Supplementary Information

Enantioselective Total Synthesis of (–)-Lucidumone Enabled by Tandem Prins Cyclization/Cycloetherification Sequence

Authors: Xian-Zhang Liao, Ran Wang, Xin Wang, and Guang Li*

Corresponding author. Email: guang.li@imm.ac.cn

Contents

Supplementary Information	1
1. Supplementary Methods	2
2. Supplementary Discussion	3
3. Supplementary Notes	8
3.1 Detailed experimental procedure	8
3.2 NMR spectra and HPLC spectra	21
3.3 Crystallographic information	40
4. Supplementary References	44

1. Supplementary Methods

Unless otherwise stated, reagents were purchased at the highest commercial quality and used without further purification. Solvents were purchased in HPLC quality, degassed by purging thoroughly with nitrogen and dried over activated molecular sieves of appropriate size. Alternatively, they were purged with argon and passed through alumina columns in a solvent purification system (Innovative Technology). Conversion was monitored by thin layer chromatography (TLC) using Merck TLC silica gel 60 F254. Compounds were visualized by UV light at 254 nm and by dipping the plates in an ethanolic vanillin/sulfuric acid solution or an 72 aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (230–400 mesh).

NMR spectra were recorded on a Bruker 500 MHz and 400 MHz at room temperature, Chemical shifts (δ) were reported in parts per million (ppm) relative to residual solvent peaks rounded to the nearest 0.01 for proton and 0.1 for carbon. Coupling constants (*J*) were reported in Hz to the nearest 0.1 Hz. Peak multiplicity was indicated as follows s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Attribution of peaks was done using the multiplicities and integrals of the peaks.

IR spectra were recorded in a Perkin-Elmer 1000 series FT-IR spectrometer. The spectra were reported in cm⁻¹.

The accurate masses were measured by the mass spectrometry service of IMM, PUMC&CAMS on an Agilent 6244 Tof-MS using ESI (Electrospray Ionization).

2. Supplementary Discussion

Supplementary Table 1. Catalytic enantioselective intramolecular Diels-Alder cycloaddition: optimization of reaction conditions.^[a]

	Ph, Ph o ^{-Si}	Cu salt (10 mol%) Ligand (11 mol%)	Ph Ph O O-Si, N	o L o
		DCM, T		/
Ph L1 Ph	Ph L2	Bn N Ph R		L4: R = Ph L5: R = Bn L6: R = <i>t</i> -Bu L7: R = <i>i</i> -Pr
Ph N N Ph $L3$	Ph Ph L8	Ph Ph Ph $L9$	Phini Ph Ph	O N Ph 0
Entry ^[b]	Catalyst	T[°C]	Yield [%] ^[b]	ee [%] ^[c]
1	L6/Cu(OTf) ₂	r.t	n.r	-
2	$L6/Cu(SbF_6)_2$	r.t	80	87
3	$L6/Cu(SbF_6)_2$	50	86	87
4	$L6/Cu(SbF_6)_2$	70	82	87
5	$L6/Cu(SbF_6)_2$	90	85	86
6	$L7/Cu(SbF_6)_2$	50	85	17
7 ^[e]	L4/Cu(SbF ₆) ₂	50	84	89
8 ^[e]	L4/Cu(OTf) ₂	50	95	91
8 [e]	$L5/Cu(SbF_6)_2$	50	88	60
10 ^[e]	$L1/Cu(SbF_6)_2$	50	88	92
11 ^[e]	L1/Cu(OTf)₂	50	96	92
12 ^{[d][e]}	L1/Cu(OTf) ₂	50	95	92
13 ^[e]	L2/Cu(OTf) ₂	50	90	85
14 ^[e]	L3/Cu(OTf) ₂	50	86	63
15 ^[e]	L8/Cu(OTf) ₂	50	85	77
16	L9/Cu(OTf) ₂	50	n.r	-
17	L10/Cu(OTf) ₂	50	n.r	-

[a] Standard conditions: **12** (0.1 mmol), CuX_2 (0.01 mmol), **L*** (0.011 mmol), DCM (*c* 0.1 M), sealed tube, nitrogen. [b] Isolated yields. [c] Determined by HPLC analysis. [d] **12** (3.0 mmol), $Cu(OTf)_2$ (0.3 mmol), **L1** (0.33 mmol), DCM (*c* 0.1 M), sealed tube, nitrogen. [e] Configuration inverse. Abbreviations: DCM = dichloromethane.

Supplementary Table 2. Optimization of Suzuki cross-coupling reaction conditions

Entry	Conditions ^[a]	Yield of (+)- 8 (%) ^[b]
1	none	69
2	degassed dioxane instead of degassed DMF	20
3	K ₂ CO ₃ instead of K ₃ PO ₄	42
4	without S-Phos	40
5	PdCl ₂ instead of Pd(dppf)Cl ₂	35
6	Pd(OAc) ₂ instead of Pd(dppf)Cl ₂	30
7	25°C instead of 80°C	n.r.

[a] All the reactions were performed using (+)-**10** (0.1 mmol), **9** (0.15 mmol), with Pd(dppf)Cl₂ (10 mol%) and S-Phos (20 mol%), K₃PO₄ (0.3 mmol) in degassed DMF (2.0 mL) at 80 °C for 3 h under N₂ atmosphere in a Schlenk tube. [b] Isolated yield.

Supplementary Table 3. Comparison of 1 H and 13 C NMR data for isolated lucidumone and synthetic lucidumone in CD₃OD

	proton (J in Hz)			carbon
No.	synthetic	isolated	synthetic	isolated
1			149.5, C	149.5, C
2			125.4, C	125.4, C
3			135.4, C	135.4, C
4			150.8, C	150.8, C
5	7.02, d (8.8)	7.01, d (8.7)	126.4, CH	126.4, CH
6	6.76, d (8.7)	6.75, d (8.7)	118.6, CH	118.6, CH
1'			204.3, C	204.2, C
2'	2.89, d (2.3)	2.88, d (2.2)	62.4, CH	62.3, CH
3'			52.7, C	52.7, C
4'	3.92 – 3.89 m	3.90, brs	79.5, CH	79.5, CH
5'	2.36, t-like (4.6)	2.35, t-like (4.5)	48.7, CH	48.7, CH
6'	2.70, q-like (3.3)	2.69, q-like (3.4)	39.1, CH	39.1, CH
7'			87.4, C	87.4, C
8'	Ha 1.92-1.83, m	Ha 1.86, m	16.2, CH ₂	16.2, CH ₂
	Hb 1.07, dddd	Hb 1.06, m		
9'	Ha 2.21-2.15, m	Ha 2.17, m	15.9, CH ₂	15.8, CH2
	Hb 1.38-1.32, m	Hb 1.33, m		
10'	Ha 4.26, dd (8.3, 4.9)	Ha 4.25, dd (8.3, 4.9)	74.3, CH ₂	74.3, CH ₂
	Hb 3.78, d (8.4)	Hb 3.77, d (8.3)		
11'			214.8, C	214.8, C
12'	2.29, s	2.26, s	28.5, CH ₃	28.5, CH ₃

(–)-lucidumone, 1

Supplementary Figure 1. ¹H NMR Data of synthetic and isolated lucidumone

Supplementary Figure 2. ¹³C NMR Data of synthetic and isolated lucidumone

3. Supplementary Notes

3.1 Detailed experimental procedure

A mixture of triphenysilane **S** (2.60 g, 10 mmol), $Co_2(CO)_8$ (136.0 mg, 0.4 mmol), **S1** (7.05 g, 50 mmol) and 50 mL of degased toluene were added to a 200 mL Schlenk tube unde N₂ atmosphere, and stirred for 12 h at room temprature. Then the reaction mixture was cooled to 0 °C and quenched by saturated aqueous NH₄Cl solution, extracted with EtOAc (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated in *vacuo*. The residue was purified by silica gel flash chromatography (petroleum ether/ethyl acetate = 10/1) to afford compound **13** (1.81 g, 45%) as a white solid¹.

Compound 13

TLC (petroleum ether/ethyl acetate, 5:1 v/v): Rf = 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, *J* = 18.5 Hz, 1H), 7.68 (d, *J* = 18.5 Hz, 1H), 7.57 - 7.51 (m, 6H), 7.48 - 7.36 (m, 9H), 4.41 (t, *J* = 7.9 Hz, 2H), 4.07 (t, *J* = 8.0 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 164.6, 153.3, 145.0, 136.9, 136.0, 132.7, 130.1, 128.1, 62.2, 42.7. IR (KBr): v (cm⁻¹) 3068, 3048, 2996, 2923, 1781, 1711, 1681, 1477, 1428, 1386, 1361, 1345, 1270, 1223, 1112, 1026, 998, 964, 844, 758, 741, 709, 700, 653, 617.

HRMS (ESI): m/z calcd. for C₂₄H₂₂NO₃Si [M+H]⁺: 400.1369, found 400.1364.

TfOH (790 µL, 8.9 mmol) was added to a solution of **13** (1.62 g, 4.1 mmol) in DCM (50 mL) at 0 $^{\circ}$ C under N₂ atmosphere and stirred for 3 h. The mixture was cooled to –78 $^{\circ}$ C and 2,6-lutidine (1.2 mL, 9.8 mmol) was added dropwise. After stirring for another 5 minutes, **14**² (554.7 mg, 4.5 mmol) was added. Then the mixture was warmed to 0 $^{\circ}$ C, quenched by saturated aqueous NH₄Cl solution (100 mL) and extracted with DCM (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was subjected to flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1 to 5:1) to afford **12** (1.63 g, 91%) as a colorless oil³.

Compound 12

TLC (petroleum ether/ethyl acetate, 5:1 v/v): Rf = 0.2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 18.6 Hz, 1H), 7.67 – 7.58 (m, 5H), 7.46 – 7.36 (m, 6H), 5.90 – 5.81 (m, 1H), 5.66 (m, 2H), 4.42 (t, *J* = 8.0 Hz, 2H), 4.08 (t, *J* = 8.0 Hz, 2H), 3.88 (t, *J* = 7.0 Hz, 2H), 2.38 (t, *J* = 7.0 Hz, 2H), 2.16 – 2.08 (m, 2H), 2.08 – 1.99 (m, 2H).

 $^{13}\textbf{C}$ NMR (100 MHz, CDCl₃) δ 164.5, 153.3, 144.0, 136.4, 136.0, 135.0, 132.9, 130.5, 128.1, 124.6, 124.0, 120.6, 62.8, 62.2, 42.7, 40.4, 26.5, 22.8.

IR (KBr): v (cm⁻¹) 2956, 2923, 2853, 1781, 1743, 1682, 1590, 1466, 1429, 1385, 1362, 1344, 1270, 1212, 1191, 1112, 1082, 1052, 1032, 969, 867, 847, 829, 758, 741, 715, 700, 662.

HRMS (ESI): *m*/*z* calcd. for C₂₆H₂₈NO₄Si [M+H]⁺: 446.1788, found 446.1782.

Cu(OTf)₂ (109.5 mg, 0.3 mmol) was added to a solution of (4S,4'S)- 2,2'-(1-ethylpropylidene)bis[4,5dihydro-4-phenyl-oxazole] (**L1**, 120.1 mg, 0.33 mmol) in DCM (20 mL) under N₂ atmosphere and stirred for 3 h to deliver [**L1**–Cu](OTf)₂ complex which was used without further purification. Subsequently, compound **12** (3.0 mmol, 1.32 g) in 20 mL of DCM was added to [**L1**-Cu](OTf)₂ (in 20 mL of DCM) under N₂ atmosphere and stirred at 50 °C for 12 h. Upon completion, the reaction was quenched by saturated aqueous NH₄Cl solution and extracted with DCM (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was subjected to flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1 to 5:1) to afford (+)-**11** (1.25 g, 95%, 92% ee) as a colorless oil.

Compound (+)-11

TLC (petroleum ether/ethyl acetate, 5:1 v/v): Rf = 0.2.

Optical rotation: $[\alpha]_{D^{20}} = +42$ (c = 1.0, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (dt, *J* = 4.6, 2.6 Hz, 2H), 7.46 (tt, *J* = 3.3, 1.8 Hz, 5H), 7.38 – 7.26 (m, 3H), 6.24 (d, *J* = 8.2 Hz, 1H), 6.00 (dd, *J* = 8.3, 6.4 Hz, 1H), 4.42 (td, *J* = 13.1, 12.3, 2.3 Hz, 1H), 4.34 (td, *J* = 9.0, 7.3 Hz, 1H), 4.31 – 4.16 (m, 3H), 3.88 (dddd, *J* = 30.4, 11.1, 9.2, 6.9 Hz, 2H), 2.83 (dq, *J* = 5.7, 3.4 Hz, 1H), 2.39 (td, *J* = 13.6, 13.1, 5.0 Hz, 1H), 2.09 (dd, *J* = 7.3, 3.1 Hz, 1H), 1.88 – 1.76 (m, 2H), 1.35 – 1.26 (m, 1H), 1.19 (tt, *J* = 12.3, 3.9 Hz, 1H), 0.84 (tq, *J* = 12.1, 4.5, 3.8 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.8, 153.2, 142.8, 135.3, 134.8, 134.6, 134.1, 130.2, 130.0, 128.4, 128.1, 127.8, 61.8, 61.6, 43.0, 42.5, 38.8, 36.9, 35.1, 28.7, 26.3, 25.8.

IR (KBr): v (cm⁻¹) 2924, 2868, 1775, 1697, 1478, 1427, 1385, 1361, 1317, 1277, 1255, 1193, 1108, 1075, 1040, 999, 982, 956, 916,857, 759, 738, 709, 701, 686, 664.

HRMS (ESI): *m*/*z* calcd. for C₂₆H₂₈NO₄Si [M+H]⁺: 446.1788, found 446.1771.

Chiral HPLC: Chiralpak OD-H, hexane: *i*-PrOH = 80:20, 1.0 mL/min, 210 nm; tR = 11.8 min (minor), 15.9 min (major).

To a solution of compound **11** (448.6 mg, 1.0 mmol) in THF (10 mL) and H₂O (5.0 mL) was added 30 wt.% H₂O₂ in H₂O (1.0 mL, 8.8 mmol), LiOH (72.2 mg, 3.0 mmol) at 0 °C. The mixture was stirred for 5 h then quenched by saturated Na₂S₂O₃ solution. The pH was adjusted to 1 by addition of 1M HCl and extracted with EtOAc (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10:1) to afford (+)-**15** (354.2 mg, 94%) as white solid.

Compound (+)-15

TLC (petroleum ether/ethyl acetate, 5:1 v/v): Rf = 0.4.

Optical rotation: $[\alpha]_{D^{20}} = +10$ (c = 1.0, MeOH).

¹**H NMR** (500 MHz, CDCl₃) δ 7.73 – 7.69 (m, 2H), 7.57 – 7.54 (m, 2H), 7.47 – 7.41 (m, 3H), 7.37 – 7.33 (m, 1H), 7.30 – 7.26 (m, 2H), 6.20 (dt, *J* = 8.2, 1.2 Hz, 1H), 6.14 (dd, *J* = 8.2, 6.3 Hz, 1H), 4.45 (ddd, *J* = 13.0, 11.5, 2.6 Hz, 1H), 4.23 (ddd, *J* = 11.5, 5.2, 1.7 Hz, 1H), 2.94 – 2.88 (m, 1H), 2.81 (dd, *J* = 7.6, 2.0 Hz, 1H), 2.31 (ddd, *J* = 14.3, 13.0, 5.3 Hz, 1H), 1.88 (ddd, *J* = 12.1, 9.6, 4.3 Hz, 1H), 1.81 (ddd, *J* = 14.3, 2.6, 1.7 Hz, 1H), 1.76 (dd, *J* = 7.6, 3.0 Hz, 1H), 1.24 – 1.17 (m, 1H), 1.07 (dddd, *J* = 12.4, 9.9, 4.3, 2.4 Hz, 1H), 0.95 – 0.87 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.9, 142.5, 135.6, 134.82, 134.78, 134.4, 130.2, 130.0, 129.9, 128.0, 127.9, 61.8, 44.9, 38.5, 36.8, 34.2, 30.5, 26.3, 25.7.

IR (KBr): v (cm⁻¹) 3346, 2971, 2932, 2883, 1467, 1409, 1379, 1340, 1310, 1161, 1129, 1109, 953, 817.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₂₅O₃Si [M+H]⁺: 377.1573, found 377.1568.

To a solution of compound **11** (44.2 mg, 0.1 mmol) in THF (2.0 mL) was added LiBH₄ (1.1 mmol, 23.6 mg) at 0 °C. The mixture was stirred for 3 h at r.t., then quenched by saturated NH₄Cl solution and extracted with EtOAc (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 7:1) to afford (+)-**16** (30.5 mg, 85%) as colorless oil.

Compound (+)-16

TLC (petroleum ether/ethyl acetate, 4:1 v/v): Rf = 0.4.

Optical rotation: $[\alpha]_{D^{20}} = +15$ (c = 1.0, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.77 (m, 2H), 7.58 – 7.52 (m, 2H), 7.46 (td, *J* = 4.4, 3.9, 2.3 Hz, 3H), 7.34 (ddd, *J* = 14.2, 7.7, 6.0 Hz, 3H), 6.16 – 6.08 (m, 2H), 4.41 (ddd, *J* = 13.3, 11.6, 2.4 Hz, 1H), 4.19 (ddd, *J* = 11.6, 5.1, 1.9 Hz, 1H), 3.11 (dd, *J* = 6.9, 2.9 Hz, 2H), 2.64 (dq, *J* = 5.4, 2.6 Hz, 1H), 2.32 – 2.16 (m, 2H), 1.79 (tdd, *J* = 14.2, 7.1, 3.3 Hz, 2H), 1.20 (dt, *J* = 12.1, 4.0 Hz, 1H), 1.11 (dddd, *J* = 12.3, 9.8, 4.2, 2.5 Hz, 1H), 0.87 (dt, *J* = 12.1, 3.5 Hz, 1H), 0.73 (dd, *J* = 7.3, 3.1 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 141.9, 136.0, 135.0, 134.7, 134.3, 130.5, 130.3, 129.9, 128.1, 128.0, 67.3, 61.6, 43.0, 39.0, 37.0, 32.5, 32.3, 26.48, 26.46.

IR (KBr): v (cm⁻¹) 3420, 2922, 2866, 1427, 1263, 1108, 1070, 1032, 911, 859, 804, 773, 755, 734, 698, 677.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₂₇O₂Si [M+H]⁺: 363.1780, found 363.1767.

BH₃•THF (1M in THF, 5.0 mL, 5.0 mmol) was added to a solution of (+)-**15** (376.5 mg, 1.0 mmol) in THF (10 mL) at –30 °C under N₂ atmosphere. Upon consumption of the starting material as indicated by TLC, the mixture was allowed to warm to room temperature, and stirred for another 12 h at the same temperature. Then the reaction mixture was cooled to 0 °C followed by the addition of NaBO₃•4H₂O (1.53 g, 10 mmol). The reaction mixture was quenched by saturated aq. NH₄Cl and extracted with EtOAc (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in *vacuo* to give crude diol which was used for the next step without further purification.

To a solution of crude diol, imidazole (340 mg, 5.0 mmol) in DCM (20 mL) at room temperature was added TBSCI (453.6 mg, 3.0 mmol). The reaction was completed in 5 h, then NaHCO₃ (840mg, 10 mmol) and Dess-Martin periodinane (830.2 mg, 2.0 mmol) was added at 0 °C. The mixture was warmed to room temperature, and the reaction was completed in 2 h, quenched by sat. Na₂S₂O₃ aq. and extracted with DCM (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1 to 10:1) to afford (+)-**17** (340.2 mg, 69%) and (+)-**18** (98.6 mg, 20%) both in the form of colorless solid.

Compound (+)-17 (major)

TLC (petroleum ether/ethyl acetate, 10:1 v/v): Rf = 0.35.

Optical rotation: $[\alpha]_{D^{20}} = +53$ (c = 1.0, MeOH).

¹**H NMR** (500 MHz, CDCl₃) δ 7.73 – 7.69 (m, 2H), 7.60 – 7.56 (m, 2H), 7.50 – 7.42 (m, 3H), 7.42 – 7.39 (m, 1H), 7.37 – 7.33 (m, 2H), 4.37 (ddd, *J* = 12.9, 11.6, 2.4 Hz, 1H), 4.17 (ddd, *J* = 11.6, 5.1, 1.8 Hz, 1H), 3.44 (dd, *J* = 10.0, 2.7 Hz, 1H), 3.28 (dd, *J* = 10.0, 5.1 Hz, 1H), 2.29 – 2.24 (m, 2H), 2.10 (d, *J* = 1.5 Hz, 2H), 2.01 – 1.93 (m, 2H), 1.71 – 1.62 (m, 1H), 1.55 (dd, *J* = 8.4, 2.9 Hz, 1H), 3.44 (dd, *J* = 10.0, 2.7 Hz, 1H), 3.28 (dd, *J* = 10.0, 5.1 Hz, 1H), 2.29 – 2.24 (m, 2H), 2.10 (d, *J* = 1.5 Hz, 2H), 2.01 – 1.93 (m, 2H), 1.71 – 1.62 (m, 1H), 1.55 (dd, *J* = 8.4, 2.9 Hz, 1H), 3.44 (dd, *J* = 10.0, 2.7 Hz, 1H), 3.28 (dd, *J* = 10.0, 5.1 Hz, 1H), 2.29 – 2.24 (m, 2H), 2.10 (d, *J* = 1.5 Hz, 2H), 2.01 – 1.93 (m, 2H), 1.71 – 1.62 (m, 1H), 1.55 (dd, *J* = 8.4, 2.9 Hz, 1H), 3.28 (dd, *J* = 1.5 Hz, 2H), 2.01 – 1.93 (m, 2H), 1.71 – 1.62 (m, 1H), 1.55 (dd, *J* = 8.4, 2.9 Hz, 1H), 3.28 (dd, *J* = 1.5 Hz, 2H), 2.01 – 1.93 (m, 2H), 1.71 – 1.62 (m, 1H), 1.55 (dd, *J* = 8.4, 2.9 Hz, 1H), 3.28 (dd, *J* = 1.5 Hz, 2H), 2.01 – 1.93 (m, 2H), 1.71 – 1.62 (m, 1H), 1.55 (dd, *J* = 8.4, 2.9 Hz, 1H), 3.28 (dd, *J* = 1.5 Hz, 2H), 2.01 – 1.93 (m, 2H), 1.71 – 1.62 (m, 1H), 1.55 (dd, *J* = 8.4, 2.9 Hz, 1H), 3.28 (dd, *J* = 1.5 Hz, 2H), 3.01 – 1.93 (m, 2H), 3.01 – 1.93

1H), 1.52 (dt, *J* = 14.3, 2.2 Hz, 1H), 1.47 – 1.41 (m, 1H), 1.21 (dddd, *J* = 13.3, 11.7, 4.3, 3.0 Hz, 1H), 0.85 (s, 9H), -0.059 (s, 3H), -0.065 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 214.7, 135.6, 135.1, 134.8, 134.0, 130.5, 130.1, 128.14, 128.08, 65.9, 61.4, 55.0, 46.9, 41.2, 40.4, 36.6, 28.9, 26.4, 26.0, 23.8, 18.5, -5.70, -5.73.

IR (KBr): v (cm⁻¹) 2955, 2927, 2855, 1728, 1470, 1428, 1258, 1180, 1108, 1064, 1018, 912, 892, 878, 861, 834, 801, 734, 705, 685.

HRMS (ESI): *m*/*z* calcd. for C₂₉H₄₁O₃Si₂ [M+H]⁺: 493.2594, found 493.2582.

Compound (+)-18 (minor)

TLC (petroleum ether/ethyl acetate, 10:1 v/v): Rf = 0.5.

Optical rotation: $[\alpha]_D^{20} = +50$ (c = 1.0, MeOH).

¹**H NMR** (500 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.56 – 7.53 (m, 2H), 7.51 – 7.39 (m, 4H), 7.36 – 7.33 (m, 2H), 4.30 (ddd, J = 12.6, 11.5, 2.5 Hz, 1H), 4.23 (ddd, J = 11.4, 5.3, 2.4 Hz, 1H), 3.38 (dd, J = 10.4, 4.2 Hz, 1H), 3.30 (dd, J = 10.4, 8.2 Hz, 1H), 2.69 (dt, J = 19.0, 2.8 Hz, 1H), 2.21 (hept, J = 2.7 Hz, 1H), 2.19 – 2.02 (m, 4H), 1.68 (dt, J = 15.0, 2.4 Hz, 1H), 1.55 – 1.49 (m, 1H), 1.45 – 1.35 (m, 2H), 1.30 (dd, J = 8.9, 2.5 Hz, 1H), 0.82 (s, 9H), -0.11 (d, J = 0.9 Hz, 6H).

¹³**C NMR** (125 MHz, CDCl₃) δ 215.3, 135.5, 135.1, 134.6, 134.0, 130.5, 130.2, 128.2, 128.1, 65.2, 61.3, 44.7, 39.7, 39.0, 32.5, 29.7, 26.5, 26.0, 26.0, 25.1, 18.3, -5.51, -5.52.

IR (KBr): v (cm⁻¹) 2928, 2856, 1715, 1470, 1428, 1251, 1180, 1111, 1090, 946, 885, 855, 835, 755, 737, 725, 706, 666, 640, 626.

HRMS (ESI):m/z calcd. for C₂₉H₄₁O₃Si₂ [M+H]+: 493.2594, found 493.2581.

KHMDS (1M in THF, 0.84 mL, 0.84 mmol) was added to a solution of (+)-**17** (300.2 mg, 0.6 mmol) in THF (8.0 mL) at -78 °C under N₂ atmosphere. After stirring for 15 minutes at this temperature to ensure full deprotonation, PhNTf₂ (300.0 mg, 0.84 mmol) in THF (2.0 mL) was added. The reaction mixture was stirred at the same temperature until TLC indicating full consumption of (+)-**17** (ca. 30 minutes) and then quenched by sat. NH₄Cl solution. The aqueous layer was extracted with EtOAc (three times). The combined extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30:1) to afford (+)-**10** (350.8 mg, 94%) as a colorless solid.

Compound (+)-10

TLC (petroleum ether/ethyl acetate, 30:1 v/v): Rf = 0.30

Optical rotation: $[\alpha]_D^{20} = +53$ (c = 1.0, MeOH).

¹**H NMR** (500 MHz, CDCl₃) δ 7.78 – 7.73 (m, 2H), 7.54 – 7.50 (m, 2H), 7.50 – 7.44 (m, 3H), 7.42 – 7.37 (m, 1H), 7.36 – 7.30 (m, 2H), 5.84 (d, *J* = 2.5 Hz, 1H), 4.41 – 4.33 (m, 1H), 4.20 (ddd, *J* = 11.8, 5.0, 1.9 Hz, 1H), 3.15 (dd, *J* = 10.2, 4.0 Hz, 1H), 3.03 – 2.96 (m, 1H), 2.92 (p, *J* = 2.4 Hz, 1H), 2.35 – 2.21 (m, 2H), 1.86 (dt, *J* = 14.3, 2.2 Hz, 1H), 1.82 – 1.75 (m, 1H), 1.54 (tt, *J* = 12.2, 3.7 Hz, 1H), 1.15 (tdd, *J* = 9.8, 4.3, 2.5 Hz, 1H), 0.97 (tt, *J* = 12.2, 3.8 Hz, 1H), 0.82 (s, 9H), 0.72 (dd, *J* = 7.2, 3.1 Hz, 1H), -0.09 (s, 6H).

¹³**C NMR** (125 MHz, CDCl₃) δ 149.7, 135.2, 134.7, 134.5, 133.7, 130.4, 130.1, 128.1, 128.0, 126.1, 118.6(q, *J*_{C-F} = 318.7 Hz), 65.8, 61.3, 43.8, 40.2, 38.9, 37.2, 31.1, 26.8, 26.2, 25.8, 18.3, -5.69, -5.71.

IR (KBr): v (cm⁻¹) 2963, 2923, 2854, 1650, 1470, 1420, 1262, 1246, 1211, 1141, 1107, 1066, 1032, 903, 887, 836, 805, 777, 760, 732, 706, 670, 646, 606.

HRMS (ESI): *m*/*z* calcd. for C₃₀H₄₀F₃O₅SSi₂ [M+H]⁺: 625.2087, found 625.2072.

To a sealed tube were added Pd(dppf)Cl₂ (3.9 mg, 0.005 mmol), K₂CO₃ (41.6 mg, 0.3 mmol), **19** (34.8 mg, 0.15 mmol), (+)-**10** (61.9 mg, 0.1 mmol) and DMSO (2.0 mL) under N₂ atmosphere. The resulting mixture was heated to 80 °C and stirred for 3 h. Then the reaction was cooled to 0 °C and quenched by water, extracted with EtOAc (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated in *vacuo*. The residue was purified by silica gel flash chromatography (petroleum ether/ethyl acetate = 10/1) to afford compound (+)-**20** (55.3 mg, 96%) as a yellow oil.

Compound (+)-20

TLC (petroleum ether/ethyl acetate, 5:1 v/v): Rf = 0.30.

Optical rotation: $[\alpha]_D^{20} = +65$ (c = 1.0, MeOH).

¹**H NMR** (400 MHz, CD₃OD) δ 10.10 (s, 1H), 7.88 – 7.82 (m, 3H), 7.70 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.59 – 7.49 (m, 7H), 7.43 – 7.39 (m, 1H), 7.38 – 7.35 (m, 2H), 6.01 (d, *J* = 1.8 Hz, 1H), 4.50 – 4.40 (m, 1H), 4.19 (ddd, *J* = 11.7, 5.0, 1.9 Hz, 1H), 3.24 (q, *J* = 2.4 Hz, 1H), 3.15 – 3.07 (m, 1H), 2.93 (t, *J* = 10.5 Hz, 1H), 2.41 – 2.30 (m, 2H), 1.97 – 1.86 (m, 2H), 1.46 – 1.41 (m, 1H), 1.28 (dt, *J* = 10.0, 2.4 Hz, 1H), 1.07 – 0.99 (m, 1H), 0.80 (s, 9H), 0.66 (dd, *J* = 7.3, 2.9 Hz, 1H), -0.13 (s, 3H), -0.18 (s, 3H).

¹³**C NMR** (100 MHz, CD₃OD) δ 192.3, 145.1, 144.5, 138.1, 135.5, 134.5, 134.4, 134.2, 133.8, 133.1, 130.1, 130.0, 128.7, 127.9, 127.6, 127.3, 126.6, 65.9, 61.2, 42.8, 38.53, 38.49, 37.6, 31.2, 26.2, 25.5, 25.0, 17.6, -6.6, -6.8.

IR (KBr): v (cm⁻¹) 2953, 2927, 2854, 1690, 1595, 1487, 1428, 1386, 1253, 1195, 1108, 1092, 1074, 1005, 962, 923, 847, 837, 775, 764, 731, 705, 682, 640.

HRMS (ESI): m/z calcd. for C₃₆H₄₄NaSi₂ [M+Na]⁺: 603.2721, found 603.2725.

HCI (2M in EtOAc, 0.43 mL, 0.86 mmol) was added to a solution of (+)-**20** (50.7 mg, 0.086 mmol) in DCM (2.0 mL) at -78 °C under N₂ atmosphere. After stirring for 12 h at this temperature, the reaction was quenched by H₂O. The aqueous layer was extracted with DCM (three times). The combined extracts were dried over Na₂SO₄, filtered, and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography (petroleum ether/ethyl acetate = 3/1) to afford compound (–)-**21** (41 mg, 89%) as a white solid.

Compound (-)-21

TLC (petroleum ether/ethyl acetate, 2:1 v/v): Rf = 0.33.

Optical rotation: $[\alpha]_D^{20} = -31$ (c = 1.0, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.72 (m, 2H), 7.58 (dd, *J* = 7.8, 1.8 Hz, 2H), 7.47 – 7.39 (m, 7H), 7.35 (d, *J* = 6.5 Hz, 3H), 4.76 (dd, *J* = 10.5, 5.9 Hz, 1H), 4.31 (td, *J* = 12.1, 2.7 Hz, 1H), 4.18 (ddd, *J* = 11.6, 5.1, 1.9 Hz, 1H), 4.01 (dd, *J* = 7.3, 3.2 Hz, 1H), 3.49 (d, *J* = 7.2 Hz, 1H), 2.98 (d, *J* = 10.5 Hz, 1H), 2.69 (q, *J* = 3.4 Hz, 1H), 1.95 (q, *J* = 3.6 Hz, 1H), 1.89 (dt, *J* = 14.5, 2.4 Hz, 1H), 1.84 – 1.67 (m, 2H), 1.49 (d, *J* = 5.9 Hz, 1H), 1.24 – 1.13 (m, 3H), 0.85 – 0.74 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.5, 140.9, 135.8, 135.3, 134.53, 134.49, 130.3, 129.9, 129.1, 128.9, 128.1, 128.1, 124.6, 124.2, 90.0, 76.6, 73.6, 71.6, 61.7, 41.5, 39.9, 36.7, 36.4, 32.7, 21.7, 15.5.

IR (KBr): v (cm⁻¹) 3391, 2923, 1428, 1112, 1053, 1042, 1032, 1016, 996, 912, 853, 816, 758, 740, 704, 680, 670, 643.

HRMS (ESI): m/z calcd. for C₃₀H₃₀O₃NaSi [M+Na]⁺: 489.1856, found 489.1860.

To a sealed tube were added Pd(dppf)Cl₂ (36.5 mg, 0.05 mmol), K₃PO₄ (0.97 g, 1.5 mmol), 2dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos, 41.2 mg, 0.1 mmol), **9** (213.2 mg, 1.0 mmol) and (+)-**10** (313.3 mg, 0.5 mmol). Degased DMF (10 mL) were then added under N₂ atmosphere. The resulting mixture was heated to 80 °C and stirred for 1.5 h. Then the reaction was cooled to 0 °C and quenched by sat. NaHCO₃ solution, extracted with EtOAc (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated in *vacuo*. The residue was purified by silica gel flash chromatography (petroleum ether/ethyl acetate/Et₃N = 100/10/1) to afford compound (+)-**8** (219.1 mg, 69%) as a yellow oil.

Compound (+)-8

TLC (petroleum ether/ethyl acetate, 4:1 v/v): Rf = 0.32.

Optical rotation: $[\alpha]_D^{20} = +38$ (c = 1.0, MeOH).

¹**H NMR** (400 MHz, CD₃OD) δ 10.19 (s, 1H), 7.83 – 7.79 (m, 2H), 7.57 – 7.53 (m, 2H), 7.52 – 7.47 (m, 3H), 7.42 – 7.38 (m, 1H), 7.37 – 7.32 (m, 2H), 7.14 (d, *J* = 9.2 Hz, 1H), 6.98 (d, *J* = 9.1 Hz, 1H), 5.95 (d, *J* = 1.6 Hz, 1H), 4.42 (ddd, *J* = 12.9, 11.6, 2.2 Hz, 1H), 4.15 (ddd, *J* = 11.7, 4.9, 1.9 Hz, 1H), 3.80 (s, 3H), 3.75 (s, 3H), 3.13 – 2.98 (m, 3H), 2.36 – 2.25 (m, 2H), 1.92 – 1.69 (m, 3H), 1.20 – 1.13 (m, 1H), 0.98 – 0.91 (m, 1H), 0.89 – 0.86 (m, 1H), 0.64 (s, 9H), –0.31 (s, 3H), –0.36 (s, 3H).

¹³**C NMR** (100 MHz, CD₃OD) δ 192.7, 153.5, 151.7, 145.6, 136.9, 136.0, 134.6, 134.5, 134.0, 133.4, 130.0, 129.9, 127.8, 127.6, 125.3, 116.0, 110.9, 66.5, 61.2, 55.5, 55.1, 43.3, 38.7, 38.2, 37.7, 32.4, 26.7, 26.6, 25.0, 17.7, -6.8, -6.9.

IR (KBr): v (cm⁻¹) 2922, 2851, 1697, 1658, 1632, 1587, 1470, 1428, 1252, 1218, 1191, 1150, 1109, 1093, 1033, 1010, 962, 942, 922, 851, 837, 804, 777, 735, 706, 684, 653, 605.

HRMS (ESI): *m*/*z* calcd. for C₃₈H₄₉F₃O₅Si₂ [M+H]⁺: 641.3119, found 641.3104.

HCI (2M in EtOAc, 1.7 mL, 3.4 mmol) was added to a solution of (+)-8 (210.0 mg, 0.33 mmol) in DCM (5 mL) at -78 °C under N₂ atmosphere. After stirring for 24 h at this temperature, the reaction was quenched by H₂O. The aqueous layer was extracted with DCM (three times). The combined extracts were dried over Na₂SO₄, filtered, and concentrated in vacuo to give crude alcohol which was used for the next step without further purification.

To a solution of crude alcohol, NaHCO₃ (277.0 mg, 10 mmol) in DCM (10 mL) at 0 °C was added Dess-Martin periodinane (279.2 mg, 0.66 mmol) and the mixture was warmed to room temperature. The reaction was completed in 30 min, quenched by saturated aq. Na₂S₂O₃ and extracted with DCM (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2:1 to 1:1) to afford (–)-7 (138.6 mg, 80%) as a yellow solid.

Compound (–)-22

TLC (petroleum ether/ethyl acetate, 1:1 v/v): Rf = 0.35.

Optical rotation: $[\alpha]_D^{20} = -25$ (c = 1.0, MeOH).

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 – 7.76 (m, 2H), 7.60 – 7.57 (m, 2H), 7.44 – 7.40 (m, 3H), 7.40 – 7.37 (m, 2H), 7.36 – 7.34 (m, 1H), 6.73 (s, 2H), 5.74 (d, *J* = 8.8 Hz, 1H), 4.39 (ddd, *J* = 12.9, 11.5, 2.3 Hz, 1H), 4.17 (ddd, *J* = 11.5, 5.0, 1.8 Hz, 1H), 4.01 (dd, *J* = 7.1, 3.1 Hz, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 3.53 (d, *J* = 7.1 Hz, 1H), 2.72 (q, *J* = 3.4 Hz, 1H), 2.62 (td, *J* = 4.0, 2.1 Hz, 1H), 2.32 (dt, *J* = 14.0, 2.1 Hz, 1H), 2.08 – 2.01 (m, 2H), 1.89 (td, *J* = 13.5, 5.0 Hz, 1H), 1.62 –

1.54 (m, 2H), 1.36 (t, *J* = 3.3 Hz, 1H), 1.31 (ddd, *J* = 11.2, 4.2, 2.3 Hz, 1H), 1.19 (dddd, *J* = 13.9, 11.2, 7.6, 2.1 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 151.6, 150.1, 136.4, 136.04, 136.03, 134.7, 134.6, 130.4, 130.1, 129.7, 128.1, 128.0, 111.7, 110.8, 93.8, 76.4, 74.4, 62.6, 62.0, 56.1, 55.5, 39.14, 39.11, 38.1, 36.7, 34.6, 22.7, 16.7.

IR (KBr): v (cm⁻¹) 2923, 2853, 1495, 1463, 1428, 1282, 1260, 1186, 1112, 1075, 1093, 1040, 1019, 980, 943, 911, 863, 798, 759, 735, 702, 661.

HRMS (ESI): m/z calcd. for C₃₂H₃₅O₅Si [M+H]⁺: 527.2248, found 527.2253.

Compound (–)-7

TLC (petroleum ether/ethyl acetate, 1:1 v/v): Rf = 0.26.

Optical rotation: $[\alpha]_D^{20} = -13$ (c = 1.0, MeOH).

¹**H NMR** (500 MHz, CDCl₃) δ 7.77 – 7.75 (m, 2H), 7.59 – 7.57 (m, 2H), 7.46 – 7.40 (m, 4H), 7.38–7.35 (m, 2H), 7.05 (d, *J* = 8.8 Hz, 1H), 6.82 (d, *J* = 8.8 Hz, 1H), 4.33 (td, *J* = 12.4, 2.4 Hz, 1H), 4.20 (ddd, *J* = 11.7, 5.1, 1.8 Hz, 1H), 4.14 – 4.12 (m, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 3.62 (d, *J* = 7.4 Hz, 1H), 2.76 (q, *J* = 3.4 Hz, 1H), 2.72 (dt, *J* = 14.5, 2.2 Hz, 1H), 2.59 (q, *J* = 3.3 Hz, 1H), 2.28 (d, *J* = 2.3 Hz, 1H), 1.99 – 1.92 (m, 1H), 1.67 – 1.59 (m, 1H), 1.47 (t, *J* = 3.0 Hz, 1H), 1.23 – 1.12 (m, 2H), 0.87 – 0.81 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 201.1, 151.42, 151.41, 140.6, 135.7, 135.4, 134.60, 134.57, 130.4, 130.0, 128.2, 128.1, 127.9, 118.6, 111.8, 86.0, 77.2, 67.5, 61.9, 56.4, 56.1, 38.7, 38.5, 37.0, 36.6, 35.4, 21.2, 15.9.

IR (KBr): v (cm⁻¹) 2925, 2866, 1707, 1590, 1495, 1464, 1428, 1286, 1266, 1238, 1195, 1113, 1092, 1078, 1061, 1039, 952, 939, 856, 811, 767, 741, 702, 620.

HRMS (ESI): *m*/*z* calcd. for C₃₂H₃₃O₅Si [M+H]⁺: 525.2097, found 525.2079.

(–)-CSA (23.6 mg, 0.1 mmol) was added to a solution of (+)-**8** (64.5 mg, 0.1 mmol) in DCM (1.0 mL) at -78 °C under N₂ atmosphere. After stirring for 12 h at this temperature, the reaction was quenched by H₂O. The aqueous layer was extracted with DCM (three times). The combined extracts were dried over Na₂SO₄, filtered, and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 8:1) to afford (–)-**23** (55.1 mg, 85%) as a yellow oil.

Compound (–)-23

TLC (petroleum ether/ethyl acetate, 5:1 v/v): Rf = 0.25.

Optical rotation: $[\alpha]_{D^{20}} = -55$ (c = 1.0, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (dt, *J* = 5.0, 2.5 Hz, 2H), 7.61 – 7.55 (m, 2H), 7.50 (dd, *J* = 5.8, 1.7 Hz, 3H), 7.41 – 7.30 (m, 3H), 6.76 (d, *J* = 8.9 Hz, 1H), 6.63 (d, *J* = 8.8 Hz, 1H), 5.51 (s, 1H), 4.51 (td, *J* = 12.1, 2.8 Hz, 1H), 4.31 (ddd, *J* = 11.7, 5.0, 2.1 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 3.73 (q, *J* = 2.9 Hz, 1H), 3.02 (dd, *J* = 10.0, 3.9 Hz, 1H), 2.82 (t, *J* = 9.5 Hz, 1H), 2.58 – 2.41 (m, 2H), 2.36 – 2.29 (m, 1H), 2.00 (td, *J* = 9.0, 8.3, 5.1 Hz, 1H), 1.42 (dt, *J* = 12.1, 4.0 Hz, 1H), 1.08 (tt, *J* = 13.6, 4.7 Hz, 1H), 0.95 – 0.89 (m, 1H), 0.77 (s, 9H), 0.70 – 0.64 (m, 1H), -0.18 (s, 3H), -0.21 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 151.4, 150.2, 148.5, 142.4, 136.2, 134.9, 134.5, 133.2, 131.5, 130.0, 130.0, 129.8, 127.9, 127.8, 113.2, 108.7, 73.6, 66.7, 61.5, 56.3, 55.7, 43.8, 39.1, 35.3, 33.1, 32.9, 27.7, 26.4, 25.8, 18.2, -5.6, -5.9.

IR (KBr): v (cm⁻¹) 3480, 2935, 2855, 1494, 1463, 1428, 1257, 1185, 1112, 1057, 1033, 867, 837, 777, 736, 721, 702, 661, 620.

HRMS (ESI): *m*/*z* calcd. for C₃₈H₄₈O₅NaSi₂ [M+Na]⁺: 663.2932, found 663.2932.

TMSOTf (18 μ L, 0.1 mmol) was added to a solution of (+)-**8** (64.2 mg, 0.1 mmol) in DCM (5.0 mL) at -78 °C under N₂ atmosphere. After stirring for 12 h at this temperature, the reaction was quenched by H₂O. The aqueous layer was extracted with DCM (three times). The combined extracts were dried over Na₂SO₄, filtered, and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5:1) to afford (-)-**25** (27.1 mg, 53%) as a yellow soild.

Compound (–)-25

TLC (petroleum ether/ethyl acetate, 5:1 v/v): Rf = 0.30.

Optical rotation: $[\alpha]_D^{20} = -23$ (c = 1.0, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H), 7.58 (dt, *J* = 6.5, 1.7 Hz, 2H), 7.48 – 7.42 (m, 3H), 7.42 – 7.33 (m, 3H), 6.73 (d, *J* = 8.9 Hz, 1H), 6.59 (d, *J* = 8.9 Hz, 1H), 6.28 (s, 1H), 4.38 (td, *J* = 13.0, 12.3, 2.4 Hz, 1H), 4.27 (ddd, *J* = 11.7, 5.2, 1.9 Hz, 1H), 4.06 (dd, *J* = 6.8, 2.5 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 3.54 (d, *J* = 6.8 Hz, 1H), 3.05 – 3.00 (m, 1H), 2.85 (q, *J* = 3.6 Hz, 1H), 2.26 (td, *J* = 13.6, 13.0, 5.2 Hz, 1H), 2.11 – 2.03 (m, 1H), 1.97 (dt, *J* = 14.2, 2.2 Hz, 1H), 1.87 (t, *J* = 3.2 Hz, 1H), 1.61 – 1.54 (m, 1H), 1.17 – 1.09 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.9, 151.3, 147.6, 135.5, 135.4, 134.6, 134.5, 133.9, 131.0, 130.3, 129.9, 128.1, 128.0, 116.6, 113.4, 110.0, 92.3, 76.1, 61.6, 56.3, 56.1, 40.5, 38.1, 37.2, 35.6, 34.9, 32.4, 16.6.

IR (KBr): v (cm⁻¹) 2921, 2851, 1659, 1632, 1494, 1462, 1428, 1289, 1271, 1259, 1211, 1084, 1112, 1081, 1038, 1010, 979, 965, 942, 924, 897, 865, 844, 807, 767, 737, 708, 681.

HRMS (ESI): *m*/*z* calcd. for C₃₂H₃₃O₄Si [M+H]⁺: 509.2142, found 509.2147.

To a solution of (–)-7 (131.4 mg, 0.25 mmol), KF (72.5 mg, 1.25 mmol), KHCO₃ (40.1 mg, 0.4 mmol) in MeOH/THF (1:1, 5.0 mL) was added H₂O₂ (30% wt with H₂O, 0.64 mL, 5.0 mmol) at room temperature. The mixture was warmed to 50 °C, and stirred for 12 h. Then the reaction mixture was cooled to 0 °C, quenched by saturated aq. Na₂S₂O₃ and extracted with EtOAc (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (pure ethyl acetate) to afford (–)-**26** (83.3 mg, 91%) as a colorless oil.

Compound (-)-26

TLC (pure ethyl acetate): Rf = 0.4.

Optical rotation: $[\alpha]_D^{20} = -24$ (c = 1.0, MeOH).

¹**H NMR** (500 MHz, CDCl₃) δ 7.06 (d, *J* = 8.8 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 1H), 4.15 (dd, *J* = 7.9, 4.4 Hz, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 3.81 (dd, *J* = 6.1, 3.2 Hz, 1H), 3.77 – 3.72 (m, 2H), 3.61 (s, 1H), 2.65 – 2.63 (m, 1H), 2.41 (ddd, *J* = 15.6, 6.0, 2.4 Hz, 1H), 2.33 (t, *J* = 4.2 Hz, 1H), 2.19 (d, *J* = 1.8 Hz, 1H), 1.96 (ddd, *J* = 15.6, 9.3, 3.2 Hz, 1H), 1.79 – 1.69 (m, 2H), 1.05 – 0.96 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 201.7, 151.4, 151.3, 140.0, 128.0, 118.8, 112.0, 86.1, 78.2, 73.6, 59.5, 58.5, 56.4, 56.0, 46.0, 39.3, 37.5, 36.4, 17.9, 15.8.

IR (KBr): v (cm⁻¹) 3375, 2962, 2921, 2851, 1704, 1497, 1465, 1260, 1099, 1032, 860, 799, 706, 625, 606.

HRMS (ESI): *m*/*z* calcd. for C₂₀H₂₅O₆ [M+H]⁺: 361.1651, found 361.1638.

To a solution of (–)-**26** (73.5 mg, 0.2 mmol), 2-nitrophenylselenocyanate (55.1 mg, 0.24 mmol) and pyridine (20 μ L, 0.24 mmol) in dry THF (5.0 mL) PBu₃ (60 μ L, 0.24 mmol) was added dropwise at room temperature. Upon consumption of the starting material as indicated by TLC, H₂O₂ (30% wt with H₂O, 0.6 mL, 4.8 mmol) was added into this mixture and stirred for 12 h. Then the reaction mixture was cooled to 0 °C, quenched by saturated aq. Na₂S₂O₃ and extracted with EtOAc (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1:1) to afford (–)-**27** (34.0 mg, 50%) as a colorless solid.

Compound (-)-27

TLC (petroleum ether/ethyl acetate, 1:1 v/v): Rf = 0.15.

Optical rotation: $[\alpha]_{D^{20}} = -40$ (c = 1.0, CHCl₃).

¹**H NMR** (500 MHz, CDCl₃) δ 7.07 (d, J = 8.9 Hz, 1H), 6.85 (d, J = 8.8 Hz, 1H), 6.01 (dd, J = 17.6, 10.9 Hz, 1H), 5.35 (dd, J = 10.9, 1.0 Hz, 1H), 5.13 (dd, J = 17.6, 1.1 Hz, 1H), 4.22 (dd, J = 8.1, 4.5 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 3.79 – 3.76 (d, J = 7.6 Hz, 1H), 3.55 (s, 1H), 2.70 (q, J = 3.2 Hz, 1H), 2.42 (t, J = 4.2 Hz, 1H), 2.33 (d, J = 1.8 Hz, 1H), 1.92 (d, J = 1.6 Hz, 1H), 1.83 – 1.74 (m, 2H), 1.23 – 1.17 (m, 1H), 1.10 – 1.02 (m, 1H).

 $^{13}\textbf{C}$ NMR (125 MHz, CDCl₃) δ 199.6, 151.52, 151.45, 142.4, 139.6, 128.1, 118.8, 116.0, 112.4, 85.8, 73.6, 61.9, 56.5, 56.5, 56.1, 44.8, 42.6, 37.8, 15.48, 15.47.

IR (KBr): v (cm⁻¹) 3402, 2963, 2921, 2851, 1705, 1591, 1496, 1463, 1418, 1264, 1100, 1055, 1032, 913, 868, 806, 708, 662.

HRMS (ESI): *m*/*z* calcd. for C₂₀H₂₃O₅ [M+H]⁺: 343.1545, found 343.1534.

To a solution of (–)-**27** (34.0 mg, 0.1 mmol) in EtOH (3.0 mL) was added FeCl₃ (1.7 mg, 0.01 mmol) followed by the addition of dibenzoylmethane (2.3mg, 0.01 mmol) while the reaction mixture was stirred open to air. After 5 min, PhSiH₃ (120 μ L, 1.0 mmol) was added in one portion, and the solution was stirred at room temperature for 2 h. The reaction mixture was then quenched by water, extracted with EtOAc (three times). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1:3) to afford (–)-**28** (23.1 mg, 65%) as a colorless solid.

Compound (-)-28

TLC (pure ethyl acetate): Rf = 0.25.

Optical rotation: $[\alpha]_D^{20} = -41$ (c = 1.0, CHCl₃).

¹**H NMR** (500 MHz, CDCl₃) δ 7.10 (d, *J* = 8.2 Hz, 1H), 6.68 (d, *J* = 8.8 Hz, 1H), 4.21 (dd, *J* = 8.3, 4.6 Hz, 1H), 3.97 – 3.95 (m, 1H), 3.90 (s, 3H), 3.85 (s, 3H), 3.79 (d, J = 8.2 Hz, 1H), 2.92 (d, *J* = 2.3 Hz, 1H), 2.71 (q, *J* = 3.4 Hz, 1H), 2.42 - 2.36 (m, 1H), 2.38 (s, 3H), 2.19 – 2.12 (m, 1H), 2.01 (q, *J* = 6.8 Hz, 1H), 1.83 (ddt, *J* = 14.4, 12.1, 3.9 Hz, 1H), 1.45 – 1.40 (m, 1H), 1.07 (ddd, *J* = 14.3, 5.1, 2.6 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 213.7, 199.4, 151.52, 151.46, 139.5, 127.5, 119.2, 112.4, 85.4, 77.8, 73.1, 61.6, 56.5, 56.1, 51.3, 47.4, 37.7, 28.8, 15.4, 14.9.

IR (KBr): v (cm⁻¹) 3355, 2955, 2923, 2853, 1709, 1593, 1497, 1462, 1288, 1271, 1261, 1097, 1053, 1032, 801, 708.

HRMS (ESI): m/z calcd. for C₂₀H₂₃O₆ [M+H]⁺: 359.1495, found 359.1551.

To a Schlenk tube were added AlCl₃ (330.2 mg, 2.5 mmol) under N₂ atmosphere followed by the addition of (–)-**28** (17.5 mg in 2.0 mL DCM, 0.05 mmol) at 0 °C, then 1-dodecanethiol (0.6 mL, 2.5 mmol) was added to this mixture, and the reaction mixture was allowed to stir at 25 °C for 5 h. Upon completion, the solution was quenched by water (5.0 mL), extracted with EtOAc (three times), and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1:1) to afford (–)-**Iucidumone** (8.1 mg, 70%) as a brown solid.

(-)-Lucidumone [(-)-(1)]

TLC (petroleum ether/ethyl acetate, 1:1 v/v): Rf = 0.10.

Optical rotation: $[\alpha]_D^{20} = -62$ (c = 1.0, MeOH).

¹**H NMR** (500 MHz, CD₃OD) δ 7.02 (d, J = 8.8 Hz, 1H), 6.76 (d, J = 8.7 Hz, 1H), 4.26 (dd, J = 8.3, 4.9 Hz, 1H), 3.92 – 3.89 (m, 1H), 3.78 (d, J = 8.4 Hz, 1H), 2.89 (d, J = 2.3 Hz, 1H), 2.70 (q-like, (3.3) 1H), 2.36 (t-like, (4.6) 1H), 2.29 (s, 3H), 2.21 – 2.15 (m, 1H), 1.92 – 1.83 (m, 1H), 1.38 – 1.32 (m, 1H), 1.07 (dddd, J = 14.7, 11.9, 4.9, 2.7 Hz, 1H).

¹³**C NMR** (125 MHz, CD₃OD) δ 214.8, 204.3, 150.8, 149.5, 135.4, 126.4, 125.4, 118.6, 87.4, 79.5, 74.3, 62.4, 52.7, 48.7, 39.1, 28.5, 16.2, 15.9.

IR (KBr): v (cm⁻¹) 3355, 3186, 2919, 2849, 1697, 1659, 1632, 1495, 1470, 1423, 1296, 1262, 1190,1051.

HRMS (ESI): *m*/*z* calcd. for C₁₈H₁₉O₆ [M+H]⁺: 331.1182, found 331.1177.

3.2 NMR spectra and HPLC spectra

Supplementary Figure 5. NMR spectra of compound (+)-11

Supplementary Figure 10. NMR spectra of compound (+)-10

Supplementary Figure 13. NMR spectra of compound (+)-8

Supplementary Figure 14. NMR spectra of compound (-)-22

HPLC Data for Compound 11

Chiral HPLC: Chiralpak OD-H, hexane:*i*-PrOH = 80:20, 1.0 mL/min, 210 nm; tR = 11.8 min (minor), 15.9 min (major).

<Chromatogram> ™

<PEAK>

<u>???A</u> 2	10nm						
Peak#	Ret.Time	Area	Height	Conc.	unit	Mark	Name
1	11.774	59926205	2181271	49.729		S	
2	15.853	60580038	1785287	50.271		V	
Total		120506243	3966557				

<Chromatogram>

mV

<pea< th=""><th>K></th></pea<>	K>
0001	010

SSSA Z	IUnm						
Peak#	Res.Time	Area	Height	Conc.	Unit	Mark	Name
1	12.063	1248994	60118	4.176		М	
2	15.936	28658805	896575	95.824		М	
Total		29907799	956694				

Supplementary Figure 21. HPLC spectra of compound 11

3.3 Crystallographic information

Supplementary Table 4. Crystal data and structure refinement for compound (+)-17

X-ray data for compound (+)-17	
CCDC number	2271397
Identification code	(+)-17
Empirical formula	C29H40O3Si2
Formula weight	492.79
Temperature/K	99.94(18)
Crystal system	orthorhombic
Space group	P212121
a/Å	11.9992(2)
b/Å	12.1536(2)
c/Å	37.7267(5)
α/°	90
β/°	90
γ/°	90
Volume/Å3	5501.82(16)
Z	8
pcalcg/cm3	1.190
μ/mm-1	1.379
F(000)	2128.0
Crystal size/mm3	0.08 × 0.08 × 0.06
Radiation	GaKα (λ = 1.54184)
20 range for data collection/°	7.642 to 132.808
Index ranges	-14 \leq h \leq 13, -14 \leq k \leq 14, -44 \leq l \leq 44
Reflections collected	105349
Independent reflections	9612 [Rint = 0.0402, Rsigma = 0.0188]
Data/restraints/parameters	9612/308/686
Goodness-of-fit on F2	1.021
Final R indexes [I>=2σ (I)]	R1 = 0.0280, wR2 = 0.0720
Final R indexes [all data]	R1 = 0.0284, wR2 = 0.0723
Largest diff. peak/hole / e Å-3	0.24/-0.22
Flack parameter	0.000(7)

Supplementary Table 5. Crystal data and structure refinement for compound (-)-7

X-ray data for compound (-)-7.	
CCDC number	2277937
Identification code	(-)-7
Empirical formula	C32H32O5Si
Formula weight	542.66
Temperature/K	300.00(10)
Crystal system	tetragonal
Space group	P-41212
a/Å	11.0291 (2)
b/Å	11.0291(2)
c/Å	432751(14)
a/°	90
β/°	90
γ/°	90
Volume/Å3	5264.0(3)
Z	8
pcalcg/cm3	1.324
µ/mm-1	1.123
F(000)	2224.0
Crystal size/mm3	? × ? × ?
Radiation	Cu Kα (λ = 1.54184)
2Θ range for data collection/°	8.274 to 156.496
Index ranges	-11 \leq h \leq 13, -13 \leq k \leq 13, -51 \leq l \leq 54
Reflections collected	37426
Independent reflections	5523 [Rint = 0.0769, Rsigma = 0.0430]
Data/restraints/parameters	5523/0/346
Goodness-of-fit on F2	1.065
Final R indexes [I>=2σ (I)]	R1 = 0.0510, wR2 = 0.1193
Final R indexes [all data]	R1 = 0.0857, wR2 = 0.1532
Largest diff. peak/hole / e Å-3	0.25/-0.20
Flack parameter	0.03(2)

Supplementary Table 6. Crystal data and structure refinement for compound (±)-21

X-ray data for compound (±)-21	
CCDC number	2312931
Identification code	(±)-21
Empirical formula	C30H30O3Si
Formula weight	466.63
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.85330(10)
b/Å	10.96160(10)
c/Å	12.95210(10)
α/°	104.9690(10)
β/°	93.0220(10)
γ/°	93.4100(10)
Volume/Å3	1209.13(2)
Z	2
Z pcalcg/cm3	2 1.282
Z ρcalcg/cm3 μ/mm-1	2 1.282 1.091
Z pcalcg/cm3 µ/mm-1 F(000)	2 1.282 1.091 496.0
Z pcalcg/cm3 µ/mm-1 F(000) Crystal size/mm3	2 1.282 1.091 496.0 0.42 × 0.25 × 0.2
Z pcalcg/cm3 µ/mm-1 F(000) Crystal size/mm3 Radiation	2 1.282 1.091 496.0 0.42 × 0.25 × 0.2 Cu Kα (λ = 1.54184)
Z pcalcg/cm3 µ/mm-1 F(000) Crystal size/mm3 Radiation 20 range for data collection/°	2 1.282 1.091 496.0 0.42 × 0.25 × 0.2 Cu Kα (λ = 1.54184) 7.082 to 153.416
Z pcalcg/cm3 µ/mm-1 F(000) Crystal size/mm3 Radiation 2O range for data collection/° Index ranges	2 1.282 1.091 496.0 0.42 \times 0.25 \times 0.2 Cu Ka (λ = 1.54184) 7.082 to 153.416 -11 \leq h \leq 8, -13 \leq k \leq 13, -16 \leq l \leq 16
Z pcalcg/cm3 µ/mm-1 F(000) Crystal size/mm3 Radiation 20 range for data collection/° Index ranges Reflections collected	2 1.282 1.091 496.0 0.42 \times 0.25 \times 0.2 Cu Ka (λ = 1.54184) 7.082 to 153.416 -11 \leq h \leq 8, -13 \leq k \leq 13, -16 \leq l \leq 16 20605
Z pcalcg/cm3 µ/mm-1 F(000) Crystal size/mm3 Radiation 2O range for data collection/° Index ranges Reflections collected Independent reflections	2 1.282 1.091 496.0 0.42 × 0.25 × 0.2 Cu Ka (λ = 1.54184) 7.082 to 153.416 -11 ≤ h ≤ 8, -13 ≤ k ≤ 13, -16 ≤ I ≤ 16 20605 4873 [Rint = 0.0215, Rsigma = 0.0128]
Z pcalcg/cm3 µ/mm-1 F(000) Crystal size/mm3 Radiation 2O range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters	2 1.282 1.091 496.0 0.42 × 0.25 × 0.2 Cu Ka (λ = 1.54184) 7.082 to 153.416 -11 ≤ h ≤ 8, -13 ≤ k ≤ 13, -16 ≤ I ≤ 16 20605 4873 [Rint = 0.0215, Rsigma = 0.0128] 4873/0/308
Z pcalcg/cm3 µ/mm-1 F(000) Crystal size/mm3 Radiation 20 range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F2	2 1.282 1.091 496.0 0.42 × 0.25 × 0.2 Cu Ka (λ = 1.54184) 7.082 to 153.416 -11 ≤ h ≤ 8, -13 ≤ k ≤ 13, -16 ≤ I ≤ 16 20605 4873 [Rint = 0.0215, Rsigma = 0.0128] 4873/0/308 1.056
Z pcalcg/cm3 μ/mm-1 F(000) Crystal size/mm3 Radiation 2O range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F2 Final R indexes [I>=2σ (I)]	2 1.282 1.091 496.0 0.42 × 0.25 × 0.2 Cu Ka (λ = 1.54184) 7.082 to 153.416 -11 ≤ h ≤ 8, -13 ≤ k ≤ 13, -16 ≤ I ≤ 16 20605 4873 [Rint = 0.0215, Rsigma = 0.0128] 4873/0/308 1.056 R1 = 0.0362, wR2 = 0.0938
Z pcalcg/cm3 μ/mm-1 F(000) Crystal size/mm3 Radiation 2O range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F2 Final R indexes [l>=2σ (l)] Final R indexes [all data]	2 1.282 1.091 496.0 0.42 × 0.25 × 0.2 Cu Ka (λ = 1.54184) 7.082 to 153.416 -11 ≤ h ≤ 8, -13 ≤ k ≤ 13, -16 ≤ I ≤ 16 20605 4873 [Rint = 0.0215, Rsigma = 0.0128] 4873/0/308 1.056 R1 = 0.0362, wR2 = 0.0938 R1 = 0.0368, wR2 = 0.0943

Supplementary Table 7. Crystal data and structure refinement for compound (-)-27

X-ray data for compound (-)-27	
CCDC number	2284054
Identification code	(-)-27
Empirical formula	C20H22O5
Formula weight	342.37
Temperature/K	100.01(10)
Crystal system	orthorhombic
Space group	P-212121
a/Å	6.75558(5)
b/Å	12.42947(9)
c/Å	19.93730(14)
α/°	90
β/°	90
Y/°	90
Volume/Å3	1674.10(2)
Z	4
pcalcg/cm3	1.358
μ/mm-1	0.796
F(000)	728.0
Crystal size/mm3	0.3 × 0.25 × 0.22
Radiation	Cu Kα (λ = 1.54184)
2O range for data collection/°	8.382 to 152.738
Index ranges	-8 \leq h \leq 8, -15 \leq k \leq 13, -25 \leq l \leq 25
Reflections collected	14137
Independent reflections	3366 [Rint = 0.0157, Rsigma = 0.0108]
Data/restraints/parameters	3366/0/230
Goodness-of-fit on F2	1.024
Final R indexes [I>=2σ (I)]	R1 = 0.0241, wR2 = 0.0625
Final R indexes [all data]	R1 = 0.0243, wR2 = 0.0626
Largest diff. peak/hole / e Å-3	0.19/-0.14
Flack parameter	0.02(3)

4. Supplementary References

- Takeshita, T., Seki, Y., Kawamoto, K., Murai, S. & Sonoda. N. The catalyzed reaction of .alpha.,.beta.-unsaturated esters with various hydrosilanes. *J. Org. Chem.* 52, 4864-4868 (1987)
- [2] Shvartsbart, A. & Smith III, A. B. Total Synthesis of (-)-Calyciphylline N. J. Am. Chem. Soc.
 136, 870–873 (2014).
- [3] Sieburth, S. M. & Lang, J. A practical synthesis of difunctional organosilane reagents and their application to the Diels-Alder reaction. J. Org. Chem. 64, 1780–1781 (1999).