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1 Assumptions

The no interference assumption is that the counterfactual event time for a given individual, T a0 ,
does not depend on the treatment received by any other individuals. The positivity assumption is
that each individual has a strictly non-zero probability of receiving each given pattern of treatments
over time. Consistency means that an individual’s observed outcome is equal to the counterfactual
outcome when the assigned treatment pattern is set to that which was actually received, Ti =

T
A0,i

i . The conditional exchangeability assumption can be expressed formally as T Āk−1,ak ⊥⊥
Ak|Āk−1, L̄k, T ≥ k for all feasible ak, where T Āk−1,ak denotes the counterfactual event time
had an individual followed their observed treatment pattern up to time k − 1, Āk−1, and had
their treatments been set to ak from time k onwards, given survival to time k. The conditional
exchangeability assumption means that among individuals who remain at risk of the event at time
k, the treatment Ak received at time k may depend on past treatment and covariates Āk−1 and L̄k,
but that, conditional on these, it does not depend on the remaining lifetime that would apply if all
future treatments were set to any particular values ak.

2 Inverse probability weights

2.1 MSM-IPTW

To estimate MSMs using IPTW, the weight at time t for individual i is the inverse of their probabil-
ity of their observed treatment pattern up time time t given their time-dependent covariate history
(Cole and Hernán, 2008, Daniel et al., 2013):

Wi(t) =

btc∏
k=0

1

Pr(Ak = Ak,i|L̄k,i, Āk−1,i, T ≥ k)
(1)

Some individuals can have very large weights, which can results in the parameters of the MSM be-
ing estimated very imprecisely, and therefore stabilized weights are typically used. The stabilized
weight for individual i is:

SWi(t) =

btc∏
k=0

Pr(Ak = Ak,i|Āk−1,i, T ≥ k)

Pr(Ak = Ak,i|L̄k,i, Āk−1,i, T ≥ k)
(2)

The model in the numerator of the stabilized weights can also include covariates measured at time
0, L̄0:

SWi(t) =

btc∏
k=0

Pr(Ak = Ak,i|Āk−1,i, L̄0,i, T ≥ k)

Pr(Ak = Ak,i|L̄k,i, Āk−1,i, T ≥ k)
, (3)

in which case the MSM must also condition on these variables, as noted in the main text.

The models used in the weights can be estimated using logistic regression, and they may be fitted
using all visits combined or separately by visit.
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When the MSM for the hazard is a Cox model, the integrated (cumulative) baseline hazards re-
quired to obtain estimates of risk can be estimated using an IPTW Breslow’s estimator (Main text
Section 4.2). The estimate of the cumulative baseline hazard at time t is therefore given by

Ĥ0(t) =
∑
tj≤t

dj∑
l∈Rj

wl(tj)e
β̂>A ābtjc

(4)

where the sum is over event times tj ≤ t, Rj denotes the risk set at time tj , dj denotes the number
of events at time tj (with dj = 1 if there are no tied event times), and wl(tj) denotes the IPTW for
individual l ∈ Rj at time tj .

2.2 Sequential trials

For individuals in the trial starting at visit k but who do not initiate treatment at that time (Āk = 0)
the weight at time t− k from the start of the trial is

W 0
i,k(t− k) =

k+btc∏
j=k+1

1

Pr(Aj = 0|L̄j,i, Ā(k,j−1),i = 0, T ≥ k)
(5)

where Ā(k,j−1) = {Ak, Ak+1, . . . , Aj−1} denotes the treatment status from visit k to visit j − 1.
For those who initiate treatment at the start of trial k (Āk−1 = 0, Ak = 1) the weight is

W 1
i,k(t− k) =

k+btc∏
j=k+1

1

Pr(Aj = 1|L̄j,i, Āk−1,i = 0, Ā(k,j−1),i = 1, T ≥ k)
(6)

In the trial starting at visit k, the weights are equal to 1 for all individuals between time k and
k + 1, i.e. up to follow-up time 1 in trial k.

The corresponding stabilized weights are

SW 0
i,k(t− k) =

k+btc∏
j=k+1

Pr(Aj = 0|L̄k,i, Ā(k,j−1),i = 0, T ≥ k)

Pr(Aj = 0|L̄j,i, Ā(k,j−1),i = 0, T ≥ k)
(7)

and

SW 1
i,k(t− k) =

k+btc∏
j=k+1

Pr(Aj = 1|L̄k,i, Āk−1,i = 0, Ā(k,j−1),i = 1, T ≥ k)

Pr(Aj = 1|L̄j,i, Āk−1,i = 0, Ā(k,j−1),i = 1, T ≥ k)
(8)

where the probability in the numerator is conditional on the covariates L̄k observed at the start of
trial k.

The models used in the weights can be estimated using logistic regression, and they may be fitted
using all visits combined or separately by visit, and across all trials combined or separately by
trial.

3 Compatibility of differently specified MSMs

In Section 4 in the main text we considered MSMs based on Cox models or on additive hazard
models. In this section we show that one can use an additive hazard model for the MSM for
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the sequential trials analysis (equation (14)) (with common parameters assumed across trials) and
an additive hazard model for the MSM used in the MSM-IPTW approach (equation (5)), and
that both MSMs can be correctly specified. However, if we use a Cox model for the MSM for
the sequential trials analysis (equation (13)) and a Cox model for the MSM used in the MSM-
IPTW approach (equation (5)), then both MSMs cannot simultaneously be correctly specified in
general. This is because the parameters of additive hazard models are collapsible, whereas hazard
ratios in the Cox model are non-collapsible. Martinussen and Vansteelandt (2013)Martinussen
and Vansteelandt (2013) explained the implications of collapsibility for the use of Aalen additive
hazards models and Cox models in the context of estimating the causal effect of a point treatment
on survival. Keogh et al. (2021)Keogh et al. (2021) extended to a longitudinal setting similar to
that considered in this paper. Here we outline some key points in the context of the simple setting
depicted in Figures 2 and 3 in the main text.

For the MSM-IPTW analysis in this section we focus on an MSM that is not conditional on L0,
as in equations (4), (5). The MSMs used in a MSM-IPTW analysis and in the sequential trials
analysis may be considered to be consistent with each other if there exists an underlying fully
conditional hazard model that implies both the MSM used in MSM-IPTW and the MSM used in
the sequential trials approach, which is conditional on covariates measured at the start of each
trial. As in Section 5.2 in the main text, for illustration we consider estimating Pr(Y a0=a

1 = 0)
(or Pr(T a0=a > 1)) and Pr(Y ā1=a

2 = 0) (or Pr(T a1=a > 2)). First consider a fully conditional
additive hazard model of the form

h(t|Ābtc, L̄btc) = α0(t) + αA(t)Abtc + αL(t)Lbtc. (9)

Under this model the conditional survival probability at time 1 is

Pr(Y1 = 0|A0, L0) = exp

(
−
∫ 1

0
(α0(u) + αA(u)A0 + αL(u)L0)du

)
(10)

and the marginal probability of survival to time 1 is

Pr(Y A0=a
1 = 0) = e−

∫ 1
0 (α0(u)+αA(u)A0)du Pr(L0 = 0) + e−

∫ 1
0 (α0(u)+αA(u)A0+αL(u))du Pr(L0 = 1)

= e−
∫ 1
0 (α∗0(u)+αA(u)A0)du,

(11)

where
∫ 1

0 α
∗
0(u)du =

∫ 1
0 α0(u)du + log{Pr(L0 = 0) + e−

∫ 1
0 αL(u)du Pr(L0 = 1)}. This ex-

pression is in the form of the survival probability from a marginal additive hazard model of the
form

h
T

A0=a (t) = α∗0(t) + αA(t)a. (12)

It follows that we could use an additive hazard model for Pr(Y a0=a
1 = 0|L0) in the sequential

trials analysis and an additive hazard model for Pr(Y a0=a
1 = 0) in the MSM-IPTW analysis, and

that both models can be correctly specified.

Next consider the probabilities Pr(Y ā1=a
2 = 0) = Pr(Y ā1=a

2 = 0|Y a0=a
1 = 0) Pr(Y a0=a

1 = 0)
and Pr(Y ā1=a

2 = 0|L0) = Pr(Y ā1=a
2 = 0|Y a0=a

1 = 0, L0) Pr(Y a0=a
1 = 0|L0). Under the fully

conditional additive hazard model in (9) it can be shown that (see below)

Pr(Y ā1=a
2 = 0|Y a0=a

1 = 0, L0) = exp

{
−
∫ 2

1
(α0(u) + αA(u)a)du+ ∆(a, L0)

}
(13)
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and

Pr(Y ā1=a
2 = 0|Y A0=a

1 = 0) = exp

{
−
∫ 2

1
(α0(u) + αA(u)a)du+ ∆∗(a)

}
, (14)

where

∆(a, L0) = log
{

Pr(L1 = 0|Y1 = 0, A0 = a, L0) + e−
∫ 2
1 αL(u)du Pr(L1 = 1|Y1 = 0, A0 = a, L0)

}
and

∆∗(a) = log

{
e∆(a,0) Pr(L0 = 0) + e∆(a,0)−

∫ 1
0 αL(u)du Pr(L1 = 1)

Pr(L0 = 0) + e−
∫ 1
0 αL(u)du Pr(L1 = 1)

}
.

It follows that there exists an underlying conditional hazard model that gives rise to an additive
model for the sequential trials analysis and for the MSM-IPTW analysis. To obtain expressions
(13) and (14) we used the result that the probability Pr(Y ā1=a

2 = 0|Y a0=a
1 = 0) can be written

Pr(Y ā1=a
2 = 0|Y a0=a

1 = 0) =
∑
l0

Pr(Y ā1=a
2 = 0|Y a0=a

1 = 0, L0 = l0)
Pr(Y1 = 0|A0 = a, L0 = l0) Pr(L0 = l0)∑
l′0

Pr(Y1 = 0|A0 = a, L0 = l′0) Pr(L0 = l′0)

(15)

and the first term in the sum can then be written

Pr(Y ā1=a
2 = 0|Y a0=a

1 = 0, L0) =
∑
l1

Pr(Y2 = 0|Y1 = 0, Ā1 = a, L0, L1 = l1) Pr(L1 = l1|Y1 = 0, A0 = a, L0).

(16)

Secondly consider a fully conditional Cox proportional hazards model of the form

h(t|Ābtc, L̄btc) = h0(t)eβAAbtc+βLLbtc . (17)

Under this model the conditional survival probability at time 1 is Pr(Y1 = 0|A0, L0) = exp
(
−H0(1)eβAA0+βLL0

)
where H0(1) =

∫ 1
0 h0(u)du. Using this, the marginal probability of interest can be written

Pr(Y a0=a
1 = 0) = exp

(
−H0(1)eβAA0

)
Pr(L0 = 0) + exp

(
−H0(1)eβAA0+βL

)
Pr(L0 = 1).

(18)
This expression for Pr(Y a0=a

1 = 0) is not the form of the survival probability from a marginal
Cox proportional hazards model. Therefore, if a Cox model was assumed for hTa0 (t|L0) in the
sequential trials analysis, then this does not imply a Cox model for hTa0 (t) in the MSM-IPTW
analysis, and vice-versa. If Cox models are used for a sequential trials analysis and a MSM-IPTW
analysis then the two analyses make different modelling assumptions that cannot both be true. In
practice, however, a Cox model could be a good working model for both approaches.

The result in this section has implications for comparing estimates obtained from the MSM-IPTW
approach and the sequential trials approach, and we make use of these in the simulation study in
Section 6 of the main text by using additive hazards models.
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Table 1: Simulation results. Summary of number of individuals observed at each time, number
always treated and never treated, and corresponding percentages. Numbers and percentages are
the mean across the 1000 simulations.

MSM-IPTW Sequential trials
Time k Time k

0 1 2 3 4 0 1 2 3 4
Scenario 1
Observed at time k N 1000 829 694 588 502 2264 1414 873 509 238

% 100 83 69 59 50 100 62 39 22 10
Always treated from time 0 to k N 279 237 204 177 155 643 514 397 282 155

% 28 29 29 30 31 28 36 46 55 65
Never treated from time 0 to k N 721 424 249 144 82 1621 900 475 227 82

% 72 51 36 25 16 72 64 54 45 35

Scenario 2
Observed at time k N 1000 821 675 556 458 3180 2178 1403 806 349

% 100 82 68 56 46 100 68 44 25 11
Always treated from time 0 to k N 53 45 39 34 29 197 142 98 61 29

% 5 5 6 6 6 6 7 7 8 8
Never treated from time 0 to k N 947 731 560 425 319 2983 2036 1305 745 319

% 95 89 83 76 70 94 93 93 92 92

Scenario 3
Observed at time k N 1000 832 701 596 510 2083 1333 865 543 287

% 100 83 70 60 51 100 64 42 26 14
Always treated from time 0 to k N 387 326 278 241 210 700 563 446 337 210

% 39 39 40 40 41 34 42 52 62 73
Never treated from time 0 to k N 613 352 213 129 77 1383 770 419 206 77

% 61 42 30 22 15 66 58 48 38 27
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Figure 1: Simulation results: bias in estimation of the risk difference using the sequential trials
analysis and the MSM-IPTW analysis. The black line shows the bias at each time point and the
grey area shows the Monte-Carlo 95% CI at each time point. The MSM-IPTW results are from
the MSM not conditional on L0.
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Figure 2: Simulation results: relative efficiency of the sequential trials analysis compared with
the MSM-IPTW analysis, defined as the ratio of the empirical variances of the risk difference
estimates at each time. The MSM-IPTW results are from the MSM not conditional on L0.
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Figure 3: Simulation results using truncated weights: bias in estimation of the risk difference using
the sequential trials analysis and the MSM-IPTW analysis. The black line shows the bias at each
time point and the grey area shows the Monte-Carlo 95% CI at each time point. The MSM-IPTW
results are from the MSM conditional on L0.
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Figure 4: Simulation results using truncated weights: relative efficiency of the sequential trials
analysis compared with the MSM-IPTW analysis, defined as the ratio of the empirical variances of
the risk difference estimates at each time. The MSM-IPTW results are from the MSM conditional
on L0.
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Figure 5: Plots showing the distribution of the weights used in the MSM-IPTW and sequential
trials analyses of the application using UK CF Registry data.
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