Supplementary Figures Mishra et al

Supplementary Figure S1. (A) The Firmicutes versus Bacteroidetes (F/B) ratio was significantly increased in old mice compared to young mice. (B) The LDA score of microbes that abundant in young (green) compared to old (red) and represent a biomarker ability. (C-E) The relative abundance of Gram positive and Gram negative (C) as well as biofilm former (D) and stress tolerant (E) microbes in young and old gut. All values represent the mean of 5-10 animals in each group, and error bars represent the standard error of means. Statistical significance was determined using a t-test, and the p-value ***p<0.001 is statistically significant.

Supplementary Figure S2. The expression of inflammatory genes (*II1b, II6*, and *Tnfa*) significantly increased in the colon of old mice compared to young mice. All values represent the mean of 5-10 animals in each group, and error bars represent the standard error of means. Statistical significance was determined using a t-test, and the p-value ***p<0.001 is statistically significant.

Supplementary Figure S3. Schematic presentation of the fecal microbiome transplantation (FMT) experiment and the schedules for young to young, old to young, old to old, and young to old, along with the assays performed.

Supplementary Figure S4. (**A**) The microbiome's β -diversity was significantly different between old and young FMT recipient mice and was similar to that of their respective donors. (**B**,**C**) The abundance of major phyla (B), specifically the Firmicutes/Bacteroidetes ratio (C), was significantly distinct in older FMT recipients compared to younger recipients. D) The abundance of major genera differed significantly between old and young FMT recipient feces. (**E**,**F**) Similarly, the cladogram (E) and LDA scores (F). (**G-I**) Abundance of higher gram-negative bacteria (G), biofilm former (H) and stress tolerant (I) in old FMT mice as compared to Young FMT mice. All values represent the mean of 5-10 animals in each group, and error bars represent the standard error of the means. Statistical significance was determined using a t-test and/or ANOVA, with a p-value of ***p<0.001, indicating statistical significance.

Supplementary Figure S5. (**A**,**B**) The levels of systemic markers of leaky gut (LBP and sCD14) significantly increased in 10-12 weeks old mice who received old FMT compared to those who received young FMT. (**C**) The expression of inflammatory genes (*II1b*, *II6*, and *Tnfa*) significantly increased in old FMT recipients compared to young FMT recipients. (**D**) Similarly, the old FMT recipient mice showed higher systemic inflammatory markers like IL6 and TNF α compared to the levels in young FMT recipients. All values represent the mean of 5-10 animals in each group, and error bars represent the standard error of the means. Statistical significance was determined using a t-test and/or ANOVA, with a p-value of ***p<0.001, indicating statistical significance.

Supplementary Figure S6. (**A**) Volcano graph of differentially expressed genes in the intestines of old and young mice. (**B**) Muc2 expression in the ileum of old and young donor mice. (**C**,**D**) Small intestine histology (H&E staining) shows fewer goblet cells (white bubble-like structures indicated by red arrows) in old mice than in young mice. (**E**) Fecal mucin content in older mice decreased compared to young mice. (**F**) The goblet cell population in the colon was found to be lower in older mice than in younger mice, and old FMT recipients also showed decreased goblet cells compared to young FMT recipients. Number of goblet cells per villi was measured by FIJI. All values represent the mean of 5-10 animals in each group, and the pictures are representative of 5-10 animals. Five pictures were taken of each animal's tissue sections. Statistical significance was determined using a t-test, and the p-value ***p<0.001 is statistically significant.

Supplementary Figure S7. Hierarchical differential clustering analyses reveal significant differences in metabolites between old and young gut (ileum). All the values represent the mean of 5-10 animals in each group, and error bars represent the standard error of means. Statistical significance was determined using t-test.

Supplementary Figure S8. Comparing the abundance of three SCFAs— (A) Butyrate, (B) Acetate, and (C) Propionate —in old to young feces shows the greatest decrease (based on p-values) in butyrate. Values represent the mean of 5-10 animals in each group, and error bars represent the standard error of means. Statistical significance was determined using t-test, and the actual p-values are presented in the graphs.

Supplementary Figure S9. Heatmap of Pearson correlation values among fecal metabolites with mucin genes (*Muc2, Muc6, Muc13*), tight junction protein genes (*Zo1, Ocln1*), leaky-gut markers (FITC-dextran permeability [indicated as "FITC"], and inflammation (both intestinal [indicated by "i"] and systemic [serum IL6 and TNF α]) revealed unique clustering. The highest correlation was between butyrate and *Muc2* gene expression.

Supplementary Figure S10. Acetate (10µM), propionate (6µM), and butyrate (6µM) treatment enhances mucin production (indicated by increased blue of Periodic Acid–Schiff [PAS] staining) and increased PAS positive (PAS⁺) area percentage (%) quantification measured by FIJI (A) and *Muc2, Muc6,* and *Muc13* gene expression in both CMT93 cells (B) and enteroids (C). All the values represent the mean of 3-4 independent replicates in cells and organoid cultures for each group, and error bars represent the standard error of means. Statistical analyses were performed using one- and/or two-way ANOVAs, and p-values *p<0.05, **p<0.01, and ***p<0.001 are statistically significant.

Supplementary Figure S11. (A-E) Multivariate analyses correlating butyrate with *Muc2* (A), *buk* (B), and *but* (*C*) genes as well as *Muc2* expression with *buk* and *but* genes (D,E) in young donors, old donors, young FMT recipients, and old FMT recipients. Analyses are done using Pearson correlation analysis and r² values plotted using r-scripts. Values represent the mean of 3-4 independent replicates in cells cultures for each group, and error bars represent the standard error of means. Statistical analyses were performed using t-test and/or ANOVA, as applicable, and the actual p-values are presented in the graphs.

Supplementary Figure S12. Butyrate treatment increased PAS positive (PAS⁺) area percentage (%) quantification in CMT93 cells dampened by old FCM treatment measured by FIJI. Values represent the mean of 3-4 independent replicates in cells cultures for each group, and error bars represent the standard error of means. Statistical analyses were performed using t-test and p-values ***p<0.001 are statistically significant.

t-Test between Young FCM vs Old FCM

Supplementary Figure S13. Both acetate and butyrate significantly increased the expression of *Muc2* expression in CMT93 cells treated with young and old FCMs, however, butyrate effects were significantly higher than acetate in both young and old FCM treated cells. Values represent the mean of 3-4 independent replicates in cells cultures for each group, and error bars represent the standard error of means. Statistical analyses were performed using t-test and p-values *p<0.05, **p<0.01, and ***p<0.001 are statistically significant.

Supplementary Figure S14. Schematic of group randomization, gut cleansing, FMTs, treatments, and assays conducted to test the effects of butyrate in old FMT recipient mice compared to young FMT recipients, as data presented in main Figure 5D-M.

Supplementary Figure S15. Expression of *Muc2* in the colon of mice received old and young FMTs and treated with and without butyrate. All the values represent the mean of 5-8 animals for each group, and error bars represent the standard error of means. Statistical significance was determined using t-Test, and p-values **p<0.01 is statistically significant.

Supplementary Figure S16. Positive effect of butyrate increased in PAS positive (PAS⁺) area percentage (%) quantification in CMT93 cells reduced by challenging with FFAR2 inhibitor and FFAR3 inhibitor measured by FIJI. Values represent the mean of 3-4 independent replicates in cells cultures for each group, and error bars represent the standard error of means. Statistical analyses were performed using t-test and/or ANOVA, as applicable, and p-values *p<0.05, **p<0.01, and ***p<0.001 are statistically significant.

Ffar2/3 Mice study Design

Supplementary Figure S17. Schematic of group randomization, gut cleansing, FMTs, treatments, and assays conducted to test the effects of butyrate in Villin-Cre driven intestine specific *Ffar2* (iF2) and *Ffar3* (iF3) knockout (KO) mice compared to their wildtypes (WT), as data presented in main Figure 7A-M.

Supplementary Figure S18. The expression of inflammatory markers (*II1b*, *II6*, *Tnfa*) (A-C) significantly increased in the colon of 7-months old intestine-specific *Ffar2* (iF2) and *Ffar3* (iF3) knockout (KO) mice compared to their ageand sex-matched wildtype (WT) controls. All values represent the mean of 5-10 animals in each group, and error bars represent the standard error of the means. Statistical significance was determined using a t-test, as applicable, and p-values of *p<0.05, **p<0.01, and ***p<0.001 are statistically significant.

SI. No.	Gene	Gene sequence (5`-3`)	GenBank Accession number/Ref.	
1	Notch1	F: GATGGCCTCAATGGGTACAAG		
Ţ	Noteni	R: TCGTTGTTGTTGATGTCACAGT	1111_008714	
2	M/nt2	F: CTCGCTGGCTACCCAATTTG	NIM 000521*	
Ζ	VVIIL5	R: CTTCACACCTTCTGCTACGCT	1101_009321	
2	Och	F: TTGAAAGTCCACCTCCTTACAGA		
5	OCIM	R: CCGGATAAAAAGAGTACGCTGG	10101_008736*	
4	701	F: GCCGCTAAGAGCACAGCAA	NN4 001162574*	
4	201	R: GCCCTCCTTTTAACACATCAGA	1001105574	
E	Dena	F: TTTGAGGCACGCCTGATCC	NIN4 011045*	
5	Рспи	R: GGAGACGTGAGACGAGTCCAT		
G	Cand1	F: GCGTACCCTGACACCAATCTC	NN4 007621*	
0	CCHUI	R: CTCCTCTTCGCACTTCTGCTC	1101_007031	
7	Vir67	F: ATCATTGACCGCTCCTTTAGGT	NN4 001091117*	
/	K//07	R: GCTCGCCTTGATGGTTCCT		
0	11	F: GAGACCGAAGCACCGACTATG		
0	LyZI	R: CGGTTTTGACATTGTGTTCGC	PIVIID. 20159095#	
0	Cn2	F: ACAGTGTCAACCATCTTGCTC		
9	Gpz	R: CCCGATTATAGTCAATGGCTGG	10101_025989*	
10	Tff3	F: TTGCTGGGTCCTCTGGGATAG		
10		R: TACACTGCTCCGATGTGACAG	PIVIID. 19163645#	
11	Elf2	F: GCTGCCACCTGTGAGATCAG	NN4 001162121*	
11	EIJS	R: GTGCCAAAGGTAGTCGGAGG		
12	Sndof	F: AAGGCAGCATCAGGAGCAATG	NIN4 012001*	
12	Spuej	R: CTGTCAATGACGGGACACTG	101012031	
12	Cfi	F: AGAAGGCGCACAGCTATCAC	NIN4 010279*	
15	Gji	R: GGCTCCATTTTCGACTCGC	NIVI_010278*	
14	Math 1	F: GAGTGGGCTGAGGTAAAAGAGT		
14	Νατητ	R: GGTCGGTGCTATCCAGGAG		
15	Muc?	F: TTCGGCACGAGCAACTTTG	DMID: 22016121#	
15	IVIUCZ	R: GGCAGGACACCTTGTCATTG	PIVIID. 32910121#	
16	Much	F: CGGCTGCGTCTGTCCTAAG	NINA 191720*	
10	Ινίασο	R: GCATAGTCACATGGGCATTCCT	NIVI_181729	
17	N/1::e1 2	F: GATCTCTGCAACCCTAACCCC	NIN4 010720*	
1/	IVIUC13	R: TCCTTTCACACATGACGACAG	NIVI_010739	
10	1110	F: GCTCTTACTGACTGGCATGAG	DIALD: 22202202#	
18	1110	R: CGCAGCTCTAGGAGCATGTG	PIVIID: 32302292#	
10	Taf0 1	F: CTCCCGTGGCTTCTAGTGC		
19	TgfB1	R: GCCTTAGTTTGGACAGGATCTG		
20	116.0	F: GCAACTGTTCCTGAACTCAACT		
20	ll16 —	R: ATCTTTTGGGGTCCGTCAACT	NIVI_UU8361*	
			•	

Supplementary Table S1. Mouse key intestinal epithelial, neuronal, tight junction protein and inflammatory markers primer sequence

SI. No.	Gene	Gene sequence (5`-3`)	GenBank Accession number/Ref.
21	116	F: CCAAGAGGTGAGTGCTTCCC	DMID: 22202202#
21	110	R: CTGTTGTTCAGACTCTCTCCCT	FIVIID: 32302232#
22	Tofa	F: CCCTCACACTCAGATCATCTTCT	NM 012602*
22	тŋu	R: GCTACGACGTGGGCTACAG	1111_013093
23	Sic	F: GCTATCGCTCTTGTTGTGGTT	NNA 001081137*
25	515	R: TTCCAGGACTAGGGGTTGAAG	1111_001081137
24	Call	F: TCCCACCACTGGGGATACAG	NM 009801*
24	Cun	R: CTCTTGGACGCAGCTTTATCATA	1111_003001
25	Hes1	F: CCAGCCAGTGTCAACACGA	NM 008235*
25		R: AATGCCGGGAGCTATCTTTCT	1111_000233
26	Casn3	F: ATGGAGAACAACAAAACCTCAGT	NM 009810*
20	cusps	R: TTGCTCCCATGTATGGTCTTTAC	1111_003010
27	Casn8	F: TGCTTGGACTACATCCCACAC	NM 009812*
27	cuspo	R: TGCAGTCTAGGAAGTTGACCA	1111_003012
28	Bad	F: GAGGAGGAGCTTAGCCCTTT	PMID: 3229//37#
20	Buu	R: AGGAACCCTCAAACTCATCG	110110. 32234437#
29	Muc	F: GCTGTTTGAAGGCTGGATTTC	PMID: 32550000#
25	wyc	R: GATGAAATAGGGCTGTACGGAG	110112. 32330000#
30	Вах	F: TAGCAAACTGGTGCTCAAGG	PMID: 25288756#
50		R: TCTTGGATCCAGACAAGCAG	110112.23200730#
21	Bcl2l2	F: GCGGAGTTCACAGCTCTATAC	NN4 007537*
		R: AAAAGGCCCCTACAGTTACCA	14141_007557
32	Bcl2	F: GATGACTGAGTACCTGAACCG	PMID: 25830089#
52	DCIZ	R: CAGAGACAGCCAGGAGAAATC	FINID: 23830089#
33	Villin1	F: TCAAAGGCTCTCTCAACATCAC	
	•••••	R: AGCAGTCACCATCGAAGAAGC	1111_003505
34	Encam	F: GCGGCTCAGAGAGACTGTG	NM 008532*
54	Epean	R: CCAAGCATTTAGACGCCAGTTT	1111_000332
35	Vimentin	F: CGTCCACACGCACCTACAG	NM 011701*
	Vinicitai	R: GGGGGATGAGGAATAGAGGCT	
36	l ar5	F: CCTACTCGAAGACTTACCCAGT	NM 010195*
	Lgi J	R: GCATTGGGGTGAATGATAGCA	010103
37	Olfm4	F: AAACAATGTCCTTAGCATTCGCC	NM 001030294*
		R: GCTTCCAAGGGCCAATGAAAC	
38	Sox9	F: AGTACCCGCATCTGCACAAC	NM 011448*
		R: ACGAAGGGTCTCTTCTCGCT	
39	Sox4	F: GACCTGCTCGACCTGAACC	NM 009238*
		R: ACTCCAGCCAATCTCCCGA	
40	Nan3	F: CCAAGAGCGAGTTGGCACT	NM 009719*
	ingris	R: CGGGCCATAGAAGCTGTGG	
41	Chaa	F: ATCCTCTCTATCCTGCGACAC	NM 007693*
	Cnga	R: GGGCTCTGGTTCTCAAACACT	
42	Cck	F: AAGAGCGGCGTATGTCTGTG	NM 031161*
	42		R: CATCCAGCCCATGTAGTCCC

SI. No.	Gene	Gene sequence (5`-3`)	GenBank Accession number/Ref.	
12	Efar?	F: CTTGATCCTCACGGCCTACAT	NM 146187*	
45	Fjuiz	R: CCAGGGTCAGATTAAGCAGGAG	11101_140187	
44	Efar?	F: CTAAACCTGACCATTTCGGACC	NIM 001022216*	
44	rjui S	R: GATAGGCCACGCTCAGAAAAC	NM_001033310	
15	Mc+2	F: GCTGGGTCGTAGTCTGTGC	NN4_011201*	
45	IVIC12	R: ATCCAAGCGATCTGACTGGAG	NM_011391	
16	Mc+1	F: TGTTAGTCGGAGCCTTCATTTC	NN/ 000106*	
40	Witt	R: CACTGGTCGTTGCACTGAATA	1111_003190	
17	Gln1r	F: ACGGTGTCCCTCTCAGAGAC	NIM 021332*	
47	Gipii	R: ATCAAAGGTCCGGTTGCAGAA	1010121332	
10	Neuroa?	F: AACTCCACGTCCCCATACAG	NN4 000719*	
40	Neuroyz	R: GAGGCGCATAACGATGCTTCT	1111_003718	
10	Gca	F: TTACTTTGTGGCTGGATTGCTT	NN4 008100*	
49	Gty	R: AGTGGCGTTTGTCTTCATTCA	1111_008100	
50	Pcck1	F: AGTTGGAGGCATAAGAATGCTG	NM 012628*	
50	PCSKI	R: GCCTTCTGGGCTAGTCTGC	1111_013028	
E1	Deck2	F: AGAGAGACCCCAGGATAAAGATG	NN4 008702*	
51	PCSKZ	R: CTTGCCCAGTGTTGAACAGGT	1111_008792	
50	SicEa1	F: AATGCGGCTGACATCTCAGTC	NN4 010810*	
52	516501	R: ACCAAGGCGTTCCATTCAAAG	1111_013810	
52	Rdaf	F: TCATACTTCGGTTGCATGAAGG	NN4_007540*	
55	Bunj	R: AGACCTCTCGAACCTGCCC	1111_007540	
54	Calh	F: TCTGGCTTCATTTCGACGCTG	NN4 000788*	
54	Cuib	R: ACAAAGGATTTCATTTCCGGTGA	1111_009788	
55	Rmi1	F: ATCCCCACTTAATGTGTGTCCT	NN4 007552*	
55	DIIII1	R: CTTGCTGGTCTCCAAGTAACG	10101_007332	
56	Chat	F: CCATTGTGAAGCGGTTTGGG	NN4 000801*	
50	Chut	R: GCCAGGCGGTTGTTTAGATACA	1111_003831	
57	Dhh	F: GAGGCGGCTTCCATGTACG	NNA 128042*	
57	Don	R: TCCAGGGGGATGTGGTAGG	1101_138342	
50	Drd2	F: CCTCTGAGCCAGATAAGCAGC	NN4 007877*	
50	Dius	R: AGACCGTTGCCAAAGATGATG	1111_007877	
50	Elav/2	F: ATGGTCACTCAGATACTGGGG	NNA 010487*	
55	EIUVIS	R: TTCTGGGGTAGGTAGTTGACG	1111_010487	
60	Eabn7	F: GGACACAATGCACATTCAAGAAC	NINA 021272*	
00	Табру	R: CCGAACCACAGACTTACAGTTT	NW_021272	
61	Gfan	F: GGGGCAAAAGCACCAAAGAAG	NIM 001131020*	
01	Gjup	R: GGGACAACTTGTATTGTGAGCC	NM_001131020	
62	Mef2c	F: GTCAGTTGGGAGCTTGCACTA	NIM 001170537*	
02	ivief2C	R: CGGTCTCTAGGAGGAGAAACA		
63	Muoconin	F: GAGACATCCCCCTATTTCTACCA	NIM 021190*	
63	63	iviyogenin	R: GCTCAGTCCGCTCATAGCC	

SI. No.	Gene	Gene sequence (5`-3`)	GenBank Accession number/Ref.	
64	Ngfr	F: CTAGGGGTGTCCTTTGGAGGT	NN4 022217*	
04		R: CAGGGTTCACACACGGTCT	NM_033217	
65	Noc1	F: CTGGTGAAGGAACGGGTCAG	NN4 008712*	
05	1051	R: CCGATCATTGACGGCGAGAAT	NM_008712	
66	Dhoy 2h	F: TACGCCGCAGTTCCATACAAACTC		
00	FIIOXZD	R: TCTTTGAGCTGCGCGCTTGTGAAG	FINID: 30020098#	
67	Pot	F: GCATGTCAGACCCGAACTGG		
07	Rel	R: CGCTGAGGGTGAAACCATCC	FIVIID: 23980924#	
60	\$100b	F: TGGTTGCCCTCATTGATGTCT	DN/ID: 210/2720#	
08	51000	R: CCCATCCCCATCTTCGTCC	FINID: 31043735#	
60	Sov10	F: GAAGCCCCACATCGACTTCG	NINA 011/27*	
09	50X10	R: GGCAGGTATTGGTCCAGCTC	NM_011437	
70	Tac1	F: ATTCCTTTGTTGGACTAATGGGC	NINA 145102*	
70		R: ACGTCTTCTTTCGTAGTTCTGC	143123	
71	Tert	F: GCACTTTGGTTGCCCAATG		
/1		R: GCACGTTTCTCTCGTTGCG	NM_009354	
72	Htr1a	F: GACAGGCGGCAACGATACT		
72		R: CCAAGGAGCCGATGAGATAGTT	NM_008508	
73	Tubb3	F: TAGACCCCAGCGGCAACTAT		
75		R: GTTCCAGGTTCCAAGTCCACC	NM_001080971	
7/	Vin	F: AGTGTGCTGTTCTCTCAGTCG	NINA 011702*	
/4	VIP	R: GCCATTTTCTGCTAAGGGATTCT	NWI_011702	
75	Uchl1	F: AGGGACAGGAAGTTAGCCCTA	NIM 011670*	
75	001111	R: AGCTTCTCCGTTTCAGACAGA	NM_011070	
76	Mcn1	F: TTAAAAACCTGGATCGGAACCAA	NINA 011222*	
70	NICP1	R: GCATTAGCTTCAGATTTACGGGT	NM_011333	
77	190	F: GCAATTATTCCCCATGAACG	DMID: 22202202#	
	77	185	R: GGCCTCACTAAACCATCCAA	FIVIID. 32302232#

* The accession number and primer sequences are optained from Harvard primer bank # The primer sequence optained from the published article that mentioned herewith PMID

FMT administration to Mice				
				p-Value
SI. No.	Gene	Young FMT	Old FMT	Young vs
				Old FMT
1	Muc2	0.950	0.074	0.000
2	Mct1	1.026	0.264	0.000
3	Myogenin	1.015	0.118	0.000
4	Drd3	1.000	0.287	0.000
5	Math1	1.035	0.085	0.000
6	Gfi	0.960	0.047	0.000
7	Sox9	0.988	4.215	0.000
8	Bcl2	1.009	0.186	0.000
9	Zo1	0.991	0.110	0.001
10	Elavl3	0.951	0.137	0.000
11	Gfap	0.977	3.117	0.000
12	Tnfα	0.987	9.307	0.000
13	Casp8	1.000	2.101	0.010
14	Muc13	0.988	2.150	0.008
15	Bcl2l2	0.990	0.162	0.000
16	Muc6	1.007	0.126	0.000
17	Mef2c	0.979	4.701	0.000
18	Bdnf	1.030	0.249	0.000
19	Ffar2	0.943	0.060	0.000
20	<i>II10</i>	1.015	0.246	0.013
21	Bad	0.995	10.926	0.001
22	Epcam	0.926	5.458	0.000
23	Villin	0.931	3.490	0.003
24	Hes1	0.963	3.609	0.001
25	Tgfβ1	1.031	0.228	0.000
26	Lyz1	1.005	5.326	0.002
27	Ffar3	0.982	0.091	0.000
28	Calb	0.995	0.202	0.006
29	116	0.980	4.825	0.000
30	Tert	0.943	0.164	0.000

Supplementary Table S2. RFA (Randon forest analysis) of intestinal specific marker gene expression in mice administration with Young vs Old FMT (fecal microbiome transplant)

	la Matabalita Yaung Old			p-Value	
51. NO.	Metabolite	roung	Old	Young vs Old	
1	Butyrate	1.275	0.789	0.000	
2	Taurine	1.485	0.639	0.002	
3	Propionate	1.136	0.861	0.003	
4	Cholate	0.432	1.579	0.000	
5	Acetate	1.402	0.764	0.000	
6	Anserine	0.681	1.331	0.000	
7	Methanol	0.989	0.713	0.008	
8	Valine	0.711	1.291	0.000	
9	3-Phenylpropionate	1.415	0.806	0.065	
10	Glycine	1.161	0.900	0.005	
11	3-Hydroxyisobutyrate	1.053	0.966	0.322	
12	Total bile acid & cholesterol	0.579	1.259	0.000	
13	3-Methyl-2-oxovalerate	0.796	1.132	0.002	
14	Xylose	1.642	0.756	0.003	
15	Choline	1.070	0.925	0.045	
16	Isoleucine	0.850	1.126	0.005	
17	4-Hydroxyisophenylacetate	1.172	0.957	0.000	
18	Tartrate	0.868	1.100	0.050	
19	Arabinose	0.929	1.030	0.181	
20	Ethanolamine	0.850	1.061	0.025	
21	2-Hydroxyisobutyrate	1.087	0.891	0.023	
22	Leucine	0.815	1.093	0.006	
23	Pyruvate	1.148	0.929	0.035	
24	Glutamine	1.104	0.956	0.037	
25	Hypoxanthine	1.145	0.873	0.034	
26	Formate	0.889	1.120	0.014	
27	Dimethylamine	0.973	1.059	0.319	
28	Furmate	1.555	0.591	0.002	
29	Ethanol	0.920	1.038	0.066	
30	Alanine	0.976	0.957	0.334	

Supplementary Table S3. Fold change and p-Value of metabolite abundance in Young vs Old Donor Mice according to RFA (Randon forest analysis)

S. No.	Name	Cat. Number	Vendor		
	Chemicals and Reagents				
1	Ampicillin	A0166	Sigma		
2	Metronidazole	M1547	Sigma		
3	Neomycin	N6386	Sigma		
4	Vancomycin	195540	MP Biochemicals		
5	polyethylene glycol	25322-68-3	Millipore Sigma		
6	Resazurin	R7017	Sigma Aldrich		
7	L-cysteine-HCI	2430	Calbiochem, EMD Millipore Corp.		
8	Butyrate	B5887	Sigma		
9	Acetate	S5636	Sigma		
10	Proionate	P5436	Sigma		
9	4-kD-FITC (Fluroescein isothiocyanate)-dextran	FD4	Sigma Aldrich		
10	LBP ELISA kit	HK205-01	Hycult Biotech Inc.		
11	sCD14 ELISA kit	MC140	R&D Systems		
12	IL6 ELISA kit	KMC0061	Invitrogen		
13	TNFα ELISA kit	BMS607-3	Invitrogen		
14	Fecal Mucin ELISA kit	FFA-MU-KO1	Cosmo BioCo. Ltd		
15	Hematoxylin and Eosin	3530-16	Ricca		
16	Alcian Blue/PAS staining kit	395B-1KT	Sigma Aldrich		
17	QiaAmp PowerFecal Pro kit (50)	2830-50	Qiagen		
18	Miseq reagent kit v3	MS-102-3003	Illumina		
19	Agencourt AMPure XP 60ml kit	A63881	Beckman Coulter Genomics		
20	0.45 µm pore nylon membrane sterile filter	431225	Corning Incorporated		
21	0.22 µm nylon membrane sterile syringe filter	379-2215-OEM	EZFlow, Foxx, Life Sciences		
22	Dulbecco`s phosphate buffered saline (DPBS)	17-512F	BioWhittaker		
23	Trypsin	25300-054	Gibco, Life technologies		
24	Bovine serum albumin (BSA)	BP1600-100	Fisher Scientific		
25	70µm cell strainer	352350	Falcon, Corning Incorporation		
	Dulbecco's Modified Eagle Medium: Nutrient				
26	Mixture F-12 (DMEM/F12)	11330-032	Gibco, Life technologies		
27	IntestiCult Organoid Growth Medium	#06005	Stemcell		
28	Gentamicin	15710-064	Gibco, Life technologies		
29	Matrigel Matrix	354230	Corning		
30	САТВР	5903	Tocris		
31	Pertussis Toxin	PHZ1174	Invitrogen		
32	4.5 g/L D-Glucose with L-Glutamine DMEM	11995-065	Gibco		
33	Fetal bovine serum (FBS)	26140-079	Gibco		
34	100 U/mL penicillin, 100 U/mL streptomycin	15140-122	Gibco		
35	0.4 µm pore size of 12-well transwell plates	3460	Costar, Corning		
36	Trimethylsilylpropanoic acid (TSP)	AC432120010	ThermoFisher Scientific		
37	HT-29 cells	HTB-38	ATCC		
38	CMT-93	CCL-223	ATCC		
20		174400	()iagan		
39	RNeasy Mini Kit	74106	Qiagen		
40	RNeasy Mini Kit High-Capacity cDNA reverse transcription kit	4368814	Applied Biosystems		
40 41	RNeasy Mini Kit High-Capacity cDNA reverse transcription kit PowerUp SYBR Green master mix	4368814 100029284	Applied Biosystems Applied Biosystem		

Supplementary Table S4. Details of chemicals and reagents used in this study.

Instruments				
1	Fluorescence 96-well plate reader		PolarStar Omega, BMG Labtech	
2	AmScope microscope		Nikon Corporation	
3	MiSeq Sequencer		Illumina	
4	Qubit-3 Fluorimeter		Invitrogen	
5	Bruker Ascend 400 MHz high-resolution NMR		Bruker Biospin	
6	Refrigerated Centrifuge machine		Eppendroff	
7	EVOM2 Epithelial Voltohmmeter		WPI	
8	NMR		Bruker BioSpin	
9	7500 qRTPCR machine	4351106	Applied Biosystem	

Supplementary Table S5. The human gene primer sequence

SI. No.	Gene	Seuence	Asseccion No
1	h <i>Ffar2</i>	F: CCGTGCAGTACAAGCTCTCC	NM_005306*
		R: CTGCTCAGTCGTGTTCAAGTATT	
2	h <i>Ffar</i> 3	F: TTCACCACCATCTATCTCACCG	NM_005304*
		R: GGAACTCCAGGTAGCAGGTC	

* The accession number and primer sequences are optained from Harvard primer bank

SI. No.	Gene	Seuence	Asseccion No.
1	But	F: GCIGAICATTTCACITGGAAYWSITGGCAYATG	PMID: 30212649
		R: CCTGCCTTTGCAATRTCIACRAANGC	
2	Buk	5F1: CCATGCATTAAATCAAAAAGC	PMID: 23836895
		5F2: CCATGCGTTAAACCAAAAAGC	
		6R1: AGTACCTCCACCCATGTG	
		6R2: AATACCTCCGCCCATATG	
		6R3: AATACCGCCRCCCATATG	
3	Total Bacteria	F: GCAGGCCTAACACATGCAAGTC	PMID: 23836895
		R: CTGCTGCCTCCCGTAGGAGT	

Supplementary Table S6. The buk and but gene primer sequence