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S1. The reliability of stochastic processes: Methods 
 
This simulation was conducted to determine the contribution of random sampling to test-retest 
reliability.  As we describe in the main text, for any given underlying probability (say 0.5) if 
there are only a few trials, the likelihood of actually observing that same probability may not be 
high.  Consequently, test-retest reliability (the likelihood of observing that probability twice ina  
row) should suffer.  

This is likely to differ not only as a function of number of repetitions, but also the 
magnitude of the underlying probability itself.  In some ways this should reflect basic 
mathematics (since the standard deviation of an observed probability is a function of that 
probability and the number of trials), though it is not immediately clear how to derive this 
function. However, estimating these values is crucial for understanding test-retest reliability of 
any experimental or psychometric measure – the laws of sampling set a sort of baseline 
expectation (that could be further moderated by the way items are combined, by variation from 
test to retest and so forth). 

Methods.  To assess this, we conducted a simple Monte Carlo simulation.  We started by 
determining a set of probabilities of interest.  These were done in logit space (which is 
effectively infinite, unlike probabilities), and ranged from -4 (p=.018) to 0 (p=.5) to +4 (p=.982) 
in steps of .5.  On each run then we randomly drew 50 subjects.  Each subject had a mean given 
by the current probability, with Gaussian variation of 0.5 (in logit space).  Thus, for simulations 
of and underlying p=.12 (logit=-2), subject means ranged from p=.076 to p=.18; while for 
simulations at an underlying p =.5 (logit = 0), subject means ranged from p=.376 to p=.623. 

After setting the underlying probability for a subject, we next sampled some number of 
draws from that probability and computed the mean.  We then did this again (for retest) and 
saved the results.  After doing this for all 50 subjects, we computed a simple Pearson correlation 
between the means for test and retest.  
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S2. Free parameters in the model 
 

Table S2.1 Means, SD and bounds of the random distributions for the logistic function. 

Parameter Mean SD 
Lower 
Bound 

Upper 
Bound 

Lower asymptote (b) 0.115 0.12 0 0.3 
Upper asymptote (p) 0.885 0.12 0.5 1 
Crossover (xo) 765 85 300 1100 
Slope (s) 0.0016 0.0007 0.0009 0.01 

 

Table S2.2. Means, SD and bounds of the random distributions for the asymmetric Gaussian 
function used to model competitor fixations.  
 

Parameter Mean SD 
Lower 
Bound 

Upper 
Bound 

Peak time () 630 77 300 1300 
Peak Height (ht) 0.18 0.05 0.05 0.35 
Onset Slope (1) 130 30 50 250 
Offset Slope (2) 250 120 50 400 
Onset Asymptote (b1) 0.05 0.015 0 0.15 
Offset Asymptote (b2) 0.05 0.015 0 0.15 
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S3. A Multinomial approach (Simulation 4) 
 

One limitation of the simulations presented in the main text was that they assumed a 
binomial distribution of fixations, centered around the underlying curve.   That is, fixations to 
each object were modeled simply as whether or not the participant was fixating the target (or 
competitor).  This is an oversimplification of the true, multinomial process.  That is, at each time, 
participants are choosing which of the four objects to fixate – a choice to fixate the target 
necessarily means a choice not to fixate the cohort, or unrelated objects.   
 Supplement S3 thus sought to explore whether this additional step toward realism would 
constrain the key points of this study.  We constructed a simple multinomial version of the 
models in Simulations 1-3.  These were run under all three fixation models (HFS, FBS, and 
FBS+T), and we conducted a simplified analysis.   
 
Approach 

The multinomial model was intended to model a typical an experimental situation with a 
target, an onset or cohort competitor that would be expected to have heightened competition, and 
two unrelated objects that would be expected to show lower competition.  The target was 
assumed to have an underlying fixation curve that took the logistic form; the cohort and 
unrelated objects came from an asymmetric Gaussian.  The underlying parameters of these 
functions were random for each subject and unconstrained with three exceptions.   
 First, the lower asymptote of all four functions was assumed to be the same.  Second, the 
unrelated objects had lower peaks than the cohorts.  Third, we constrained the total system to 
have a summed probability of less than 1.0.  To accomplish this, for each subject, we drew a set 
of 19 parameters, and then computed the underlying curves for all four objects over time.  These 
were summed.  If the sum at any point exceeded 1.0, then the parameters were redrawn. Note 
that the four objects could sum to less than 1.0 (and always did at early points); this captures the 
fact that participants often do not look at any of the four objects. 
 Once the underlying fixation curves for a subject were drawn, I next generated a series of 
fixations.  This time, rather than simply saving whether the participant was fixating the object (or 
not), I computed which of the four objects was being fixated at each time.  This same procedure 
was followed for all three fixation models. Note that for the FBS+T model, when fixations were 
directed to the cohort, the unrelated, or to nothing I used the base distribution of fixation 
durations (with the shorter means), if it was directed to the target, I used the longer ones. 
 After generating the fixation curves to each object, data were averaged and curves were 
fit separately to the target, cohort and unrelated items.  Lastly, these were correlated with the true 
values, and bias was quantified as before.  Our analysis focused solely on the targets and cohort.  
The unrelated items were very difficult to fit accurately (since fixations were so low), and would 
not be typically of interest in a VWP study. 
 
Results 
As Table S3.1 shows, fits to both the targets and cohorts were very good overall, in all three 
simulations (HFS, FBS and FBS+T).  In general targets averaged well above 0.99 and cohorts 
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were above .93.  Only a small number of runs were excluded from analysis  (because either the 
target or cohort fit had a correlation below 0.8). 
 Figure S3.1 shows a representative set of 10 runs from each of the three simulations.   
Much like was seen in the binomial models, under the HFS fixation model, the underlying 
generating functions (in black) generally match the observed data (in red) fairly closely once the 
200 msec oculomotor delay is accounted for.  However, with the FBS model (Panel B) we see 
increasing divergence, particularly in the slope and timing of the functions.  The FBS+T model 
shows even more divergence, but now the asymptotes are no longer accurate (Panel C).  

Validity. We analyzed the validity of the observed parameters to the underlying ones 
using a correlational analysis.  Table S3.2 shows the results for each simulation, along with the 
corresponding results from the binomial analysis presented in the main text.   

In the HFS model, the target correlations were near perfect in the multinomial model (as 
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Figure S3.1. Representative subjects for the multinomial model for A) HFS; B) FBS; and C) 
FBS+T.  In HFS, the observed fixation curves (red) generally match the underlying generating 
functions (in black).  However, FBS and FBS+T show increasing divergence.  
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they were in the binomial).  Cohort 
parameters generally showed 
similarly high correlations between 
the underlying and estimated values, 
and generally matched the binomial 
model.  There were two exceptions 
to this: peak time showed a good 
correlation (r=.729) that was 
noticeably lower for the multinomial 
model than the binomial (r=.988); 
and the onset slope (r=.212) was substantially lower than in the binomial models (r=.946).    

A similar pattern emerged for the FBS models.  For targets, correlations were close 
between the binomial and multinomial model, but generally a bit lower.  However, for cohorts, 
many parameters that were quite highly correlated with HFS assumptions dropped substantially – 
offset slope, for example, went from r=.909 to r=.306.  However, these were generally in line 
with the performance of the binomial model and confirm what we saw before. 

For the FBS+T model things showed a different pattern.  For targets, correlations were 
lower for the two asymptotes, but slightly higher for the  slope and crossover.  However, for 
cohorts, correlations dropped across the board (relative to the FBS or the binomial model). 

Thus, with respect to the validity of the observed data (relative to the underlying 
generating function), the adoption of the multinomial model showed a similar pattern to the 
binomial model, and largely made the situation worse, particularly at more realistic generating 
functions. 

Bias. We next examined bias of the nine parameters estimates.  Table S3.3 shows in 
terms of Cohen’s D (mean / SD) for each parameter in each of the three simulations.  Bias also 
showed a similar pattern to the binomial models.  The HFS model was essentially unbiased, with 
the exception of the two timing parameters: the target crossover was delayed by 200 msec, and 
the cohort peak time was delayed by 184 msec.   These reflect the built-in oculomotor delay. 
Much like the binomial model, the FBS model showed an even greater bias in the crossover 
(M=327 msec) and cohort peak time (M=307) that exceeded the mean fixation time.  However, 
now bias was also beginning to appear in target slope (D=1.24) and height (D=.69).  This was 
also observed in the binomial model.  In the FBS+T model, all of the target parameters now 
showed substantial bias (D>1), as did virtually all of the competitor parameters.   

Table S3.2.  Correlations between the estimated and underlying target and cohort 
parameters for the three simulations.   

 
Parameter 

HFS FBS FBS+T 
Multi- Bi- Multi- Bi- Multi- Bi- 

T
ar

ge
t Baseline (b) .999 1.0 .975 .987 .929 .935 

Max  1.0 1.0 .974 .986 .845 .892 
Crossover (xo) 1.0 1.0 .849 .855 .805 .792 
Slope (s) 1.0 .998 .755 .751 .702 .616 

C
oh

or
t 

peak time () .729 .988 .410 .502 .268  
peak height (ht) .984 .997 .823 .845 .762  
onset slope (1) .212 .946 .070 .112 .040  
offset slope (2) .909 .990 .306 .327 .222  
offset asymp (b2) .995 .996 .694 .681 .550  

 

Table S3.1. Quality of fits to targets and cohorts. R is the 
correlation between the averaged observed data and the fitted 
line.  Runs were excluded if either the target or cohort fits 
had a correlation below 0.8. 
 

 HFS FBS FBS+T 
R (fit 

quality) 
Target .997 .998 .998 
Cohort .933 .961 .960 

Excluded (out of 1000) 37 17 14 
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Conclusions.  In short, findings were quite similar in the multinomial formulation to the 
binomial models presented in the main text.  I observed a fairly close alignment between the 
underlying and observed fixation curves under the HFS fixation model with little bias (outside of 
the oculomotor delay).  However, under the more realistic FBS and FBS+T models I saw 
reduced correlations between the observed and estimated parameters (particularly for timing 
parameters), and greater bias.  This also accords with the binomial models.   One notable 
exception was that the cohort looks in the FBS+T model showed even more bias than they did in 
the FBS model.  This is noteworthy, because the FBS+T fixation model does not lengthen the 
fixations to the competitor (only to the target); so the competitors should have behaved more like 
FBS.  However, In the multinomial model the, the longer target fixations can affect competitor 
fixations since if the subject is fixating the target for longer, he or she cannot be fixating the 
competitor.  

The multinomial model is clearly yet another step toward realism over the binomial 
models presented in the main text.  Yet as I have consistently observed, each step toward a more 
realistic fixation generating function leads to lower validity estimates and increased bias of the 
observed data relative to the underlying.  
 
  

Table S3.3.  Bias (Mean difference between observed and underlying value, and Cohen’s D) of the estimated target 
and cohort parameters for the three simulations. For corresponding means in the binomial models see corresponding 
tables in the main text.  
 

 

Parameter 

HFS FBS FBS+T 
Multi- Bi- Multi- Bi- Multi- Bi- 

M D D M D D M D D 

T
ar

ge
t Baseline (b) <.0001 -0.02 -.03 0.0033 0.34 .24 -.03 -1.00 -1.08 

Max  <.0001 -0.05 -.06 <.0001 <.0001 .09 -.082 -1.84 -1.12 
Crossover (xo) -200. -79.87 -88.68 -327.1 -6.23 -6.44 -328.9 -5.33 -4.88 
Slope (s) <.0001 -0.03 <.001 <.0001 1.24 1.22 .0005 1.26 1.41 

C
oh

or
t peak time () -184.6 -2.47 -16.80 -307.3 -1.67 -2.13 -266.1 -1.23  

peak height (ht) -.0018 -0.21 -.06 0.019 .69 .85 .033 1.04  
offset slope (2) -6.40 -0.16 .01 -61.6 -.38 -.27 -90.5 -0.53  
offset asymp (b2) <.0001 0.07 .003 0.0026 .19 .14 .016 1.09  
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S4. Supplementary Reliability Figures 
 
One question that arises in simulations on reliability (Simulation 4) was whether low reliability 
in the FBS and FBS+T simulations was due to the quality of the fits, or if the generated fixation 
curves were unreliable.  That is, with a fixed number of trials, it is possible that any two runs of 
the exact same model might yield measurably different dat.  To evaluate this, we created grid 
plots similar to Figures 4,6,8,10,12 that show the underlying and observed data as well as the 
quality of the fits.  Critically, here the important thing is not the fits, but the generated raw data.  

 
Here we show those grids for the target functions under the FBS model (Figure S1.1) and FBS+T 
model (Figure S1.2), and the competitors under FBS (Figure S1.3).  Under the FBS assumption, 
the observed data (the comparison between the blue and red lines) is fairly unreliable with 50 
trials (top row). However, by 150 there are fewer differences (perhaps only the middle panel) 
and at 300 they are quite close.  Under FBS+T assumptions (Figure S1.2), the results are quite 
similar.  However, the competitor (Figure S1.3) is a different story. Here at every level of the 
number of trials (including 300) there are at least a few subjects with substantive differences 
between test and retest.  This is notable given that the observed data was generated from the 
same underlying function. 
 
 
 
 
 

Figure S4.1. Representative subjects for target fixations in the reliability analyses assuming fixation-
based sampling (FBS).  Each column is a subject; rows correspond to the number of trials (top: 50; 
second: 150; third: 300).  Black curve represents the underlying function used to generate both runs.  
Red and blue curves are observed fixation curves for two independent runs. 
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Figure S4.2. Representative subjects for target fixations in the reliability analyses assuming fixation-
based sampling with enhanced target duration (FBS+T).  Each column is a subject; rows correspond to 
the number of trials (top: 50; second: 150; third: 300).  Black curve represents the underlying function 
used to generate both runs.  Red and blue curves are observed fixation curves for two independent runs. 
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Figure S4.3. Representative subjects for competitor fixations in the reliability analyses assuming 
fixation-based sampling (FBS).  Each column is a subject; rows correspond to the number of trials (top: 
50; second: 150; third: 300).  Black curve represents the underlying function used to generate both runs.  
Red and blue curves are observed fixation curves for two independent runs. 
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S5. Implementation of the Approximate Generative Model 
 
Two issues arose with fitting the approximate generative model to the data: how to do the fitting 
itself, and how to estimate starting parameters. 

First, standard gradient descent techniques for minimizing error require a smooth error 
function relating degree of error to the underlying parameters, as gradient descent relies on the 
derivative of that function to search the parameter space. That is, does the error go down or up 
(and by how much) when the slope (for example) is increased?  In our case, the derivative cannot 
be computed analytically (e.g., derived) because the function itself is stochastic. Consequently, 
most gradient descent methods work by generating the error at two values of the parameter and 
computing the differences.  However, our reliability simulations show that under a reasonable 
number of trials, the same underlying generating function can give rise to differences in the 
observed data from run to run – even when the parameters are the same. This makes the error 
gradient less than smooth and as a result, a curvefitter may jump around in parameter space, 
responding not to differences in the error, but to random variation from run to run. To solve this, 
the generative function creates estimated fixation curves for a large number of trials (10,000). 
Thus, the error function is the difference between the observed data and the data generated by the 
current parameters in the limit. 

Second, even with this assumption, it was not wise to overly trust the derivative of the 
error function. Thus, a pattern search (Hooke & Jeeves, 1961) optimizer was used.  Pattern 
search is somewhat coarser than derivative-based algorithms, but less sensitive to discontinuities 
in the data. At the broadest levels, pattern search accomplishes this by manipulating the 
parameters in a single direction, determining if that change improves or hurts performance, and 
then locking that choice (if it improved performance). It then repeats the process with the step 
size halved until no further changes are observed.  

Third, under this scheme (and with all nonlinear approaches) one must estimate starting 
parameters for the underlying function. These are generally fairly straightforward for the 
standard curves – the peak height of the asymmetric gaussian, for example, can be estimated as 
the highest value of the data, or crossover of the logistic as the time where the data crosses 50%. 
However, under the generating models assumed here, the underlying function is not a veridical 
match of the observed data, making these kind of approaches impractical. I experimented with 
several approaches. Some parameters could be estimated directly from the data where the 
measures were unbiased (e.g., the asymptotes of the logistic under an FBS model). For others, I 
attempted a brute force search along a single dimension. Finally, I also investigated the 
possibility of first fitting a traditional function to the observed data, and then using a regression 
(based on the prior simulations) to map the parameters of the surface data to the likely 
parameters of the underlying data. The final procedure used a hybrid using different approaches 
for each parameter (see this project’s OSF site for more detail about how starting parameters for 
both these fits and the more traditional fits are estimated: https://osf.io/wbgc7/).  
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S6. A lagged correlation approach to relating real time and time in the fixation curves. 
 

While typical approaches to analysis assume a fixed lag (usually of 200 msec) between 
the underlying activation curves and the observed fixations (Allopenna, Magnuson, & 
Tanenhaus, 1998). However, some of the findings presented here suggest a more nonlinear 
relationship such that the delay may be greater later in the trial.   
 To quantify this, we conducted a lagged correlation analysis.  For this analysis, a set of 
subjects were generated.  At each timeslice, the data and the underlying probabilities were 
correlated to determine how the degree to which the fixation curves were related to the 
underlying data.  We then introduce a lag, correlating the fixation data at time T to the 
underlying activation at T-1 and recomputed the correlation.  After examining a range of 
possible lags, we identified the lag with the greatest correlation as the empirically derived time 
delay at that time. This was then done for each timeslice (of real-time). Finally this was done for 
targets and competitors for all of the fixation generating functions. 
 Approach.  This approach was done as a series of 25 experiments.  Each experiment ran 
250 participants for 300 trials using identical procedures to the validity simulationms  Lags were 
considered from -600 to 100 msec.  The best lag at each time was computed by first computing 
the correlations across all lags.  These were then normalized such that the lowest correlation was 
0 and the highest was 1.0.  Next, all of the timeslices whose normalized correlation was greater 
than 0.97 (97% of maximum) were extracted.  The average of these was the best lag, and the SD 
was saved as a measure of how broad or specific the lag time was.   Finally, means and SDs were 
averaged across all experiments to create the results presented in Figure 26.  
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