, 27.8)	23(18.1, 28.7)	< 0.0
ALT (U/L)	16 (11.6, 24)	16.6(12, 25.3)	18 (12, 27.4)	19.3(14, 29)	< 0.0
HDL-C (mmol/L)	1.394 ± 0.312	1.384 ± 0.310	1.365 ± 0.304	1.351 ± 0.303	< 0.0
TG (mmol/L)	0.94 (0.67, 1.40)	0.99 (0.70, 1.47)	1.04 (0.72, 1.55)	1.12 (0.79, 1.69)	< 0.0
LDL-C (mmol/L)	2.651 ± 0.656	2.663 ± 0.660	2.685 ± 0.671	2.734 ± 0.690	<0.0
TC (mmol/L)	4.617 ± 0.858	4.632 ± 0.863	4.659 ± 0.880	4.725 ± 0.916	< 0.0
BUN (mmol/L)	4.502 ± 1.142	4.538 ± 1.148	4.612 ± 1.156	4.732 ± 1.199	< 0.0
SCr (umol/L)	67.116 ± 14.932	68.284 ± 15.134	70.240 ± 15.137	72.093 ± 16.223	< 0.0
FPG (mmol/L)	4.691 ± 0.513	4.730 ± 0.497	4.772 ± 0.480	4.849 ± 0.450	< 0.0
PP (mmHg)	30.601 ± 3.971	39.093 ± 1.979	45.836 ± 1.986	57.232 ± 6.395	< 0.0
Values are n (%	(b) or mean \pm SD				
PP: pulse press	ure, SBP systolic blood	pressure, DBP diastolic	blood pressure, BMI bo	dy mass index, ALT	
alanine aminotr	ansferase, AST aspartate	e aminotransferase, HDI	L-C high-density lipopro	otein cholesterol, LDL-	С
low-density lipo	oprotein cholesterol, TC	total cholesterol, TG tri	glycerides, Scr serum c	reatinine, BUN blood u	rea
5 nitrogen, FPG f	asting plasma glucose				
7					
3					
)					
)					
L					
)					

Table 1 The Baseline Characteristics of Participants

Variable	Non-adjusted	Minimally-adjusted	Fully-adjusted model	GAM
	model (HR.,95%	model (HR,95% CI,	(HR,95% CI, P)	(HR,95% CI, P
	CI, P)	P)		
Total	1.025 (1.023,	1.013 (1.011, 1.014)	1.009 (1.007, 1.010)	1.008 (1.007,
PP	1.026) <0.00001	< 0.00001	< 0.00001	1.010) <0.0000
PP (quartile)				
Q1	ref	ref	ref	ref
02	1.125 (1.077,	1.070 (1.024, 1.118)	1.043 (0.998, 1.090)	1.046 (1.001,
Q2	1.176) <0.00001	0.00263	0.06100	1.093) 0.04505
01	1.347 (1.290,	1.208 (1.156, 1.262)	1.131 (1.083, 1.181)	1.129 (1.080,
Q3	1.407) <0.00001	< 0.00001	< 0.00001	1.179) <0.0000
0.4	1.860 (1.787,	1.408 (1.352, 1.467)	1.246 (1.197, 1.298)	1.238 (1.188,
Q4	1.935) <0.00001	< 0.00001	< 0.00001	1.291) <0.0000
P for trend	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Gender				
Male		ref	ref	
Female		0.777 (0.751, 0.803)	0.877 (0.843, 0.913)	
		<0.00001	< 0.00001	
Age(years)		1.027 (1.026, 1.028)	1.022 (1.021, 1.023)	
		< 0.00001	< 0.00001	
Drinking status				
Current-drinker		ref	ref	
Ex-drinker		0.965 (0.877, 1.061)	1.013 (0.920, 1.114)	
		0.45670	0.79930	
Never- drinker		0.911 (0.832, 0.997)	1.075 (0.981, 1.178)	
		0.04199	0.12156	
Smoking status				
Current-smoke				
r		ref	ref	
Ex-smoker		1.020 (0.948, 1.097)	1.021 (0.949, 1.098)	
		0.59573	0.57792	
Never-smoker		1.055 (1.016, 1.095)	1.023 (0.985, 1.062)	
		0.00534	0.24610	
Family history of				
diabetes				
No		ref	ref	
Yes		1.157 (1.058, 1.265)	1.120 (1.024, 1.225)	
		0.00142	0.01278	
BMI (kg/m ²)		1.091 (1.086, 1.095)	1.060 (1.055, 1.065)	
		<0.00001	<0.00001	
AST(U/L)			0.999 (0.997, 1.000)	
			0.15002	
$\Delta I T (II/I)$			1 003 (1 002 1 004)	

		<0.00001
	HDL-C	1.429 (1.353, 1.509)
	(mmol/L)	<0.00001
	TG (mmol/L)	1.145 (1.129, 1.161)
		<0.00001
	LDL-C	1.309 (1.248, 1.373)
	(mmol/L)	<0.00001
	TC (mmol/L)	0.772 (0.741, 0.803)
		<0.00001
		0.976 (0.964, 0.988)
	BUN (mmol/L)	0.00014
		1.003 (1.002, 1.004)
	SCr (umol/L)	<0.00001
	FPG (mmol/L)	4 613 (4 451 4 780)
		<0.00001
45	55 Crude model: we did not adjust for other covariants	0.00001
45	Minimally-adjusted model: we adjust for other covariants.	family history of diabetes, drinking status, smoking status, and BMI
45	Fully adjusted model: we adjusted for gender, age,	ly history of diabates, drinking status, smoking status, and DMI.
45	HDL C L DL C AST ALT SCr DIN and ED	c
43	CAM: All convictor listed in Table 1 more edited at U	J.
45	GAM: All covariates listed in Table 1 were adjusted. Ho	wever, continuous covariates were adjusted as nonlinearity.
46	bU HR, hazard ratios; CI, confidence interval; Ref, referenc	e; GAM, generalized additive mode; PP, pulse pressure.
46		
46	52 52	
46	- 4	
46	54	
46	55	
46	56	
46	57	
46	58	
46	59	
47	70	
47	71	
47	72	
47	73	
47	74	
47	75	
47	76	
47	77	
47	78	
47	79	
48	30	
48	31	
48	32	
48	33	
40		

	Incident prediabetes	HR (95%CI)	Р
	Fitting model by standard linear regression	1.009 (1.007, 1.010)	<0.0001
	Fitting model by two-piecewise Cox proportion	ional hazards regression	
	The inflection point of PP (mmHg)	29	
	≤29	0.990 (0.977, 1.003)	0.1492
	>29	1.009 (1.008, 1.011)	<0.0001
	P for the log-likelihood ratio test	0.008	
5	We adjusted for gender, age, family history of dia	abetes, drinking status, smok	ing status, BMI, TC, TG, HDL-C, LD
	ALT, SCr, BUN, and FPG.		
	HR, hazard ratios; CI, confidence; PP: pulse pressu	ire	
L			
2			
4			
5			
7			
C			
1			
5			
7			
3			
)			
1			
2			
5			

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
30	
29	
40	
41	
42	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

1

515 **Figure 1** Study Population

Figure 2 The nonlinear relationship between PP and incident prediabetes. A nonlinear
relationship between PP and incident prediabetes was detected after adjusting for
smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG,
family history of diabetes, drinking status, and age.

520	
521 522 523 524	
525	
526	
527	
528	
529	
530	
531	
532	
533	
534	
535	
536	
537	
538	

1		
2		
3		Defenerees
4 5	539	kelerences:
6	540	1. Ali MK, Bullard KM, Saydah S, Imperatore G, Gregg EW: Cardiovascular and renal burdens
/ Q	541	of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988-2014.
0 9	542	LANCET DIABETES ENDO 2018, 6(5):392-403.
10	543	2. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q et al: Prevalence of
11	544	diabetes among men and women in China. NEW ENGL J MED 2010, 362(12):1090-1101.
12	545	3 Li Y Teng D Shi X Oin G Oin Y Ouan H Shi B Sun H Ba J Chen B <i>et al</i> : Prevalence of
13	546	diabetes recorded in mainland China using 2018 diagnostic criteria from the American
14	547	Diabetes Association: national cross sectional study <i>BMI-BRIT MED J</i> 2020 369 :m997
16	5/18	A Tabak AG Herder C Rathmann W Brunner EI Kivimaki M. Prediabates: a high-risk state for
17	540	diabates development LANCET 2012 370(0823):2270 2200
18 10	549	5 Semerate ID Whelley CA Denne KK for Dela MM Wedema C. Dearl A. Deag W. Deughty DN:
19 20	550	5. Somaring for left contained on home strengthen in potients with time 2 disketes wellikes in the
21	551	screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the
22	552	community. CARDIOVASC DIABETOL 2011, 10:29.
23	553	6. Kodama S, Horikawa C, Fujihara K, Yoshizawa S, Yachi Y, Tanaka S, Ohara N, Matsunaga S,
24 25	554	Yamada T, Hanyu O et al: Meta-analysis of the quantitative relation between pulse pressure and
25	555	mean arterial pressure and cardiovascular risk in patients with diabetes mellitus. AM J CARDIOL
27	556	2014, 113 (6):1058-1065.
28	557	7. Laugesen E, Knudsen ST, Hansen KW, Rossen NB, Poulsen PL: Invasive aortic pulse pressure
29	558	is not superior to cuff pulse pressure in cardiovascular risk prediction. J HYPERTENS 2020,
30 31	559	Publish Ahead of Print.
32	560	8. Rojas RJ, Chavez-Sosa JV, Gutierrez-Ajalcrina R, Huancahuire-Vega S: Association between
33	561	dehydroepiandrosterone levels and cardiovascular risk in public sector health workers in a
34 25	562	Peruvian region. CARDIOVASC ENDOCR ME 2021, 10(1):51-55.
35 36	563	9. Lee CJ. Yoon M. Ha J. Oh J. Park S. Lee SH. Kang SM: Comparison of the Association
37	564	Between Arterial Stiffness Indices and Heart Failure in Patients With High Cardiovascular Risk:
38	565	A Retrospective Study FRONT CARDIOVASC MED 2021 8:782849
39	505	10 Ager P. Ozaka O. Karakutt M. Ozan V. Ozbay MP. Unal S. Karanfil M. Vayle C. Cay S. Madan
40 41	500	10. Acai B, Ozeke O, Kalakult W, Ozeli I, Ozbay MB, Olai S, Kalalini W, Tayla C, Cay S, Maden
41	507	D (i 4 With E: (D:) A (C)
43	568	Patients with First Diagnosed Acute Coronary Syndrome. ANGIOLOGY 2019, 70(2):174-180.
44	569	11. Wu C, Ma D, Chen Y: Association of Pulse Pressure Difference and Diabetes Mellitus in
45 46	570	Chinese People: A Cohort Study. INT J GEN MED 2021, 14:6601-6608.
40 47	571	12. Chen Y, Zhang XP, Yuan J, Cai B, Wang XL, Wu XL, Zhang YH, Zhang XY, Yin T, Zhu XH et
48	572	al: Association of body mass index and age with incident diabetes in Chinese adults: a
49	573	population-based cohort study. BMJ OPEN 2018, 8(9):e21768.
50	574	13. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018.
51	575	DIABETES CARE 2018, 41(Suppl 1):S13-S27.
53	576	14. Qin H, Chen Z, Zhang Y, Wang L, Ouyang P, Cheng L, Zhang Y: Triglyceride to high-density
54	577	lipoprotein cholesterol ratio is associated with incident diabetes in men: A retrospective study of
55	578	Chinese individuals. J DIABETES INVEST 2020, 11(1):192-198.
56 57	579	15. Robson ME, Tung N, Conte P, Im SA, Senkus E, Xu B, Masuda N, Delaloge S, Li W. Armstrong
57	580	A et al: OlympiAD final overall survival and tolerability results: Olanarib versus chemotherapy
59	581	treatment of physician's choice in patients with a germline RRCA mutation and HFR2-negative
60	501	a cavinent of physician's enorce in patients with a germanic Divert indiation and HER2-negative

2		
3	582	metastatic breast cancer. ANN ONCOL 2019, 30(4):558-566.
4	583	16. White IR, Royston P, Wood AM: Multiple imputation using chained equations: Issues and
6	584	guidance for practice. STAT MED 2011. $30(4)$:377-399.
7	585	17 Vandenbroucke IP von Elm E Altman DG Gotzsche PC Mulrow CD Pocock SI Poole C
8	586	Schlesselman II Egger M: Strengthening the Reporting of Observational Studies in Enidemiology
9	500	(STDOPE): explanation and elaboration INT LSUPC 2014 12(12):1500 1524
10	201	18 Thu E Chan C Thang V Chan S Huang V Li L Wang V Liu X Dang C Cao I: Elevated
12	200	blood menory level has a non-linear exercicitien with infortility in U.S. memory Data from the
13	589	blood mercury level has a non-linear association with intertility in U.S. women: Data from the
14 15	590	NHANES 2013-2016. <i>REPROD TOXICOL</i> 2020, 91:33-58.
15 16	591	19. Zheng X, Cao C, He Y, Wang X, Wu J, Hu H: Association between nonalcoholic fatty liver
17	592	disease and incident diabetes mellitus among Japanese: a retrospective cohort study using
18	593	propensity score matching. LIPIDS HEALTH DIS 2021, 20(1):59.
19	594	20. Mullee A, Romaguera D, Pearson-Stuttard J, Viallon V, Stepien M, Freisling H, Fagherazzi G,
20	595	Mancini FR, Boutron-Ruault MC, Kuhn T et al: Association Between Soft Drink Consumption and
21	596	Mortality in 10 European Countries. JAMA INTERN MED 2019, 179(11):1479-1490.
23	597	21. Keidel D, Anto JM, Basagana X, Bono R, Burte E, Carsin AE, Forsberg B, Fuertes E, Galobardes
24	598	B, Heinrich J et al: The Role of Socioeconomic Status in the Association of Lung Function and Air
25	599	Pollution-A Pooled Analysis of Three Adult ESCAPE Cohorts. INT J ENV RES PUB HE 2019,
20 27	600	16 (11).
28	601	22. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP: The
29	602	Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement:
30	603	guidelines for reporting observational studies. <i>INT J SURG</i> 2014. 12 (12):1495-1499.
31	604	23. Yamamoto M. Fujihara K. Ishizawa M. Osawa T. Kaneko M. Ishizuro H. Matsubayashi Y. Seida
33	605	H Vamanaka N Tanaka S <i>et al</i> : Pulse Pressure is a Stronger Predictor Than Systelic Blood
34	606	Prossure for Severe Eve Diseases in Disbates Mellitus 1 AM HEART ASSOC 2010 8(8):e10627
35	607	24 Al Osmari A. Adalaka I. Kratzar A. Hagua CW: Pulsa pressure and parioparative strake
30 37	607	24. Al-Qaman A, Adeleke I, Kielzei A, hogue Cw. Fuise pressure and perioperative stroke.
38	608	CORR OPIN ANESTHESIO 2019, 32 (1).57-05.
39	609	25. LI J, Huang JY, Lo K, Zhang B, Huang YQ, Feng YQ: Association of pulse pressure with
40	610	all-cause mortality in young adults. <i>POSTGRAD MED J</i> 2020, 96 (1138):461-466.
41 42	611	26. St-Louis E, Sudarshan M, Al-Habboubi M, El-Husseini HM, Deckelbaum DL, Razek TS,
43	612	Feldman LS, Khwaja K: The outcomes of the elderly in acute care general surgery. EUR J
44	613	<i>TRAUMA EMERG S</i> 2016, 42 (1):107-113.
45	614	27. Brown CT, Neuman MD: Optimizing Perioperative Care for Older Adults. Anesthesiol Clin
46 47	615	2015, 33 (3):xv-xvi.
48	616	28. Gavish B, Bursztyn M: Ambulatory pulse pressure components: concept, determination and
49	617	clinical relevance. J HYPERTENS 2019, 37(4):765-774.
50	618	29. Payne RA, Wilkinson IB, Webb DJ: Arterial stiffness and hypertension: emerging concepts.
51	619	HYPERTENSION 2010, 55(1):9-14.
53	620	30. Zhang L, Wang B, Wang C, Li L, Ren Y, Zhang H, Yang X, Zhao Y, Han C, Zhou J et al: High
54	621	pulse pressure is related to risk of type 2 diabetes mellitus in Chinese middle-aged females. <i>INT J</i>
55	622	<i>CARDIOL</i> 2016, 220 :467-471.
56 57	623	31. Yasuno S, Ueshima K, Oba K, Fujimoto A, Hirata M, Ogihara T. Saruta T. Nakao K: Is nulse
58	624	pressure a predictor of new-onset diabetes in high-risk hypertensive nationts?: a subanalysis of
59	625	the Candesartan Antihynertensive Survival Evaluation in Janan (CASE-D trial DIARFTES
60	025	the Curressartan Anthippertensive Surviva Evaluation in Sapan (CASE-5) trial. DIADETES

 626 CARE 2010, 33(5):1122-1127. 627 32. Kwon YJ, Chung TH, Shim JY, Lee YJ: The association of pulse pressure with metable 66 628 syndrome in Korean elderly: A nationwide population-based study. DIABETES RES CLIN 	olic
 627 32. Kwon YJ, Chung TH, Shim JY, Lee YJ: The association of pulse pressure with metab 66 628 syndrome in Korean elderly: A nationwide population-based study. DIABETES RES CLIN 	olic
6 628 syndrome in Korean elderly: A nationwide population-based study. <i>DIABETES RES CLIN</i>	
7	PR
629 2017, 123 :75-81.	
8 630 33. Zhang X, Li Y, Wang F, Zang J, Liu X, Zhang H, Yang K, Zhang G, Wang C: Independent :	and
10 631 combined effects of resting heart rate and pulse pressure with metabolic syndrome in Chir	iese
11 632 rural population: The Henan Rural Cohort study. <i>CLIN CHIM ACTA</i> 2018, 484:246-252.	
12 633 34 Li WJ Fang W Cai ZF Han X Zheng MY Chen GZ Wu WO Chen ZC Chen YR Wu	SL
13 634 [Association between pulse pressure and new-onset diabetes in hypertensive patients] <i>Zhong</i>	bua
15 635 Xin Xue Guan Ring Za Zhi 2021 49 (7):673-679	
16 636 35 Wu Y Han X Gao I Wang Y Zhu C Huang Z Xing A Chen S Ma Y Zheng M <i>et</i>	aŀ
17 637 Individual and combined contributions of age-specific and sex-specific nulse pressure	and
$\frac{18}{18}$ $\frac{19}{18}$ 19	IAR
20 $RES CA 2021 0(1)$	ЛД
21 640 26 Chap IV Chap CH Lee VI Trai WC Lin CC Huang VV Chap III: Association of any	tual
22 640 50. Chen JT, Chou CH, Lee TL, Tsai WC, Lin CC, Huang TT, Chen JH. Association of cent	
23 641 aortic pressures indexes with development of diabetes meintus in essential hypertension. Al	ИJ
24 642 HYPERTENS 2010, 23(10):1069-1073.	
26 643 37. Juneja A, Dwivedi S, Srivastava DK, Chandra K: Insulin Resistance in Young Obese Subje	ects
and Its Relation to Smoking (A Pilot Study). <i>INDIAN J CLIN BIOCHE</i> 2017, 32 (1):99-102.	
28 645 38. Ciarambino T, Crispino P, Guarisco G, Giordano M: Gender Differences in Insulin Resistan	ice:
646 New Knowledge and Perspectives. CURR ISSUES MOL BIOL 2023, 45(10):7845-7861.	
31 647 39. Muris DM, Houben AJ, Schram MT, Stehouwer CD: Microvascular dysfunction is associa	ted
32 648 with a higher incidence of type 2 diabetes mellitus: a systematic review and meta-analy	sis.
³³ 649 ARTERIOSCL THROM VAS 2012, 32 (12):3082-3094.	
650 40. Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, Struijker-Boudier F	HA:
36 651 Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes melli	tus.
37 652 CIRCULATION 2008, 118(9):968-976.	
653 41. Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, Barrett	EJ:
40 654 Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose upt	ake
41 655 in vivo. <i>DIABETES</i> 2004, 53 (6):1418-1423.	
42 656 42. Malik AR, Kondragunta V, Kullo IJ: Forearm vascular reactivity and arterial stiffness	in i
43 43 657 asymptomatic adults from the community. <i>HYPERTENSION</i> 2008, 51 (6):1512-1518.	
45 658 43. Malik AR, Kondragunta V, Kullo IJ: Forearm vascular reactivity and arterial stiffness	in i
46 659 asymptomatic adults from the community. <i>HYPERTENSION</i> 2008, 51 (6):1512-1518.	
47 660 44. O'Rourke MF, Hashimoto J: Mechanical factors in arterial aging: a clinical perspective. J	AM
48 49 661 COLL CARDIOL 2007. 50 (1):1-13.	
50 662 45 Ungvari Z Csiszar A Kaminski PM Wolin MS Koller A ⁻ Chronic high pressure-indu	ced
51 663 arterial oxidative stress: involvement of protein kinase C-dependent NAD(P)H oxidase and lo	ncal
52 664 renin-angiotensin system $4M$ <i>LPATHOL</i> 2004 165 (1):219-226	/eui
54 665	
55 666	
56	
57	
59	
60	

<u> </u>			1		_
PP	Participants	prediabetes events	Cumulative incidence (95%CI) (%)	Per 100,000	
	(n)	(n)		person-year	
Total	182672	20284	11.10 (10.96–11.25)	3532.68	
Q1	39914	3560	8.92(8.64–9.20)	2779.24	
Q2	47771	4525	9.47 (9.21–9.73)	2999.95	
Q3	43811	4740	10.82 (10.53–11.11)	3470.06	
Q4	51176	7459	14.58 (14.27–14.88)	4701.37	
P for			< 0.001	< 0.001	
trend					

Supplemental Table 1 Incidence rate of incident prediabetes.

PP: pulse pressure, CI: confidence interval
S	upp	lemental	Table	2	The	results	of	the	univ	variate	anal	ysis
---	-----	----------	-------	---	-----	---------	----	-----	------	---------	------	------

	Statistics	HR (95%CI)	P value
Gender			< 0.0001
Male	96966 (53.082%)	ref	
Female	85706 (46.918%)	0.627 (0.609, 0.645)	< 0.00001
Age(years)	40.832 ± 11.864	1.033 (1.032, 1.034)	< 0.00001
Drinking status			
Current-drinker	2924 (1.601%)	ref	
Ex-drinker	22634 (12.391%)	0.770 (0.701, 0.846)	< 0.00001
Never- drinker	157114 (86.009%)	0.607 (0.556, 0.663)	< 0.00001
Smoking status			
Current-smoker	29424 (16.108%)	ref	
Ex-smoker	6566 (3.594%)	0.896 (0.834, 0.963)	0.00286
Never-smoker	146682 (80.298%)	0.714 (0.691, 0.739)	< 0.00001
Family history of diabetes			0.3503
No	<mark>179039 (98.011%)</mark>	ref	
Yes	3633 (1.989%)	1.054 (0.965, 1.153) 0.24372	
SBP (mmHg)	117.428 ± 15.208	1.026 (1.025, 1.027)	< 0.00001
DBP (mmHg)	73.492 ± 10.572	1.029 (1.028, 1.030)	< 0.00001
PP (mmHg)	43.936 ± 10.595	1.025 (1.023, 1.026)	< 0.00001
BMI (kg/m2)	22.976 ± 3.259	1.124 (1.120, 1.129)	< 0.00001
AST(U/L)	23.591 ± 12.164	1.005 (1.005, 1.006)	< 0.00001
ALT (U/L)	23.232 ± 21.734	1.003 (1.003, 1.004)	< 0.00001
HDL-C (mmol/L)	1.372 ± 0.307	0.739 (0.707, 0.773)	< 0.00001
TG (mmol/L)	1.267 ± 0.934	1.200 (1.192, 1.208)	< 0.00001
LDL-C (mmol/L)	2.685 ± 0.671	1.280 (1.256, 1.305)	< 0.00001
TC (mmol/L)	4.661 ± 0.882	1.220 (1.202, 1.238)	< 0.00001
BUN (mmol/L)	4.602 ± 1.167	1.136 (1.124, 1.149)	< 0.00001
SCr (umol/L)	69.565 ± 15.522	1.006 (1.006, 1.007)	< 0.00001
FPG (mmol/L)	4.765 ± 0.487	5.711 (5.513, 5.916)	< 0.00001

PP: pulse pressure, SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index, ALT alanine aminotransferase, AST aspartate aminotransferase, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, Scr serum creatinine, BUN blood urea nitrogen, FPG fasting plasma glucose

Supplemental Table 3 Relationship between	PP and p	prediabetes	in different	sensitivity
analyses				

,		
Exposure	Model I (HR,95%CI, P)	Model II (HR,95%CI, P)
РР	1.011 (1.009, 1.013) <0.00001	1.008 (1.007, 1.010) <0.00001
PP (Quintile)		
Q1	Ref	Ref
Q2	1.055 (0.999, 1.115) 0.05494	1.040 (0.993, 1.090) 0.09739
Q3	1.166 (1.104, 1.232) <0.00001	1.123 (1.072, 1.177) <0.00001
Q4	1.310 (1.244, 1.379) <0.00001	1.228 (1.175, 1.285) <0.00001
P for trend	<0.00001	<0.00001

Model I was sensitivity analysis in participants without BMI≥25kg/m². We adjusted gender, age, family history of diabetes, drinking status, smoking status, TC, TG, HDL-C, LDL-C, AST, ALT, SCr, BUN, and FPG.

Model II was sensitivity analysis in participants without age≥60 years. We adjusted gender, family history of diabetes, drinking status, smoking status, BMI, TC, TG, HDL-C, LDL-C, AST, ALT, SCr, BUN, and FPG.

HR, hazard ratios; CI, confidence, Ref: reference; PP; pulse pressure

3
4
5
ر د
0
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
20 21
21
22
23
24
25
26
27
27 20
20
29
30
31
32
33
34
25
22
30
37
38
39
40
41
42
⊤∠ ⁄12
40
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
57
58

1 2

Supplemental Table 4 Variables included age, gender, smoking status, BMI, family history of diabetes, and drinking status interacted with PP

Characteristic	P-value
Age	< 0.001
Gender	<0.001
BMI	<0.001
Family history of diabetes	< 0.001
Smoking status	< 0.001
Drinking status	<0.001

to been terien ont

Characteristic	No of participants	HR (95%CI) P value	P for interaction
Age, years			0.1335
<60	165813	1.008 (1.006, 1.009) <0.0001	
≥60	16859	1.010 (1.007, 1.013) <0.0001	
Gender			0.0002
Male	96966	1.006 (1.004, 1.008) <0.0001	
Female	85706	1.011 (1.009, 1.013) <0.0001	
BMI (kg/m ²)			< 0.0001
<25	135554	1.012 (1.010, 1.014) <0.0001	
≥25	47118	1.006 (1.004, 1.008) <0.0001	
Smoking status			0.0075
Current smoker	29424	1.005 (1.002, 1.008) 0.0002	
Ever smoker	6566	1.007 (1.001, 1.013) 0.0211	
Never smoker	146682	1.010 (1.008, 1.011) <0.0001	
Drinking status			0.2713
Current drinker	2924	1.014 (1.006, 1.022) <0.0001	
Ever drinker	22634	1.007 (1.004, 1.010) <0.0001	
Never drinker	157114	1.009 (1.007, 1.010) <0.0001	
Family history of diabetes			0.0618
No	179039	1.009 (1.007, 1.010) <0.0001	
Yes	3633	1.001 (0.992, 1.009) 0.9074	

Supplemental Table 5 Effect size of PP on prediabetes in prespecified and exploratory subgroups

Note 1: The above model was adjusted for gender, age, family history of diabetes, drinking status, smoking status, BMI, TC,

TG, HDL-C, LDL-C, AST, ALT, SCr, BUN, and FPG.

Note 2: The model is not adjusted for the stratification variable in each case.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplemental Table 6 Relationship between PP and the incident prediabetes in preimputation data and imputed datasets

Exposure	Pre-imputation	Imputation	P-value
Participants	182672	182672	
Gender			1.000
Male	96966 (53.082%)	96966 (53.082%)	
Female	85706 (46.918%)	85706 (46.918%)	
Age(years)	40.832 ± 11.864	40.832 ± 11.864	1.000
Drinking status			< 0.001
Current-drinker	978 (1.932%)	2924 (1.601%)	
Ex-drinker	7340 (14.501%)	22634 (12.391%)	
Never- drinker	42299 (83.567%)	157114 (86.009%)	
Smoking status			< 0.001
Current-smoker	9609 (18.984%)	29424 (16.108%)	
Ex-smoker	2104 (4.157%)	6566 (3.594%)	
Never-smoker	38904 (76.860%)	146682 (80.298%)	
Family history of			1 000
diabetes			1.000
No	179039 (98.011%)	179039 (98.011%)	
Yes	3633 (1.989%)	3633 (1.989%)	
BMI (kg/m ²)	22.976 ± 3.259	22.976 ± 3.259	1.000
AST(U/L)	23.685 ± 12.404	• 23.591 ± 12.164	0.075
ALT (U/L)	23.219 ± 21.739	23.232 ± 21.734	0.854
HDL-C (mmol/L)	1.378 ± 0.308	1.372 ± 0.307	< 0.001
TG (mmol/L)	1.268 ± 0.934	1.267 ± 0.934	0.889
LDL-C (mmol/L)	2.739 ± 0.669	2.685 ± 0.671	< 0.001
TC (mmol/L)	4.663 ± 0.883	4.661 ± 0.882	0.630
BUN (mmol/L)	4.604 ± 1.165	4.602 ± 1.167	0.630
SCr (umol/L)	69.628 ± 15.507	69.565 ± 15.522	0.228
FPG (mmol/L)	4.765 ± 0.487	4.765 ± 0.487	1.000

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3-4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	6
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			-
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	7
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	-
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7-8
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8
		confounding	10
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	9
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	10-
		eligible, examined for eligibility, confirmed eligible, included in the study,	11
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	10-
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	10-
Outcome data	15*	Report numbers of outcome events or summary measures over time	11
	10		<u> </u>

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	11- 12
		(b) Report category boundaries when continuous variables were categorized	12
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	12
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12- 13
Discussion			
Key results	18	Summarise key results with reference to study objectives	13- 14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	16- 17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14- 16
Generalisability	21	Discuss the generalisability (external validity) of the study results	16
Other informati	on		-
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	18

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Nonlinear relationship between pulse pressure and the risk of prediabetes: a secondary retrospective Chinese cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-080018.R2
Article Type:	Original research
Date Submitted by the Author:	29-Feb-2024
Complete List of Authors:	Cao, Changchun; Shenzhen Dapeng New District Nan'ao People's Hospital, Han, Yong; Shenzhen Second People's Hospital, Department of Emergency Hu, Haofei; Shenzhen University First Affiliated Hospital, Department of Nephrology He, Yongcheng ; Affiliated Hospital of North Sichuan Medical College, Department of Nephrology; Shenzhen Hengsheng Hospital, Department of Nephrology Luo, Jiao; Shenzhen Dapeng New District Nan'ao People's Hospital, Department of Rehabilitation
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Blood Pressure, China, General diabetes < DIABETES & ENDOCRINOLOGY
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Nonlinear relationship between pulse pressure and the risk of
2	prediabetes: a secondary retrospective Chinese cohort study
3	Running title: PP and Pre-DM risk
4	Changchun Cao ^{1#} , Yong Han ^{2#} , Haofei Hu ^{3*} , Yongcheng He ^{4,5*} , Jiao Luo ^{1*}
5	¹ Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen 518000,
6	Guangdong Province, China
7	² Department of Emergency, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen
8	University, Shenzhen 518000, Guangdong Province, China
9	³ Department of Nephrology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen
10	University, Shenzhen 518000, Guangdong Province, China
11	⁴ Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan
12	Province, China
13	⁵ Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen 518000, Guangdong Province, China
14	
15	Changchun Cao and Yong Han have contributed equally to this work.
16	*Corresponding author
17	Haofei Hu
18	Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong
19	Province, China
20	E-mail: huhaofei0319@126.com
21	Yongcheng He
22	Department of Nephrology, Affiliated hospital of North Sichuan Medical College, No.1 Maoyuan South Road,

3		
4	23	Nanchong, Sichuan, China.
5		
6		
7	24	Department of Nephrology, Shenzhen Hengsheng Hospital, No.20 Yintian Road, Xixiang Street, Baoan District,
8		
a	25	
10	25	Shenzhen 518000, Guangdong Province, China.
10		
11	26	E mail: havongehang640815@126.com
12	20	E-man. neyongenengo40815@120.com
13		
14	27	Jiao Luo
15		
16		
17	28	Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road,
18		
19		
20	29	Dapeng New District, Shenzhen 518000, Guangdong Province, China.
21		
21	20	
22	30	E-mail: luojiao1989@email.szu.edu.cn
23		
24	31	
25	51	
26		
27	32	
28		
29		
30	33	
31		
32		
33	34	
34		
35	25	
36	35	
37		
20	36	
20		
40		
40	37	
41		
42	- -	
43	38	
44		
45	20	
46	39	
47		
48	40	
49	10	
50		
51	41	
52		
53		
57	42	
54		
55	40	
50	43	
5/		
58	11	
59	44	
60		

45 Abstract

Objective: Previous research has shown that pulse pressure has a significant role in the start and development of type 2 diabetes mellitus. However, there is little proof that pulse pressure and prediabetes are related. Our study aimed to investigate the relationship between pulse pressure and incident prediabetes in a substantial cohort of Chinese participants. **Design:** The 'DATADRYAD' database (www.Datadryad.org) was used to retrieve the data for this secondary retrospective cohort analysis. Participants: Data from 182672 Chinese individuals who participated in the medical examination program were recorded in this retrospective cohort study between 2010 and 2016 across 32 sites and 11 cities in China. Setting: Pulse pressure assessed at baseline and incident prediabetes during follow-up were the target-independent and dependent variables. The association between pulse pressure and prediabetes was investigated using Cox proportional hazards regression.

58 Primary outcome measures: The outcome was incident prediabetes. Impaired fasting glucose
59 levels (fasting blood glucose between 5.6 and 6.9 mmol/L) were used to define prediabetes.

Results: After controlling for confounding variables, pulse pressure was positively correlated with incident prediabetes among Chinese adults (HR: 1.009, 95%CI: 1.007-1.010). Additionally, at a pulse pressure inflection point of 29 mmHg, a nonlinear connection between the pulse pressure and incident prediabetes was discovered. Increased pulse pressure was an independent risk factor for developing prediabetes when pulse pressure was greater than 29 mmHg. However, their association was not significant when pulse pressure was less than 29 mmHg. According to subgroup analyses, females, never smokers, and non-obesity correlated more significantly with

pulse pressure and prediabetes.

Conclusion: We discovered that higher pulse pressure independently correlated with prediabetes

risk in this study of Chinese participants. The connection between pulse pressure and incident

prediabetes was also nonlinear. High pulse pressure levels were related to a higher risk of

2	
3	
4	
5	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
19	
20	
21	
22 23	
24	
25	
26	
27 28	
29	
30	
31	
32 33	
34	
35	
36	
37	
30 39	
40	
41	
42	
45 44	
45	
46	
47	
40 49	
50	
51	
52	
53 54	
55	
56	
57	
58	
59 60	

2		
3		
4	89	Article Summary
5		
7	90	Article focus
8		
9	91	Our study investigated the relationship between PP and incident Pre-DM in a secondary
10		e a conseguera de controlos e ana control de a controlador
11	02	notice as here a Chinese month in ante
12	92	retrospective conort of Chinese participants.
13 14		
14	93	Strengths and limitations of this study
16		
17	94	• Our research leveraged a substantial sample size, drawing participants from multiple
18		
19	05	centers, thus ensuring a robust representation of the Chinese population
20	33	centers, thus ensuring a robust representation of the enfinese population.
21		
22	96	• We elucidated a nonlinear relationship, marking the pioneering effort to pinpoint the
24		
25	97	inflection point of PP's impact on Pre-DM.
26		
27	98	• Our subgroup analysis allowed us to delve into other potential risk factors within the PP
28		
29	00	and insident Day DM association
30 31	99	and incident Pre-DM association.
32		
33	100	• Our study did not incorporate a 2-hour oral glucose tolerance test or glycosylated
34		
35	101	hemoglobin level measurements, which could potentially lead to an underestimation of the
36		
3/	102	incidence of Pre-DM
30 39	102	
40	102	
41	103	
42		
43	104	
44 45		
45 46	105	
47		
48	106	
49	100	
50	107	
51 52	107	
52 53		
55	108	
55		
56	109	
57		
58	110	
59 60	110	
00		

BMJ Open

111	Introduction
112	Prediabetes (Pre-DM) is intermediate hyperglycemia below the diagnostic cutoff for type 2
113	diabetes mellitus (T2DM). Patients with Pre-DM have been reported to have a higher risk for
114	cardiovascular disease and nephropathy, indicating that impaired glucose begins to have a

Introduction

cardiovascular disease and nephropathy, indicating that impaired glucose begins to have a
pathogenic effect at this early stage of diabetes[1]. The prevalence of Pre-DM is increasing
globally with an aging population, urbanization, and changing lifestyles. From 2008 to 2017, the
prevalence of Pre-DM in China has climbed from 15.5%[2] to 35.2%[3], creating a significant
public health burden. Approximately 70% of subjects with Pre-DM will eventually get T2DM[4].
Numerous studies looked for ways to pinpoint the causes of diabetes and Pre-DM to prevent and

120 cure the disease in its earliest stages.

Pulse pressure (PP) is referred to as the difference between systolic blood pressure (SBP) and diastolic blood pressure (DBP). Clinically, PP is the manifestation of atherosclerosis[5]. Compared to their non-diabetic contemporaries, people with T2DM have greater atherosclerosis, which results in a broad PP[5]. A greater risk of cardiovascular disease (CVD) exists in T2DM patients[6]. In addition, an increase in PP is another risk factor for CVD incidence and positively correlates with mortality[7-9]. Additionally, compared to healthy individuals, prediabetic patients have a greater burden from coronary atherosclerosis[10]. Notably, the atherosclerosis burden began to develop even before T2DM's clinical symptoms[10]. PP was found to be a significant risk factor for T2DM in a recent retrospective cohort investigation of a sizable sample[11]. However, whether prediabetes in Chinese adults is associated with PP is unknown. This study sought to analyze the precise correlation between PP and the likelihood of developing Pre-DM in Chinese participants.

133 Methods

134 Data source

Researchers can obtain original research data for free via the Dryad Digital Repository. The Dryad data repository's data on 211833 Chinese persons was downloaded[12]. The current research employed openly available data from a medical examination program as a secondary inquiry. Researchers may use the data for secondary analysis in accordance with the Dryad terms of service without interfering with the interests of the authors.

Study population

The original study was approved by the Rich Healthcare Group Review Board. Hence, ethical approval was not required for this secondary analysis. Each participant conducted under the Rich Healthcare Group Review Board, gave their written informed permission before taking part[12]. In addition, the Declaration of Helsinki was followed during our research. The necessary standards and legislation were followed in the execution of all procedures, including the declarations in the Declarations section.

Individuals were excluded from the investigation under these conditions: (1) diabetes at
baseline; (2) diabetes or not defined diabetes status at follow-up; (3) abnormal body mass index
(BMI) values (BMI over 55 or less than 15 kg/m²); (4) lacking data on baseline fasting plasma
glucose (FPG), FPG at follow-up, height, DBP, gender, weight, and SBP; (5) FPG>6.9mmol/L
during follow-up and FPG≥5.6mmol/L at baseline; (6) follow-up interval < 2 years; (7) PP outliers
(three standard deviations above or below the mean). Finally, 182672 subjects eventually entered
the study. The study's design and participant flow are shown in Figure 1.

Data collection

BMJ Open

Trained staff members gathered and compiled all of the data. Data from laboratory inspections were gathered in the original study under uniform conditions using standardized handling procedures. The skilled personnel, including height, blood pressure, body weight, and age, gathered demographic information. Professional trainees without light clothing and shoes measure individuals for weight and height. Weight/Height² (kg/m²) was used to compute BMI. Trained staff members took blood pressure using a standard mercury sphygmomanometer. A Beckman 5800 autoanalyzer was used to measure laboratory data, such as low-density lipoprotein cholesterol (LDL-C), FPG, total cholesterol (TC), aspartate aminotransferase (AST), blood urea nitrogen (BUN), triglyceride (TG), alanine aminotransferase (ALT), serum creatinine (Scr), and high-density lipoprotein cholesterol (HDL-C). SBP (mmHg) - (DBP (mmHg)) were the formulas used to compute PP. **Diagnosis of Pre-DM** Impaired fasting glucose levels (FPG between 5.6 and 6.9 mmol/L) were used to define Pre-DM[13]. **Patient and Public Involvement** Given this was a secondary retrospective cohort study, no patient was involved in the study. **Statistical analysis** R software version 3.4.3 and EmpowerStats (R) version 4.0 were used for all statistical

analyses.

174 We initially assessed the baseline data distribution by categorizing it into quartiles based on the

175 PP (Q1 \leq 36; 36<Q2 \leq 43; 43<Q3 \leq 50; 50<Q4). Continuous data were reported as medians with

176 interquartile ranges (25th-75th percentile) or means with standard deviations (SD), while

categorical data were expressed as frequencies and percentages. The Kruskal-Wallis H test, chi-square test, and one-way ANOVA were employed to assess disparities between PP groups. The cumulative incidence and terms person-year were used to represent incidence rates[14]. Comparisons of survival and cumulative event rates were done using the Kaplan-Meier method. Using the log-rank test, we also examined the Kaplan-Meier hazard ratios (HR) of unfavorable events [15]. There were 133257 (72.32%), 4240 (2.30%), 1541 (0.84%), 4209 (2.28%), 107684 (58.44%), 82879 (44.98%), 18563 (10.07%), 83382 (45.25%), 9759 (5.30%) and 133257 (72.32%) individuals with missing data for smoking status, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, and drinking status, respectively. The present study employed multiple imputations to handle the missing data of covariants. The imputation model included smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, FPG, sex, family history of diabetes, drinking status, and age. Processes for missing data analysis employ the assumption of missing at random[16]. This analysis assessed each factor's impact on incident Pre-DM using univariate Cox proportional hazards regression models. The multivariate Cox regression analysis also examined the precise connection between the PP and incident Pre-DM. In addition, we created three models (fully-adjusted, minimally-adjusted, and non-adjusted) to evaluate the connection between PP and incident Pre-DM. Suppose the HR is changed by at least 10% after the covariance is included in the model. At this point, the covariance should be adjusted[17]. The current analysis conducted several sensitivity analyses to determine if the findings were trustworthy. We converted PP into a categorical variable based on the quartile. We computed the P for the trend to verify the outcomes of the PP as the continuous variable and test for

Page 11 of 39

BMJ Open

199	nonlinearity. Obesity and older adults were connected to a greater occurrence of Pre-DM. Thus,
200	we excluded individuals with BMI $\geqslant 25 kg/m^2$ or age $\geqslant 60$ years for subsequent sensitivity
201	analyses to examine the connection between PP and Pre-DM risk. Additionally, we incorporated
202	the continuous covariate as a curve to the equation using a generalized additive model (GAM) to
203	confirm the validity of the results. We also calculated E-values to examine the possibility of
204	unmeasured confounding between PP and the risk of prediabetes
205	We used Cox proportional hazards regression with cubic spline functions and smooth curve
206	fitting to explore the nonlinear relationship between PP and Pre-DM. We first utilized a recursive
207	technique to locate the inflection point if a non-linear relationship was discovered[18]. The
208	recursive algorithm commences with an arbitrary initialization and subsequently undergoes a
209	series of filtering and smoothing steps in order to identify the inflection point accurately.
210	Following this, we construct a two-piece Cox proportional hazards regression model, separately
211	analyzing the data on either side of the inflection point. Ultimately, the study determined the most
212	appropriate model for PP's connection with Pre-DM through log-likelihood ratio analysis.
213	Subgroup analysis, utilizing the Cox proportional hazard model, was also conducted. Firstly,
214	these variables were selected based on a combination of clinical relevance, literature review, and
215	the availability of data within our cohort. Secondly, the interaction test between these variables
216	and PP was performed before the subgroup analysis. The likelihood ratio test was used to compare
217	models with and without the multiplicative interaction term. Secondly, stratification was
218	performed based on medians or established clinical cut points[19], and variables such as age (<60,
219	\geq 60 years) and BMI (<25, \geq 25 kg/m ²) were converted into categorical factors. Thirdly, a fully
220	adjusted analysis was performed for each stratum, except for the stratification factor. Ultimately,

2	
5	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
1.4	
14	
15	
16	
17	
18	
10	
17	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36	
20	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
53	
55	
54	
55	
56	
57	
58	
50	

1 2

the likelihood ratio test was used to determine whether interaction terms existed in models with
and without interaction terms[20, 21]. The study adhered to the STROBE statement for all
outcomes[17, 22]. Statistical significance was determined by a P-value < 0.05, using two-tailed
tests.

225 **Results**

226 Characteristics of individuals

227 In the current research, 182672 individuals deemed free of Pre-DM at baseline were included. 228 The average age was 40.832 ± 11.864 years, and 53.082% of individuals were male. Twenty 229 thousand two hundred eighty-four individuals eventually got Pre-DM after an average of 3.143 230 years of follow-up. Table 1 displays comprehensive clinical measurements, biochemical tests, and 231 various parameters. We categorized participants into subgroups based on PP quartiles ($Q1 \le 36$; 232 36<Q2 ≤43; 43<Q3 ≤50; 50<Q4). Compared to the Q1 group, the other groups (Q2 group, Q3 group, Q4 group) had higher ALT, BMI, age, TG, Scr, TC, AST, BUN, LDL-C, and lower 233 HDL-C. Additionally, the Q4 group had a higher proportion of men, smokers, and drinkers. 234

235 The incidence rate of Pre-DM

During the follow-up, 20284 individuals developed incident Pre-DM, as outlined in Supplemental Table 1. All people had a prevalence rate of 11.10%. The four PP groups' prevalence rates were 8.92%, 9.47% (9.21%–9.73%), 10.82%, and 14.58%. In addition, the cumulative incidence rate of the overall population and four PP groups were 3532.68, 2779.24, 2999.95, 3470.06, and 4701.37 per 100,000 person-years, respectively. Individuals in the Q2, Q3, and Q4 groups exhibited significantly greater cumulative incidence and prevalence rates of Pre-DM than those in the Q1 group.

BMJ Open

2		
л		
 5		
6		
7		
, 8		
a		
1	n	
1	1	
י 1	י כ	
1	2 2	
1.	ר ∧	
1	- 5	
1	6	
1	7	
1	, 8	
1	9	
2	0	
2	1	
2	2	
2	3	
24	4	
2	5	
2	б	
2	7	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3,	4	
3.	5	
3	6	
3	7	
3	8	
3	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4:	5	
40 1	0 7	
4. 7	/ 0	
-+• 4•	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	8	
5	9	

60

The Kaplan-Meier curves for the propensity to survive without Pre-DM are shown in Supplemental Figure 1. There was a significant difference between the four PP groups regarding the likelihood of developing Pre-DM (P<0.001). As PP levels increased, the chance of living without prediabetes steadily dropped. As a result, Pre-DM risk was highest among those in the highest PP categories.

248 Univariate analysis

Supplemental Table 2 presents the findings of the univariate analysis. DBP, TC, BMI, SBP,
FPG, age, TG, SCr, LDL-C, PP, and BUN were correlated with Pre-DM risk. HDL-C exhibits an
inverse relationship with Pre-DM risk. Individuals who never drink or smoke also have a lower
risk of developing pre-DM. Pre-DM risk was shown to be greater in men than in women.

253 The results of the connection between PP and Pre-DM

254 The Cox proportional hazard regression models for the association between PP and Pre-DM are shown in Table 2. In the non-adjusted model, the HR (95%CI) for the relationship between 255 Pre-DM and PP was 1.025 (1.023-1.026). The HR (95%CI) in the minimally-adjusted model was 256 257 1.013 (1.011-1.014) after adjusting for smoking status, age, BMI, family history of diabetes, gender, and drinking status. The HR (95%CI) was 1.009 (1.007-1.010) in the fully-adjusted model 258 259 after controlling for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, 260 FPG, family history of diabetes, drinking status, and age. The findings showed that for every 261 1mmHg rise in PP, the risk of Pre-DM rose by 0.9%.

262 Sensitivity analyses

We used several sensitivity analyses to evaluate how reliable our results were. PP was changedfrom a continuous to a categorical variable before being reintroduced into the model. Following

the translation of PP into categorical variables, the trend p was not equal, suggesting a potential
nonlinear connection between PP and the chance of developing Pre-DM. Additionally, a GAM
added the continuity covariate to the equation. Results for the GAM model showed a positive
connection between PP and the probability of developing Pre-DM (HR: 1.008,
95%CI:1.007-1.010) (Table 2).

Besides, the current research excluded participants with BMI<25kg/m² for sensitivity analysis. After controlling for confounding factors, we observed a positive association between PP and Pre-DM risk (HR: 1.011, 95%CI: 1.009-1.013) (Supplemental Table 3). Moreover, we considered participants with ages < 60 years for sensitivity studies. After adjusting for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking status, and age, the results showed that PP remained positively correlated with the likelihood of developing Pre-DM (HR: 1.008, 95%CI: 1.007-1.010). (Supplemental Table 3). According to the sensitivity analysis, our findings appeared to be solid.

Additionally, an E-value was computed to assess the vulnerability of the study results to potential unobserved confounding factors. The resulting E-value (1.21) demonstrated a higher level of statistical significance in comparison to the relative risk (1.05) associated with unmeasured confounders and PP. This suggests that the impact of unmeasured or unidentified confounders on the relationship between PP and the occurrence of Pre-DM was negligible.

The analysis of the nonlinear connection

The nonlinear connection between PP and incident Pre-DM is illustrated in Figure 2. After correcting for confounding factors, there was a nonlinear link between PP and incident Pre-DM (Table 3). Based on a two-piecewise Cox proportional hazards regression model, the PP's Page 15 of 39

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
4ð 40	
49 50	
5U 51	
ン 5 つ	
ン2 5つ	
52 57	
54	
55	
57	
57 58	
50	
~	

60

inflection point was 29 mmHg (P for log-likelihood ratio test = 0.008). When PP was more than
28 29 mmHg, PP was strongly linked with incident Pre-DM (HR:1.009, 95%CI: 1.008-1.011,
P<0.001). However, their correlation was not significant when PP was less than 29 mmHg (HR:
0.990, 95%CI: 0.977-1.003, P=0.149).

291

The results of the subgroup analysis

Interaction tests performed before subgroup analyses showed that age, BMI, gender, family 292 history of diabetes, smoking status, and drinking status interacted with PP (P<0.001) 293 294 (Supplemental Table 4). We selected age, BMI, gender, family history of diabetes, smoking status, 295 and drinking status as stratification variables and examined the changes in their impact sizes 296 (Supplemental Table 5). Age, drinking status, and family history of diabetes had no impact on the 297 correlation between PP and the risk of prediabetes. Females, never smokers, ever smokers, and 298 subjects with BMI<25 kg/m² were more likely to be associated with prediabetes risk. Conversely, 299 there was a weaker connection in males, current smokers, and individuals with BMI≥25 kg/m².

300 **Discussion**

The current study's main goal was to investigate the connection between PP and incident Pre-DM in Chinese participants. The findings demonstrated a correlation between increased PP and a higher risk of prediabetes. The correlation between PP and Pre-DM was also investigated on the left and right sides of the inflection point. PP level and incident prediabetes have a nonlinear relationship. It was found that never-smokers, ever-smokers, females, and individuals with BMI<25 kg/m² had a greater correlation between PP and incident Pre-DM.

307 PP, the arithmetic difference between SBP and DBP, is determined by arterial wall elasticity308 and is related to all-cause mortality, cardiovascular events, stroke, kidney injury, severe eye

2	
3	
4	
5	
6	
7	
8	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
22	
56	
57	
58	
59	
60	

309	illness, and arterial stiffness[23-28]. In comparison to blood pressure, PP has a better predictive
310	capacity for poor cardiovascular outcomes in people with diabetes, according to several previous
311	pieces of evidence[6, 29]. In addition, some studies found that PP demonstrated strong predictive
312	ability in the homeostatic model assessment of insulin resistance index, diabetes, and metabolic
313	syndrome[30-32]. In a retrospective study involving 211814 Chinese participants, after controlling
314	for BMI, smoking and drinking status, age, TC, gender, family history of diabetes, FPG, TG, and
315	BUN and ALT, Higher PP levels independently connect with increased T2DM risk (HR:1.003,
316	95%CI:1.001,1.005)[11]. In a longitudinal study involving 12272 Chinese, Zhang L et al.[30]
317	found that high PP in Chinese women may be related to the development of T2DM after adjusting
318	for confounding covariates. In a national cross-sectional study involving 6187 Korean older
319	adults, Kwon YJ et al.[32] discovered a positive association between PP and metabolic syndrome
320	after adjusting for alcohol consumption, smoking, age, regular exercise, and mean arterial blood
321	pressure. In another cross-sectional cohort study that included 38708 rural Chinese participants,
322	compared with the lowest group, the odds ratio (95%CI) of PP in the highest quartile of risk for
323	metabolic syndrome was found to be 1.81 (1.67-1.95) after controlling for confounders[33]. In
324	addition, in a prospective research enrolling 32917 Chinese, the HR (95%CI) for diabetes in the
325	Q3 and Q4 groups were 1.13 (1.04-1.22) and 1.14 (1.05-1.24), respectively, after adjusting for
326	covariates compared to the Q1 group[34]. However, in a multicenter, longitudinal cohort study
327	that included 18619 adults, high PP was not related to an increased risk of diabetes after adjusting
328	for BMI, mean arterial pressure, gender, high-sensitivity C reactive protein, age, exercise,
329	smoking, blood pressure lowering agents, drinking, hyperlipidemia, and family history of
330	diabetes[35]. A retrospective study of 178 individuals with hypertension found that PP was not

Page 17 of 39

BMJ Open

associated with the risk of new-onset diabetes after adjusting for potential confounders[36]. This retrospective cohort study involved 182672 Chinese individuals and revealed a higher incidence of prediabetes at increased PP levels. After adjusting for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking status, and age, the results indicated that each unit of the LAP raised the risk of prediabetes by 0.9%. Moreover, sensitivity analysis has demonstrated that this correlation remains observable in Chinese adults with age <60 years or BMI <25 kg/m². The efforts mentioned above have demonstrated the consistency of the connection between PP and Pre-DM risk. The findings offered a clinical PP-level intervention guideline to decrease Pre-DM risk. Few previous studies have investigated the probable curvilinear link between PP and prediabetes. The current study first examined the nonlinear association between PP and prediabetes. After controlling for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr, sex, FPG, family history of diabetes, drinking status, and age, the findings revealed that the connection between PP and prediabetes was nonlinear. Based on a two-piecewise Cox proportional hazards regression model, we identified the inflection point of PP as 29 mmHg. When PP levels exceeded 29 mmHg, a 1-unit increase in PP correlated with a 0.9% increase in the hazard ratio (HR) for individuals with Pre-DM (HR: 1.009, 95% CI: 1.008-1.011, P<0.001). However, no significant correlation was observed between PP levels below 29 mmHg and the incident Pre-DM (HR: 0.990, 95% CI: 0.977-1.003, P = 0.149). Elevated PP serves as a valuable indicator for identifying high-risk participants likely to develop Pre-DM during follow-up. Moreover, our analysis revealed that the relationship between PP and the emergence of Pre-DM was more pronounced in never-smokers, ever-smokers, females, and individuals with BMI< 25

353	kg/m ² . In contrast, this association appeared attenuated in males, current smokers, and individuals
354	with BMI \geq 25 kg/m ² . Prior research has consistently identified obesity, smoking, and male as
355	contributors to insulin resistance[37, 38], which is a precursor to Pre-DM. We postulated that the
356	attenuated association observed in these subgroups may be attributable to the overriding influence
357	of these risk factors on the pathogenesis of Pre-DM. The direct impact of PP on prediabetes risk
358	may be somewhat eclipsed by the more substantial effects of obesity, active smoking, and the
359	male sex on insulin resistance and subsequent Pre-DM development. This information can remind
360	individuals to adopt healthier lifestyle habits sooner, ultimately improving their outcomes.
361	The mechanism behind the association between PP and prediabetes is yet unknown. Several
362	explanations currently exist for PP leading to Pre-DM. Firstly, endothelial cell dysfunction may
363	result in microvascular dysfunction[39], which in turn causes dysfunctional glucose metabolism,
364	insulin resistance, poor tissue perfusion, and arterial stiffness[40-42]. Additionally, arterial
365	stiffness may exacerbate microvascular lesions, creating a vicious cycle[43, 44]. Secondly, normal
366	arteries can reduce PP, but arterial stiffness increases blood flow through low-resistance organs
367	(such as the kidney and brain), which will cause organ dysfunction[45]. As a low-resistance,
368	high-blood-flow organ with a mean tissue perfusion of 250-300 ml/min/100g, the pancreas may
369	be negatively impacted by arterial stiffness in terms of its endocrine function.
370	The current research possesses several notable advantages. Firstly, we delved deeper into the
371	nonlinear relationship between PP and prediabetes. Secondly, we minimized the impact of residual
372	confounding factors through rigorous statistical adjustments. Thirdly, we conducted sensitivity
373	analyses to ensure the robustness of our findings. Lastly, we performed a group analysis to

evaluate other potential risk covariates that could affect the link between PP and Pre-DM.

Page 19 of 39

BMJ Open

The present study has certain limitations. First, this study is based on a Chinese population, and while it offers valuable insights, the findings might not be directly generalizable to other populations due to genetic, lifestyle, and environmental differences. In the future, we will explore the relationship between PP and prediabetes risk in diverse populations. Second, as our study was a secondary analysis, we cannot guarantee data quality monitoring and variable control. In forthcoming research endeavors, we will endeavor to construct prospective cohort studies with enhanced data quality oversight and variable control, thereby mitigating bias. Third, excluding over 500,000 individuals from a final cohort of 182,672 subjects could have selection bias and implications for generalisability. In the future, we will design prospective studies in a more diverse population to validate our findings. Fourth, prediabetes was defined based on impaired fasting glucose levels in our study. This could potentially lead to underestimation of prediabetes incidence. This is a secondary retrospective study, and the raw data did not provide information regarding 2-hour oral glucose tolerance test or glycosylated hemoglobin level measurements. In the future, we will consider designing our study to document more variables, including 2-hour oral glucose tolerance test or glycosylated hemoglobin level measurements. Fifth, as with all observational studies, there may be uncontrolled or unmeasured confounding factors, such as diet, exercise, atherosclerosis, the use of antihypertensive medications, and the presence of hypertension, despite controlling for known potential confounders like BMI, TC, LDL-C, AST, ALT, Scr, BUN, and FPG. However, we used the E-value to evaluate the impact of unmeasured confounders and determined it unlikely that they fully explained the results. Sixth, SBP and DBP were only measured at baseline in the original study, and we did not assess how SBP and DBP changed over time. In the future, we will consider designing our own study and documenting more

3	397	information, such as diet, exercise, atherosclerosis, antihypertensive medications, the presence of
	398	hypertension and changes in blood pressure over time, and then utilizing a GAM model to explore
ŝ	399	the impact of changes in PP on Pre-DM risk.
2	400	Conclusion
2	401	This cohort study of the Chinese population shows that PP was inversely and non-linearly
2	402	associated with the incidence of Pre-DM after adjusting for other confounding factors. High PP
2	403	levels were related to Pre-DM risk when PP was above 29 mmHg. From a therapeutic standpoint,
2	404	lowering the PP below the inflection point represents a cost-effective and straightforward
2	405	approach for the early prevention and intervention of Pre-DM.
2	406	
2	407	Declarations
2	408	Ethics approval and consent to participate
2	409	The original study followed guidelines outlined by the Helsinki Declaration and was approved by
2	410	the Rich Healthcare Group Review Board. In addition, the Rich Healthcare Group Review Board
2	411	has waived informed consent for the current retrospective study. All methods were performed in
2	412	accordance with the relevant Declaration of Helsinki.
2	413	Consent for publication
2	414	Not applicable.
2	415	Availability of data and materials
2	416	The authors confirm that the data supporting the findings of this study are available within the
2	417	article [and/or its supplementary materials].
2	418	Competing interests

1 2		
2 3 4 5	419	The authors declare that they have no competing interests.
6 7	420	Funding
8 9 10	421	This study was supported by the Natural Science Funding of China (No.82272598, No.81901470),
11 12 13	422	and the Natural Science Foundation of Guangdong Province, China (No. 2020A1515011203).
14 15 16	423	This study was also supported by the Science, Technology and Innovation Commission of
17 18	424	Shenzhen (JCYJ20210324135804012, JCYJ20220530150407015).
19 20 21	425	Author contributions
22 23 24	426	Changchun Cao and Yong Han contributed to the study concept and design, researched and
25 26	427	interpreted the data, and drafted the manuscript. Haofei Hu, Yongcheng He, and Jiao Luo
27 28 29	428	analyzed the data and reviewed the manuscript. Changchun Cao and Yong Han oversaw the
30 31 32	429	project's progress, contributed to the discussion, and reviewed the manuscript. Haofei Hu,
33 34 25	430	Yongcheng He, and Jiao Luo were the guarantors of this work. As such, they had full access to all
35 36 37	431	data in the study and were responsible for the data integrity and analysis accuracy. All authors
38 39 40	432	read and approved the final manuscript.
41 42 43	433	Acknowledgments
44 45	434	
46 47 48	436	
49 50 51	437	
52 53	438	
54 55 56	439	
57 58 59	440	
60		

Table 1 The Baseline Characteristics of Participants

РР	Q1(≤36)	Q2(36 to ≤43)	Q3(43 to ≤50)	Q4(>50)	P-value
Participants	39914	47771	43811	51176	
Gender					< 0.001
Male	16960 (42.491%)	22739 (47.600%)	24830 (56.675%)	32437 (63.383%)	
Female	22954 (57.509%)	25032 (52.400%)	18981 (43.325%)	18739 (36.617%)	
Age(years)	39.837 ± 9.945	39.905 ± 10.269	40.186 ± 11.236	43.028 ± 14.560	< 0.001
Drinking status					
Current-drinker	526 (1.318%)	712 (1.490%)	682 (1.557%)	1004 (1.962%)	
Ex-drinker	3923 (9.829%)	5436 (11.379%)	5777 (13.186%)	7498 (14.651%)	
Never- drinker	35465 (88.854%)	41623 (87.130%)	37352 (85.257%)	42674 (83.387%)	
Smoking status					< 0.001
Current-smoker	5468 (13.699%)	7191 (15.053%)	7324 (16.717%)	9441 (18.448%)	
Ex-smoker	1164 (2.916%)	1536 (3.215%)	1707 (3.896%)	2159 (4.219%)	
Never-smoker	33282 (83.384%)	39044 (81.732%)	34780 (79.386%)	39576 (77.333%)	
Family history of					<0.001
diabetes					<0.001
No	38974 (97.645%)	46764 (97.892%)	42922 (97.971%)	50379 (98.443%)	
Yes	940 (2.355%)	1007 (2.108%)	889 (2.029%)	797 (1.557%)	
SBP (mmHg)	104.383 ± 10.737	111.554 ± 10.604	119.000 ± 10.592	131.740 ± 12.760	< 0.001
DBP (mmHg)	73.782 ± 10.685	72.461 ± 10.398	73.164 ± 10.347	74.508 ± 10.733	< 0.001
BMI (kg/m ²)	22.205 ± 3.119	22.654 ± 3.134	23.100 ± 3.184	23.773 ± 3.358	< 0.001
AST(U/L)	21.2 (17, 26.6)	21.5 (17.2, 27)	22 (17.7, 27.8)	23(18.1, 28.7)	< 0.001
ALT (U/L)	16 (11.6, 24)	16.6(12, 25.3)	18 (12, 27.4)	19.3(14, 29)	< 0.001
HDL-C (mmol/L)	1.394 ± 0.312	1.384 ± 0.310	1.365 ± 0.304	1.351 ± 0.303	< 0.001
TG (mmol/L)	0.94 (0.67, 1.40)	0.99 (0.70, 1.47)	1.04 (0.72, 1.55)	1.12 (0.79, 1.69)	< 0.001
LDL-C (mmol/L)	2.651 ± 0.656	2.663 ± 0.660	2.685 ± 0.671	2.734 ± 0.690	< 0.001
TC (mmol/L)	4.617 ± 0.858	4.632 ± 0.863	4.659 ± 0.880	4.725 ± 0.916	< 0.001
BUN (mmol/L)	4.502 ± 1.142	4.538 ± 1.148	4.612 ± 1.156	4.732 ± 1.199	< 0.001
SCr (umol/L)	67.116 ± 14.932	68.284 ± 15.134	70.240 ± 15.137	72.093 ± 16.223	< 0.001
FPG (mmol/L)	4.691 ± 0.513	4.730 ± 0.497	4.772 ± 0.480	4.849 ± 0.450	< 0.001
PP (mmHg)	30.601 ± 3.971	39.093 ± 1.979	45.836 ± 1.986	57.232 ± 6.395	< 0.001
42 Values are n (%	b) or mean \pm SD				
43 PP: pulse pressu	ure, SBP systolic blood pr	essure, DBP diastolic	blood pressure, BMI bo	dy mass index, ALT	
44 alanine aminotr	ansferase, AST aspartate	aminotransferase, HDI	L-C high-density lipopro	otein cholesterol, LDL-	С
45 low-density lipo	oprotein cholesterol, TC to	otal cholesterol, TG tri	glycerides, Scr serum ci	reatinine, BUN blood u	rea
46 nitrogen, FPG f	asting plasma glucose				
47					
48					
49					
50					
51					
52					
53					

2	
3	
4	
5	
6	
7	
/ 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
עו סכ	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
/1	
יד 12	
+∠ ∕\2	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
58	
59	

454	Table 2 Relationship	between PP and	l incident prediabe	tes in different models
-----	----------------------	----------------	---------------------	-------------------------

Variable	Non-adjusted model	Minimally-adjusted	Fully-adjusted model	GAM
	(HR.,95% CI, P)	model (HR,95% CI,	(HR,95% CI, P)	(HR,95% CI, P)
		P)		
Total	1.025 (1.023, 1.026)	1.013 (1.011, 1.014)	1.009 (1.007, 1.010)	1.008 (1.007, 1.010)
PP	< 0.001	< 0.001	< 0.001	< 0.001
PP (quartile)				
Q1	ref	ref	ref	ref
02	1.125 (1.077, 1.176)	1.070 (1.024, 1.118)	1.043 (0.998, 1.090)	1.046 (1.001, 1.093)
Q2	< 0.001	0.003	0.061	0.045
03	1.347 (1.290, 1.407)	1.208 (1.156, 1.262)	1.131 (1.083, 1.181)	1.129 (1.080, 1.179)
Q3	<0.001	< 0.001	< 0.001	< 0.001
04	1.860 (1.787, 1.935)	1.408 (1.352, 1.467)	1.246 (1.197, 1.298)	1.238 (1.188, 1.291)
Υ τ	<0.001	< 0.001	< 0.001	< 0.001
P for trend	<0.001	< 0.001	< 0.001	< 0.001
Gender				
Male		ref	ref	
Female		0.777 (0.751, 0.803)	0.877 (0.843, 0.913)	
		<0.001	< 0.001	
Age(years)		1.027 (1.026, 1.028)	1.022 (1.021, 1.023)	
		<0.001	< 0.001	
Drinking status				
Current-drinker		ref	ref	
Ex-drinker		0.965 (0.877, 1.061)	• 1.013 (0.920, 1.114)	
		0.457	0.799	
Never- drinker		0.911 (0.832, 0.997)	1.075 (0.981, 1.178)	
		0.042	0.122	
Smoking status				
Current-smoker		ref	ref	
Ex-smoker		1.020 (0.948, 1.097)	1.021 (0.949, 1.098)	
		0.596	0.578	
Never-smoker		1.055 (1.016, 1.095)	1.023 (0.985, 1.062)	
		0.005	0.246	
Family history of				
diabetes				
No		ref	ref	
Yes		1.157 (1.058, 1.265)	1.120 (1.024, 1.225)	
		0.001	0.013	
BMI (kg/m ²)		1.091 (1.086, 1.095)	1.060 (1.055, 1.065)	
		< 0.001	< 0.001	
AST(U/L)			0.999 (0.997, 1.000)	
			0.150	
ALT (U/L)			1.003 (1.002, 1.004)	
			< 0.001	

HDL-C (mmol/L)	1 429 (1 252 1 500)
	<0.001
TC(rem 1/L)	<0.001
IG (mmol/L)	1.143 (1.129, 1.161)
$IDL C (mm e^{1/L})$	<0.001
LDL-C (mmol/L)	1.309 (1.248, 1.373)
$TO\left(a,a,b\right)$	<0.001
IC (mmol/L)	0.7/2 (0.741, 0.803)
	<0.001
BUN (mmol/L)	0.976 (0.964, 0.988)
	<0.001
SCr (umol/L)	1.003 (1.002, 1.004)
EDC (mmol/L)	<0.001
	4.015 (4.451, 4.780)
	<0.001
Crude model: we did not adjust for other covarian	lts.
Minimally-adjusted model: we adjusted for gende	r, age, family history of diabetes, drinking status, smoking status, and BMI
Fully-adjusted model: we adjusted for gender, age	e, family history of diabetes, drinking status, smoking status, BMI, TC, TG,
HDL-C, LDL-C, AST, ALT, SCr, BUN, a	nd FPG.
GAM: All covariates listed in Table 1 were adjust	ed. However, continuous covariates were adjusted as nonlinearity.
J HR, hazard ratios; CI, confidence interval; Ref, r	reference; GAM, generalized additive mode; PP, pulse pressure.
2	
5	
+ -	
-	
7	
3	
)	
)	
L	
2	
3	
1	
5	
7	

	Incident prediabetes	HR (95%CI)	P
	Fitting model by standard linear regression	1.009 (1.007, 1.010)	<0.001
	Fitting model by two-piecewise Cox proporti	ional hazards regression	
	The inflection point of PP (mmHg)	29	
	≤29	0.990 (0.977, 1.003)	0.149
	>29	1.009 (1.008, 1.011)	< 0.001
	P for the log-likelihood ratio test	0.008	
36	We adjusted for gender, age, family history of d	iabetes, drinking status, smoki	ing status, BMI, TC, TG, HDL-C, L
7	ALT, SCr, BUN, and FPG.		
8	HR, hazard ratios; CI, confidence; PP: pulse press	sure	
89			
) 0			
91			
92			
93			
94			
95			
96			
97			
98			
9			
00			
01			
)2			
)3			
)4			
)5			
06			
70			
)8			
09			
10			
.1			
12			
13			
14			

Figure 2 The nonlinear relationship between PP and incident prediabetes. A

nonlinear relationship between PP and incident prediabetes was detected after

adjusting for smoking status, BMI, TG, ALT, TC, AST, LDL-C, BUN, HDL-C, SCr,

sex, FPG, family history of diabetes, drinking status, and age.

<text>

Figure 1 Study Population

2	
3 4	516
5	
6 7	517
8	
9 10	518
11	
12	519
13 14	
15	520
16 17	F 2 1
18	521
19	522
20 21	523
22	524
23	525
24 25	526
26	010
27 28	527
29	
30 21	528
32	
33	529
34 35	
36	530
37 39	F 2 4
30 39	531
40	532
41 42	552
43	533
44 45	
46	534
47	
48 49	535
50	
51 52	536
53	
54 55	537
55 56	500
57	558
58 59	539
60	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3 4	540	References:
5	540	
6 7	541	1. All MK, Bullard KM, Saydah S, Imperatore G, Gregg EW: Cardiovascular and renal burdens
7 8	542	of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988-2014.
9	543	<i>LANCET DIABETES ENDO</i> 2018, 6 (5):392-403.
10	544	2. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q et al: Prevalence of
11	545	diabetes among men and women in China. NEW ENGL J MED 2010, 362(12):1090-1101.
12	546	3. Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H, Shi B, Sun H, Ba J, Chen B et al: Prevalence of
14	547	diabetes recorded in mainland China using 2018 diagnostic criteria from the American
15	548	Diabetes Association: national cross sectional study. BMJ-BRIT MED J 2020, 369:m997.
16 17	549	4. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M: Prediabetes: a high-risk state for
17	550	diabetes development. LANCET 2012, 379(9833):2279-2290.
19	551	5. Somaratne JB, Whalley GA, Poppe KK, ter Bals MM, Wadams G, Pearl A, Bagg W, Doughty RN:
20	552	Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the
21	553	community. CARDIOVASC DIABETOL 2011, 10:29.
23	554	6. Kodama S, Horikawa C, Fujihara K, Yoshizawa S, Yachi Y, Tanaka S, Ohara N, Matsunaga S,
24	555	Yamada T, Hanyu O et al: Meta-analysis of the quantitative relation between pulse pressure and
25	556	mean arterial pressure and cardiovascular risk in patients with diabetes mellitus. AM J CARDIOL
26 27	557	2014, 113 (6):1058-1065.
28	558	7. Laugesen E. Knudsen ST. Hansen KW. Rossen NB. Poulsen PL: Invasive aortic pulse pressure
29	559	is not superior to cuff pulse pressure in cardiovascular risk prediction. J HYPERTENS 2020.
30 21	560	Publish Ahead of Print.
31	561	8. Rojas RJ. Chavez-Sosa JV. Gutierrez-Ajalcrina R. Huancahuire-Vega S: Association between
33	562	dehydroeniandrosterone levels and cardiovascular risk in public sector health workers in a
34	563	Peruvian region CARDIOVASC ENDOCR ME 2021 10(1):51-55
35 36	564	9 Lee CL Yoon M Ha I Oh I Park S Lee SH Kang SM: Comparison of the Association
30 37	565	Between Arterial Stiffness Indices and Heart Failure in Patients With High Cardiovascular Risk.
38	566	A Betrospective Study FRONT CARDIOVASC MED 2021 8:782840
39	500	10 Aper P. Ozeka O. Karakurt M. Ozen V. Ozbay MP. Unal S. Karanfil M. Vayle C. Cay S. Maden
40 41	507	10. Acai B, Ozeke O, Karakult M, Ozen F, Ozbay MB, Olar S, Karahili M, Fayla C, Cay S, Maden
41	508	D et al. Association of Prediabetes with Higher Coronary Atheroscierotic Burden Among
43	569	Patients with First Diagnosed Acute Coronary Syndrome. ANGIOLOGY 2019, 70(2):174-180.
44	570	11. Wu C, Ma D, Chen Y: Association of Pulse Pressure Difference and Diabetes Mellitus in
45 46	571	Chinese People: A Cohort Study. INT J GEN MED 2021, 14:6601-6608.
40 47	572	12. Chen Y, Zhang XP, Yuan J, Cai B, Wang XL, Wu XL, Zhang YH, Zhang XY, Yin T, Zhu XH et
48	573	al: Association of body mass index and age with incident diabetes in Chinese adults: a
49	574	population-based cohort study. BMJ OPEN 2018, 8(9):e21768.
50 51	575	13. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018.
52	576	DIABETES CARE 2018, 41(Suppl 1):S13-S27.
53	577	14. Qin H, Chen Z, Zhang Y, Wang L, Ouyang P, Cheng L, Zhang Y: Triglyceride to high-density
54	578	lipoprotein cholesterol ratio is associated with incident diabetes in men: A retrospective study of
55 56	579	Chinese individuals. J DIABETES INVEST 2020, 11(1):192-198.
50 57	580	15. Robson ME, Tung N, Conte P, Im SA, Senkus E, Xu B, Masuda N, Delaloge S, Li W, Armstrong
58	581	A et al: OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy
59	582	treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative
60		

2		
3	583	metastatic breast cancer. ANN ONCOL 2019, 30 (4):558-566.
4	584	16. White IR, Royston P, Wood AM: Multiple imputation using chained equations: Issues and
6	585	guidance for practice. STAT MED 2011, 30 (4):377-399.
7	586	17. Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, Poole C,
8	587	Schlesselman JJ. Egger M: Strengthening the Reporting of Observational Studies in Epidemiology
9 10	588	(STROBE): explanation and elaboration INT I SURG 2014 12(12):1500-1524
11	589	18 Zhu F Chen C Zhang Y Chen S Huang X Li I Wang Y Liu X Deng G Gao I Elevated
12	590	blood mercury level has a non-linear association with infertility in U.S. women: Data from the
13	590	NHANES 2013-2016 REPROD TOXICOL 2020 91:53-58
14 15	502	10 Theng X Cao C He V Wang X Wu I Hu H: Association between nonalcoholic fatty liver
16	592	disease and insident disketes mellitus among Languages a netrospective schout study using
17	593	disease and incident diabetes melitus among Japanese: a retrospective conort study using
18	594	propensity score matching. LIPIDS HEALTH DIS 2021, 20(1):59.
19 20	595	20. Mullee A, Romaguera D, Pearson-Stuttard J, Viallon V, Stepien M, Freisling H, Fagherazzi G,
20	596	Mancini FR, Boutron-Ruault MC, Kuhn T et al: Association Between Soft Drink Consumption and
22	597	Mortality in 10 European Countries. JAMA INTERN MED 2019, 179(11):1479-1490.
23	598	21. Keidel D, Anto JM, Basagana X, Bono R, Burte E, Carsin AE, Forsberg B, Fuertes E, Galobardes
24 25	599	B, Heinrich J et al: The Role of Socioeconomic Status in the Association of Lung Function and Air
25	600	Pollution-A Pooled Analysis of Three Adult ESCAPE Cohorts. INT J ENV RES PUB HE 2019,
27	601	16 (11).
28	602	22. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP: The
29	603	Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement:
31	604	guidelines for reporting observational studies. INT J SURG 2014, 12(12):1495-1499.
32	605	23. Yamamoto M, Fujihara K, Ishizawa M, Osawa T, Kaneko M, Ishiguro H, Matsubayashi Y, Seida
33	606	H, Yamanaka N, Tanaka S et al: Pulse Pressure is a Stronger Predictor Than Systolic Blood
34	607	Pressure for Severe Eye Diseases in Diabetes Mellitus. J AM HEART ASSOC 2019, 8(8):e10627.
36	608	24. Al-Qamari A, Adeleke I, Kretzer A, Hogue CW: Pulse pressure and perioperative stroke.
37	609	CURR OPIN ANESTHESIO 2019, 32 (1):57-63.
38	610	25. Li J, Huang JY, Lo K, Zhang B, Huang YQ, Feng YQ: Association of pulse pressure with
39 40	611	all-cause mortality in young adults. <i>POSTGRAD MED J</i> 2020, 96 (1138):461-466.
41	612	26. St-Louis E, Sudarshan M, Al-Habboubi M, El-Husseini HM, Deckelbaum DL, Razek TS,
42	613	Feldman LS Khwaia K. The outcomes of the elderly in acute care general surgery EUR J
43	614	TRAUMA EMERG S 2016 42(1):107-113
44 45	615	27 Brown CT Neuman MD: Ontimizing Perioperative Care for Older Adults Anesthesiol Clin
46	616	2015 33(3) vv vvi
47	617	2015, 55(5).AV-AVI.
48	610	26. Gavisi B, Buisztyn W. Ambuiatory puise pressure components. concept, acter mination and
49 50	010	chinical relevance. J HIPERIENS 2019, 57(4).705-774.
51	619	29. Payne KA, whikinson IB, webb DJ: Arterial stiffness and hypertension: emerging concepts.
52	620	HYPERTENSION 2010, 55(1):9-14.
53	621	30. Zhang L, Wang B, Wang C, Li L, Ren Y, Zhang H, Yang X, Zhao Y, Han C, Zhou J <i>et al</i> : High
54 55	622	pulse pressure is related to risk of type 2 diabetes mellitus in Chinese middle-aged females. $INT J$
56	623	CARDIOL 2016, 220 :467-471.
57	624	31. Yasuno S, Ueshima K, Oba K, Fujimoto A, Hirata M, Ogihara T, Saruta T, Nakao K: Is pulse
58	625	pressure a predictor of new-onset diabetes in high-risk hypertensive patients?: a subanalysis of
59 60	626	the Candesartan Antihypertensive Survival Evaluation in Japan (CASE-J) trial. DIABETES
1		
----------	-----	--
2		
3 4	627	<i>CARE</i> 2010, 33 (5):1122-1127.
5	628	32. Kwon YJ, Chung TH, Shim JY, Lee YJ: The association of pulse pressure with metabolic
6	629	syndrome in Korean elderly: A nationwide population-based study. DIABETES RES CLIN PR
7	630	2017, 123 :75-81.
8	631	33. Zhang X, Li Y, Wang F, Zang J, Liu X, Zhang H, Yang K, Zhang G, Wang C: Independent and
9 10	632	combined effects of resting heart rate and pulse pressure with metabolic syndrome in Chinese
11	633	rural nonulation: The Henan Rural Cohort study CLIN CHIM ACTA 2018 484-246-252
12	634	34 Li WI Eang W Cai ZE Han X Zheng MV Chen GZ Wu WO Chen ZC Chen VR Wu SI
13	635	[Association between nulse pressure and new opset diabetes in hypertensive nations]. <i>Thenghua</i>
14 15	635	Vin Vin Chan Ding Za Zhi 2021 40(7):672-670
15	030	A in A ue Guan Bing Za Zni 2021, 49(7).075-079.
17	637	35. Wu Y, Han X, Gao J, Wang Y, Zhu C, Huang Z, Xing A, Chen S, Ma Y, Zheng M <i>et al</i> :
18	638	Individual and combined contributions of age-specific and sex-specific pulse pressure and
19 20	639	brachial-ankle pulse wave velocity to the risk of new-onset diabetes mellitus. BMJ OPEN DIAB
20 21	640	<i>RES CA</i> 2021, 9 (1).
22	641	36. Chen JY, Chou CH, Lee YL, Tsai WC, Lin CC, Huang YY, Chen JH: Association of central
23	642	aortic pressures indexes with development of diabetes mellitus in essential hypertension. AM J
24	643	HYPERTENS 2010, 23 (10):1069-1073.
25 26	644	37. Juneja A, Dwivedi S, Srivastava DK, Chandra K: Insulin Resistance in Young Obese Subjects
27	645	and Its Relation to Smoking (A Pilot Study). INDIAN J CLIN BIOCHE 2017, 32(1):99-102.
28	646	38. Ciarambino T, Crispino P, Guarisco G, Giordano M: Gender Differences in Insulin Resistance:
29	647	New Knowledge and Perspectives. CURR ISSUES MOL BIOL 2023, 45(10):7845-7861.
30 31	648	39. Muris DM, Houben AJ, Schram MT, Stehouwer CD: Microvascular dysfunction is associated
32	649	with a higher incidence of type 2 diabetes mellitus: a systematic review and meta-analysis.
33	650	ARTERIOSCL THROM VAS 2012. 32 (12):3082-3094
34	651	40 Levy BI Schiffrin EL Mourad II Agostini D Vicaut E Safar ME Struijker-Boudier HA
35	652	Impaired tissue perfusion: a pathology common to hypertension obesity and diabetes mellitus
37	653	CIRCULATION 2008 118(9):968-976
38	654	41 Vincent MA Clerk IH Lindner IB Klibanov AI Clark MG Battigan S Barrett El:
39	655	Microvescular recent time is an early insulin effect that regulates skaletel muscle glucese untake
40 41	656	in vivo. DIADETES 2004 52(6):1419 1422
42	050	1 VIVO. DIABETES 2004, S3(0).1418-1425.
43	057	42. Mank AR, Kondragunia V, Kullo IJ: Forearm vascular reactivity and arterial summess in
44	658	asymptomatic adults from the community. <i>HYPERTENSION</i> 2008, 51 (6):1512-1518.
45 46	659	43. Malik AR, Kondragunta V, Kullo IJ: Forearm vascular reactivity and arterial stiffness in
40 47	660	asymptomatic adults from the community. <i>HYPERTENSION</i> 2008, 51 (6):1512-1518.
48	661	44. O'Rourke MF, Hashimoto J: Mechanical factors in arterial aging: a clinical perspective. J AM
49	662	<i>COLL CARDIOL</i> 2007, 50 (1):1-13.
50 51	663	45. Ungvari Z, Csiszar A, Kaminski PM, Wolin MS, Koller A: Chronic high pressure-induced
52	664	arterial oxidative stress: involvement of protein kinase C-dependent NAD(P)H oxidase and local
53	665	renin-angiotensin system. AM J PATHOL 2004, 165(1):219-226.
54	666	
55 56	667	
50		
58		
59		
60		

BMJ Open

РР	Participants (n)	prediabetes events (n)	Cumulative incidence (95%CI) (%)	Per 100,000 person-year
Total	182672	20284	11.10 (10.96–11.25)	3532.68
Q1	39914	3560	8.92(8.64–9.20)	2779.24
Q2	47771	4525	9.47 (9.21–9.73)	2999.95
Q3	43811	4740	10.82 (10.53–11.11)	3470.06
Q4	51176	7459	14.58 (14.27–14.88)	4701.37
P for trend			<0.001	< 0.001

Supplemental Table 1 Incidence rate of incident prediabetes.

PP: pulse pressure, CI: confidence interval

	Statistics	HR (95%CI)	P value
Gender			< 0.001
Male	96966 (53.082%)	ref	
Female	85706 (46.918%)	0.627 (0.609, 0.645)	< 0.001
Age(years)	40.832 ± 11.864	1.033 (1.032, 1.034)	< 0.001
Drinking status			
Current-drinker	2924 (1.601%)	ref	
Ex-drinker	22634 (12.391%)	0.770 (0.701, 0.846)	< 0.001
Never- drinker	157114 (86.009%)	0.607 (0.556, 0.663)	< 0.001
Smoking status			
Current-smoker	29424 (16.108%)	ref	
Ex-smoker	6566 (3.594%)	0.896 (0.834, 0.963)	0.003
Never-smoker	146682 (80.298%)	0.714 (0.691, 0.739)	< 0.001
Family history of diabetes			0.350
No	179039 (98.011%)	ref	
Yes	3633 (1.989%)	1.054 (0.965, 1.153) 0.24372	
SBP (mmHg)	117.428 ± 15.208	1.026 (1.025, 1.027)	< 0.001
DBP (mmHg)	73.492 ± 10.572	1.029 (1.028, 1.030)	< 0.001
PP (mmHg)	43.936 ± 10.595	1.025 (1.023, 1.026)	< 0.001
BMI (kg/m2)	22.976 ± 3.259	1.124 (1.120, 1.129)	< 0.001
AST(U/L)	23.591 ± 12.164	1.005 (1.005, 1.006)	< 0.001
ALT (U/L)	23.232 ± 21.734	1.003 (1.003, 1.004)	< 0.001
HDL-C (mmol/L)	1.372 ± 0.307	0.739 (0.707, 0.773)	< 0.001
TG (mmol/L)	1.267 ± 0.934	1.200 (1.192, 1.208)	< 0.001
LDL-C (mmol/L)	2.685 ± 0.671	1.280 (1.256, 1.305)	< 0.001
TC (mmol/L)	4.661 ± 0.882	1.220 (1.202, 1.238)	< 0.001
BUN (mmol/L)	4.602 ± 1.167	1.136 (1.124, 1.149)	< 0.001
SCr (umol/L)	69.565 ± 15.522	1.006 (1.006, 1.007)	< 0.001
FPG (mmol/L)	4.765 ± 0.487	5.711 (5.513, 5.916)	< 0.001

PP: pulse pressure, SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index, ALT alanine aminotransferase, AST aspartate aminotransferase, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, Scr serum creatinine, BUN blood urea nitrogen, FPG fasting plasma glucose

2	
3	
4	
5	
2	
6	
7	
8	
0	
10	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
27	
57	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
17	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
5/	
58	
59	

1

Exposure

PP

Supplemental	Table	3	Relationship	between	PP	and	prediabetes	in	different
sensitivity analy	yses								

Model II (HR,95%CI, P)

1.008 (1.007, 1.010) < 0.001

Model I (HR,95%CI, P)

1.011 (1.009, 1.013) < 0.001

PP (Quintile)		
Q1	Ref	Ref
Q2	1.055 (0.999, 1.115) 0.055	1.040 (0.993, 1.090) 0.097
Q3	1.166 (1.104, 1.232) <0.001	1.123 (1.072, 1.177) <0.001
Q4	1.310 (1.244, 1.379) <0.001	1.228 (1.175, 1.285) <0.001
P for trend	<0.001	<0.001

Model I was sensitivity analysis in participants without BMI≥25kg/m². We adjusted gender, age, family history of diabetes, drinking status, smoking status, TC, TG, HDL-C, LDL-C, AST, ALT, SCr, BUN, and FPG.

Model II was sensitivity analysis in participants without age 260 years. We adjusted gender, family history of diabetes, drinking status, smoking status, BMI, TC, TG, HDL-C, LDL-C, AST, ALT, SCr, BUN, and FPG.

HR, hazard ratios; CI, confidence, Ref: reference; PP: pulse pressure

ar. , LDL-C, without age≥60. , C, LDL-C, AST, AL. rence; PP: pulse pressure

Supplemental Table 4 Variables included age, gender, smoking status, BMI, family history of diabetes, and drinking status interacted with PP

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

exploratory subgroups				
Characteristic	No of participants	HR (95%CI)	P value	P for interaction
Age, years				0.134
<60	165813	1.008 (1.006, 1.009	9) <0.001	
≥60	16859	1.010 (1.007, 1.013	3) < 0.001	
Gender				< 0.001
Male	96966	1.006 (1.004, 1.008	8) <0.001	
Female	85706	1.011 (1.009, 1.013	3) < 0.001	
BMI (kg/m ²)				< 0.001
<25	135554	1.012 (1.010, 1.014	4) <0.001	
≥25	47118	1.006 (1.004, 1.008	8) <0.001	
Smoking status				0.008
Current smoker	29424	1.005 (1.002, 1.008	8) <0.001	
Ever smoker	6566	1.007 (1.001, 1.013	3) 0.021	
Never smoker	146682	1.010 (1.008, 1.01)	1) < 0.001	
Drinking status				0.271
Current drinker	2924	1.014 (1.006, 1.022	2) <0.001	
Ever drinker	22634	1.007 (1.004, 1.010	0) < 0.001	
Never drinker	157114	1.009 (1.007, 1.010	0) <0.001	
Family history of diabetes				0.062
No	179039	1.009 (1.007, 1.010	0) <0.001	
Yes	3633	1.001 (0.992, 1.009	9) 0.907	

Supplemental Table 5 Effect size of PP on prediabetes in prespecified and exploratory subgroups

Note 1: The above model was adjusted for gender, age, family history of diabetes, drinking status, smoking status, BMI, TC, TG, HDL-C, LDL-C, AST, ALT, SCr, BUN, and FPG.

Note 2: The model is not adjusted for the stratification variable in each case.

1	
2	
3	Sunnlamontal Table 6
4	Suppremental Table 0
5	pre-imputation data and i
б	Exposure
7	Dortiginanta
8	Farticipants
9	Gender
10	Male
11	F 1
12	Female
13	Age(years)
14	Drinking status
15	Drinking status
16	Current-drinker
17	
18	Ex-drinker
19	Never- drinker

Supplemental Table 6 Relationship between PP and the incident prediabetes in pre-imputation data and imputed datasets

Imputation

P-value

Pre-imputation

Participants	182672	182672	
Gender			1.000
Male	96966 (53.082%)	96966 (53.082%)	
Female	85706 (46.918%)	85706 (46.918%)	
Age(years)	40.832 ± 11.864	40.832 ± 11.864	1.000
Drinking status			< 0.001
Current-drinker	978 (1.932%)	2924 (1.601%)	
Ex-drinker	7340 (14.501%)	22634 (12.391%)	
Never- drinker	42299 (83.567%)	157114 (86.009%)	
Smoking status			< 0.001
Current-smoker	9609 (18.984%)	29424 (16.108%)	
Ex-smoker	2104 (4.157%)	6566 (3.594%)	
Never-smoker	38904 (76.860%)	146682 (80.298%)	
Family history of			1 000
diabetes			1.000
No	179039 (98.011%)	179039 (98.011%)	
Yes	3633 (1.989%)	3633 (1.989%)	
BMI (kg/m ²)	22.976 ± 3.259	22.976 ± 3.259	1.000
AST(U/L)	23.685 ± 12.404	• 23.591 ± 12.164	0.075
ALT (U/L)	23.219 ± 21.739	23.232 ± 21.734	0.854
HDL-C (mmol/L)	1.378 ± 0.308	1.372 ± 0.307	< 0.001
TG (mmol/L)	1.268 ± 0.934	1.267 ± 0.934	0.889
LDL-C (mmol/L)	2.739 ± 0.669	2.685 ± 0.671	< 0.001
TC (mmol/L)	4.663 ± 0.883	4.661 ± 0.882	0.630
BUN (mmol/L)	4.604 ± 1.165	4.602 ± 1.167	0.630
SCr (umol/L)	69.628 ± 15.507	69.565 ± 15.522	0.228
FPG (mmol/L)	4.765 ± 0.487	4.765 ± 0.487	1.000

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3-4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	6
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			-
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	7
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	-
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7-8
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8
		confounding	10
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	9
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	10-
		eligible, examined for eligibility, confirmed eligible, included in the study,	11
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	10-
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	10-
Outcome data	15*	Report numbers of outcome events or summary measures over time	11
	10		<u> </u>

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	11- 12
		(b) Report category boundaries when continuous variables were categorized	12
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	12
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12- 13
Discussion			
Key results	18	Summarise key results with reference to study objectives	13- 14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	16- 17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14- 16
Generalisability	21	Discuss the generalisability (external validity) of the study results	16
Other informati	on		-
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	18

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.